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Preface 

These proceedings contain papers accepted for presentation at the Fourth International 

Conference on Fracture and Strength of Solids. The triennial conference is the fourth in 

the series after the tremendous successes in Singapore (1991), China (1994) and 

Hong Kong (1997). With the sponsor ship of the Far East and Oceanic Fracture Society 

(FEOFS), the conference is today the premier one concerned with the mechanics and 

mechanisms of fracture, fatigue and strength of solids. 

The FEOFS was founded for the purpose of presenting the latest findings and 

exchanging ideas with each other in the fields of fracture and strength of materials and 

have supported the Conference. 

The International Conference on Fracture and Strength of Solids has always 

maintained a high standard as demonstrated by the number of countries/regions from 

which papers have been submitted and the high quality papers finally selected for 

inclusion in this volume. This is also a direct reflection of the continuing growth in the 

pursuance of research and development in this field. The volume covers broad areas of 

Fracture Mechanics, Computational Mechanics, Dynamic Fracture, Damage 

Mechanics, Fracture Physics, Fatigue and Creep, Polymer and Polymer Composites, 

MMCs and CMCs, Welding etc, that is all the areas of Applied Mechanics Parts. 

We wish to thank all authors who contributed papers to the conference and all referees 

for their efforts to review the papers. Thanks are also due to the members of the 

Executive Committee, Organizing Committee and the International Advisory Committee 

for their efforts in making the conference a success. We acknowledge the supports by 

the local and international sponsors, including Far East and Oceanic Fracture Society 

(FEOFS), Korea Science and Engineering Foundation, The Korean Federation of 

Science and Technology Societies, Korea Research Foundation, Air Force Office of 

Scientific Research, Pohang Iron and Steel Co. (POSCO), Hyundai Heavy Industry, 

Safety and Structural Integrity Research Center (SAFE), Keum Kwang Co., Pohang 

University of Science and Technology (POSTECH) 

Prof. Kyung Seop Han 

Chairman of Conference Organizing Committee 
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ABSTRACT 

Since many instability mechanisms are length-scale dependent, some interesting length-scale 
dependent transition behaviors are observed at a small length scale. Two examples are presented for 
length-scale dependent transitions in stress-driven processes. One is the transition from nano- to 
micro-mechanisms of interfacial slip in single-asperity adhesive-contact friction. This transition 
behavior is explained with a dislocation model. The other example is the evolution of the surface 
roughness of a strained solid caused by chemical etching. The roughening process produces distinct 
peaks of the frequency-dependent roughening rate on the two-dimensional frequency domain. These 
•peaks are analyzed to be the signature of the stress in the solid near the surface. This analysis 
provides the principles of surface-roughness evolution spectroscopy (SRES) which can be used as a 
high-spatial-resolution stress gauge. The Atomic-Force-Microscope-based SRES reveals some other 
high-frequency peaks than expected by the low-frequency near-equilibrium model. It is believed 
that the high frequency peaks are caused by length-scale-dependent mechanisms. 

1. INTRODUCTION 

Recent developments in science have advanced capabilities to fabricate and control material 
systems on the scale of nanometers, bringing problems of material behavior on the nanometer scale 
into the domain of engineering. Immediate applications of nanostructures and nano-devices include 
quantum electronic devices, bio-surgical instruments, micro-electrical sensors, functionally graded 
materials, and many others with great promise for commercialization. The branch of mechanics 
research in this emerging field can be termed nano- and micro-mechanics of materials. 

The terminology of nanomechanics is embracing many implicit meanings related to the 
mechanics of physical processes and material behavior at the length scale of nanometers. This 
length scale is very close to atomic and molecular size scale and thus the mechanics problems in 
this field are associated with "atomic spatial resolution and transition from quantum to continuum 
mechanics via atomistics," "richness of underlying electronic degree of freedom for the physical 
processes in this length scale," "abundant sources of instabilities and localization of motion and 
deformation" and "non-equilibrium processes and small-number statistics/fluctuations for collective 
motions of atoms and defects." While the terms nano and micro are often used to indicate length 
scales, for example, nano-tubes, nano-particles, nano-structures, micro-electronics, micro-gauge and 
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micro-scope, etc., the term "micromechanics" usually means mechanics of (immediate) underlying 
mechanisms of physical processes and material behavior at any length scale. Examples include 
mechanics of dislocation motion, phase transformation, mass and vacancy diffusion, void growth 
for plasticity and fracture. 

In the field of nano- and micro-mechanics of solids we often encounter length-scale effects. 
Examples include the hardness variation of metals depending on the depth of indentation in nano- 
and micro-indentation test. While strength of materials at different length scales is actively studied 
these days with nano- and micro-indentation tests, two other clear examples of scale-dependent 
deformation characteristics in nano- and micro-mechanics of materials will be described in 
following sections. One is on scale effects in single-asperity contact friction and the other is about 
scale effects in the evolution of surface roughness during shallow chemical etching. 

2. SCALE EFFECTS IN SINGLE-ASPERITY-CONTACT FRICTION 

Amontons [1] presented the empirical friction law that the shear load is proportional to the 
normal loading in 1699. In 1950, Bowden and Tabor [2] proposed that the shear force required to 
slide a single-asperity contact of clean surfaces is proportional to the contact area. The 
proportionality constant, the shear force divided by the area, is the single-asperity friction stress, T, 

which has been considered independent of the normal stress on the contact area. The normal load 
for the friction between two rough surfaces is considered to increase proportionally with the actual 
area of contact, and thus the Amonton's law holds for sliding processes of many asperity contacts 
between two clean rough surfaces. 

The conjecture of Bowden and Tabor has been verified experimentally by Homola et al. [3] in 
1990, using a surface force aparatus (SFA) for a single asperity-contact friction between two 
atomically smooth mica surfaces over the contact-radius range of 40 - 250 urn. More recently, 
Carpick et al. [4] in 1996 and Lantz et al. [5] in 1997 have reported that the Bowden and Tabor 
conjecture holds for contacts of AFM (Atomic Force Microscope) tips over the range of contact 
radii between 3 and 14 nm. However, the friction stress observed in the SFA experiment was about 
1300 of the shear modulus, ju, of the contact-junction material, while the friction stress of the AFM 
experiment was about 40th of the effective shear modulus of the contact junction. How can we 
explain the similarity of frictional behavior and the large difference between the friction stresses in 
distinctively different length scales? A model that provides the answer for this question is 
described as follows. 

edge of 
the contact 

external 
rack 

(a)       " J    ■ (b) 

Fig. 1. (a) Schematic of the single-asperity-contact friction, (b) Schematic of the micro-slip process 
in the contact region prior to total slip. 
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As two clean surfaces contact, adhesion makes a contact junction which becomes a circular 
external crack as shown in Fig. 1(a). The external-crack geometry provides stress concentration for 
the shear loading so that a micro-slip region develops within the contact area prior to total slip as 
shown in Fig. 1(b). If the micro-slip region sweeps the whole contact region progressively with a 
local friction behavior of Amontons' type, the entire single-asperity friction would obey the 
Amonton's law [6]. If it sweeps with a local critical shear stress for slipping, it would have a single 
friction stress regardless of the contact zone size, providing the Bowden and Tabor behavior of 
friction for the entire range of length scale [7]. These two models cannot explain the scale effects. 
However, if the micro-slip region becomes unstable before it sweeps the entire contact area, it will 
generate a dislocation and the mobile dislocation will constitute the slip process. The unstable 
dislocation nucleation process near a two dimensional crack geometry has been analyzed by Rice 
and Tomson [8] and Rice [9]. An important result of these analyses is that there exists a critical 
dislocation nucleation process zone size, 77, that is inversely proportional to the unstable stacking 
fault energy of the slip plane for a small-scale micro-slip process. Based on the dislocation 
nucleation criterion of Rice-Tomson type and a model of dislocation stabilization process within the 
contact zone, the scale effects were explained by Hurtado and Kim [10,11]. 

As the load T in Fig. 1(a) is increased to a critical level, a circular dislocation loop of Burgers 
vector b is emitted into the contact region from the edge of the contact. If the contact area is large 
enough, ihe dislocation loop will be stabilized by effective Peierls barriers within the contact region, 
and the next dislocation loop will be nucleated at the edge, piling up the dislocations. As the 
innermost dislocation becomes unstable and completes the gliding to annihilation, the asperity slips. 
The condition to steadily sustain the dislocation nucleation at the edge and the instability of the 
leading dislocation provides the friction stress as a function of the contact radius a and material 
parameters, 77, r0(dislocation core radius) and Tp(effective Peierls stress) as shown in Fig. 2. 

10-1 : \ 

„/ft = l\**\.                                              SDAslip<^„) 
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2   \\:^Ö                    ~V~ SFA (Homola et. al. 1990) 
3 V vKo* 
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/ 
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a/b 
Fig. 2. Friction stress t as a function of contact radius a. The symbols m, b and represent the shear 

modulus of the junction, the Burgers vector and effective Peierls stress of the dislocation. 
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The analytic predictions are compared, in Fig. 2, with the results of both the AFM and SFA 
experiments. The dislocation nucleation and instability conditions also generate delineating 
boundaries (//, if) on the plane of normalized friction stress versus contact radius. The lines (//, ii) 
meet at a point {dc,t'c) and the point moves along h as r „ varies. On the left side of line // in Fig.2 
the contact area is too small to accommodate the nucleation process of the highly curved dislocation 
to form a distinct core structure before it is emitted from the contact edge. Thus, in this region the 
asperities slip concurrently without a distinctive dislocation motion. In the region on the right side 
of 11 and on the upper side of ij, the slip is assisted by a moving dislocation loop; once a dislocation 
is nucleated at the contact edge, the dislocation is completely unstable until it self-annihilates. This 
slip mechanism has been named single-dislocation-assisted (SDA) slip. Various SDA slip curves for 
different 77 values are shown by dashed lines. A multiple-dislocation-cooperated (MDC) slip 
mechanism is expected in the region below line i/. This analysis predicts that the frictional slip in 
the AFM experiment is a concurrent slip and the corresponding friction stress is the theoretical 
strength of the junction. The frictional slip of the SFA experiment is a MDC slip and the friction 
stress represent the effective Peierl stress of mobile interface dislocations. The slip mechanisms of 
two friction tests are different due to length-scale effects, although both test results satisfy the 
Bowden and Tabor postulate in the respective contact-radius range. The theory predicts that 
transition occurs in slip mechanisms and that the friction stress depends on the contact size between 
two length-scales of the AFM and SFA tests; the theoretical results await experimental verification. 

3. SCALE EFFECTS IN THE EVOLUTION OF SURFACE ROUGHNESS IN SHALLOW 
CHEMICAL ETCHING 

Another interesting example of length-scale effects in nano- and micro-mechanics of solids is the 
phenomena observed in stress-induced surface roughening. The stress-induced roughening of solid 
surfaces is considered to be the main cause of failure process in MEMS devices. Stress-induced 
roughening of solid surfaces, simply termed as "stress roughening ," has been extensively studied 
for stress-induced morphological instability of flat surfaces, which is known as Asaro-Tiller[12] 
instability or Grinfeld instability[13] ; up-to-date references are listed by Kim et al. [14]. 

Surface roughening of long wavelength can be modeled with continuum energetics and kinetics. 
In the continuum models the tendency of the surface to change the shape of its reference 
configuration is represented by the total-chemical-potential variation with respect to admissible 
variation of the surface configuration. As the surface configuration is varied, the (positive) surface 
energy and the (positive) bulk strain energy, which comprise the chemical potential, change the 
chemical potential in opposite directions. A positive surface energy tends to flatten the surface, 
while a positive strain energy is inclined to roughen the surface, lowering the chemical potential. 
This competition depends on the spatial frequency of the roughness. Two types of major atomic- 
level mechanisms allow variation of the surface configuration. One type is the addition and removal 
of atoms on the surface from and to the surroundings of the surface, i.e. the solid bulk or the liquid 
bulk, if the solid is in contact with a liquid. Chemical etching belongs to this case. The other is the 
addition and removal of atoms along the surface (or interface) itself. In the latter case a gradient in 
chemical potential results in diffusive mass transport along the surface. This phenomenon is 
particularly relevant for processes characterized by high stress, high temperature and small size 
scales, such as the growth of heteroepitaxial thin films where stresses are of the order of gigapascals, 
temperatures about 500 °C, and the film thickness is in the submicron scale [15, 16]. 

The general observation in both cases is that a flat surface under stress is unstable for a 
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sufficiently large wavelength X (or small wave number a = 2n I X); there exists a critical wave 
number wcr below which roughness grows and above which they decay. Analysis [14] shows, 
however, that the wave-number dependence of the growth (or decay) rate of the roughness is 
different for the two cases. In any case, the roughness spectral analysis can be made without 
ambiguity for shallow amplitude growth. 

In the etching experiment, an AFM was used to measure two sets, h(x,0) and h(x,t), of surface 
roughness before and after etching as shown in Fig. 3 (T.l) and (T.2). The material chosen for the 
experiment was a structural aluminum alloy, frequently used for computer hard disks. The specimen 
geometry is depicted in the left inset of Fig.3. It contains an internal hole and an EDM notch. The 
notch in the specimen was opened by deforming the ligament plastically with the load P as shown 
in the figure. Then the load P was removed, leaving a high residual stress field in the vicinity of the 
notch end. The specimen with the residual stress was placed in the AFM, and the region T was 
etched in situ. The etchant employed in this experiment was the Keller reagent, a common 
aluminum-alloy etchant: HF 48% (2 ml), HC1 (3 ml), HN03 (5 ml), H20 (190 ml). We measured the 
topography with an AFM (PSI AutoProbe CP with Multitask probe head) in contact mode, with a 
SisN4 tip. Then, the two sets of roughness were fast-Fourier-transformed into, h(a>,t) and h(co,0), 
to evaluate the frequency-dependent growth rate, ln(h(co,t) / h(cofi)), of the roughness. 

t= 1.9 
(T.l) 

Fig. 3. Specimen geometry of high residual stress for AFM scanning (units in mm), left inset; the 
squares indicating the areas of scan at T is not in scale. AFM measurements of surface topography 
before (T.l) and after (T.2) etching for an aluminum specimen with residual stresses at T. 

A theoretical prediction of the frequency-dependent growth 
rate for an isotropic solid is shown in Fig. 4. The distance 
between the two peaks represents the critical frequency, wcr, 
along the notch direction, below which roughness grows and 
above which they decay. The critical frequency is 
proportional to square of the principal stress and inversely 
proportional to the surface energy and the shear modulus of 
the solid. This theoretical prediction is only applicable for 
the shallow-etching or low-frequency condition, w\\h||« 1, 
where ||A|| is an amplitude norm of the roughness. Details 
of the theoretical analysis can be found in reference [14]. 

B 

coi (rad/um) 

Fig. 4. Frequency-dependent 
roughness growth rate for an 
isotropic solid: Theory. 
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Experimental results are shown in Fig. 5. As shown in Fig. 5(a), the two low frequency peaks are 
aligned in the notch direction like in Fig. 4, showing that the principal stress in the notch direction 
is larger than the other one. This result indicates that the notch-tip was plastically deformed and 
partially unloaded as the external loading was removed. Figure 5(b) shows the high frequency 
behavior at T. Fig. 5(b) was obtained with a scan size of 10 um x 10 (am, while Fig 5(a) was 
processed with 25 um x 25um scan. Many higher frequency peaks are observed other than the low 
frequency stress peaks. Recently Yu and Suo [17] have investigated the effects of thermally- 
activated etching processes far from equilibrium, motivated by the observation of Barvosa-Carter et 
al. [18] that the homoepitaxial growth of the interface roughness at a certain frequency depends on 
the sign of the applied stress. Yu and Suo [17] have shown that when the kinetic mobility M is 
thermally activated with an activation strain, two more high frequency peaks can be observed at the 
frequency range of typically two orders of magnitude higher than that of low frequency peaks. Their 
analysis is also based on the first order theory; however, the first order approximation may not be 
safely applied beyond the frequency of 20 rad/um for the data shown in Fig. 5(b). The negative 
peaks, dark spots in Fig. 5(b), are most noticeable, which are believed to be caused by length-scale- 
dependent mechanisms. 

150      -100       -50 50        100       150 

(a) (b) 

Fig. 5. Experimentally measured values of the function , (a) at low frequency range, processed with 
the roughness data of an area of 25 mm by 25 mm and, (b) at high frequency range, with the 
roughness data of an area of 10 mm by 10 mm, at the area T 
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ABSTRACT 

The materials display strong size effect at the micron or sub-micron scale. The classical 
plasticity theories cannot explain this size dependence because they possess no internal material 
lengths. Based on the Taylor model in dislocation mechanics, the theory of Mechanism-based 
Strain Gradient (MSG) plasticity has been derived. It agrees very well with the available micro- 
scale experiments, such as micro-torsion, micro-bending and micro-indentation hardness 
experiments. The structure of the asymptotic crack tip fields associated with MSG plasticity is 
investigated. It is shown that the crack tip field associated with MSG plasticity does not have 
separable form of solutions. Its implication on the fracture criterion in MSG plasticity is also 
discussed. 

1.   INTRODUCTION 

Continuum mechanics has enjoyed its tremendous success in many engineering disciplines, in 
which the length scales involved are typical on the order of, or larger than, millimeters. In recent 
years, continuum mechanics has been applied to micro-electronics industry, such as the reliability 
assessment of micro-electronic devices, stress analysis of micro-scale features, and design of micro- 
electro-mechanical systems (MEMS). One common feature of these applications is that the 
characteristic length is very small, typically from 0.1 to 10 microns. Accordingly, micro-scale 
experiments have been developed to measure the mechanical properties at the small scale. For 
example, micro-indentation and nano-indentation hardeness experiments have been developed to 
determine the elastic modulus and hardness of materials at the micron or sub-micron scale. These 
experiments, however, have repeatedly shown very strong size-dependence. The measured 
indentation hardness increases by a factor of two or even three as the depth of indentation decreases 
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to microns or sub-microns [1-7]. This is very puzzling since the indentation hardness has always 
been considered as a material property. Some researchers have attributed this increase in hardness 
to the inaccuracy in experimental measurements, such as the effect of pile-up and sink-in, the 
indenter tip geometry, the oxidation layer on the surface, or the additional work hardening 
associated with surface finishing. Significant efforts have been made to account for these effects. 
The indentation hardness, however, still displays strong dependence on the indentation depth after 
these factors are accounted for [7]. 

Other experiments on the micro-scale have also shown strong size dependence. Fleck et al. [8] 
have observed in micro-torsion of thin copper wires that the scaled shear strength increases by a 
factor of three as the wire diameter decreases from 170 to 12 microns. Stolken and Evans [9] have 
found similar strength increase in micro-bending of thin nickel foils as the foil thickness decreases 
from 50 to 12.5 microns. In particle-reinforced metal-matrix composites, Lloyd [10] have 
observed substantial increase in work hardening as the particle diameter is reduced from 16 to 7.5 
microns at a fixed particle volume fraction of 15%. Classical plasticity theories [11] cannot 
explain this size-dependence observed at the micron or sub-micron scale because their constitutive 
models possess no internal material lengths. At the micron scale, however, there are still hundreds 
of dislocations such that there should be a continuum plasticity theory (but not classical plasticity) 
that can describe the collective behavior of these dislocations. 

Another objective that warrants the development of a micron-level continuum plasticity is to 
link macroscopic fracture behavior to atomistic fracture processes in ductile materials. This 
linkage between macroscopic cracking and atomistic fracture will be crucially important in 
predicting adhesion strength and fracture toughness of multi-layer structures in microelectronic 
devices [12]. In a remarkable series of experiments, Elssner et al. [13] have measured both the 
macroscopic fracture toughness and the atomic work of separation of an interface between a single 
crystal of niobium and a sapphire single crystal. The macroscopic fracture toughness is two to 
three orders of magnitude higher than the atomic work of separation. This has been attributed to 
the significant amount of plastic deformation in niobium. According to models based on classical 
plasticity theories, the maximum stress level around a crack tip is not more than four to five times 
the yield stress [14]. Elssner et al. [13], however, have observed that the interface crack tip 
remains atomistically sharp. The stress level needed to produce atomistic decohesion of a lattice 
or a strong interface is typically on the order of ten times the yield stress, which is significantly 
larger than the prediction based on classical plasticity theories. In other words, classical plasticity 
theories cannot explain the atomistically sharp crack tip observed in ductile materials. 

Some microscopic understanding of plastic deformation is necessary in order to develop such a 
continuum plasticity theory intended for micron or sub-micron scale applications. When a 
material is deformed, dislocations are generated, moved and stored, and the storage causes the 
material to work harden. Dislocations become stored for one of the two reasons: they accumulate 
by trapping each other in a random way and are called statistically stored dislocations [15], or they 
are required for compatible deformation of various parts of the material, which are called the 
geometrically necessary dislocations and are related to the gradients of plastic shear [15-17]. 

These considerations have motivated Fleck, Hutchinson and co-workers [8,18,19] to develop 
phenomenological theory of strain gradient plasticity intended for applications to materials and 
structures whose dimension controlling plastic deformation falls roughly within a range from a 
tenth of a micron to ten microns.    Strain gradients have been introduced in the constitutive model, 
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and their work conjugates are the higher order stresses. From a dimensional consideration, several 
internal material length parameters have been introduced to scale the strain gradient terms and these 
length parameters are determined to be on the order of microns or sub-microns from fitting the 
micro-scale experiments of indentation, torsion and bending. 

Based on the Taylor hardening relation in dislocation mechanics [20], Nix and Gao [21] have 
developed a rather simple model that captures the dependence of flow stress  a on the effective 

gradient  r\ of plastic strains, 

where a = arej-f{s) is the uniaxial stress-strain relation,  aref is a reference stress in uniaxial 

tension, and / is identified as the internal material length scaling the strain gradient and is given by 

1=18 
f       \2 

(2) 
\aref J 

Here /i is the shear modulus and b is the Burgers vector.    For typical metallic materials, / is 

indeed on the order of microns, consistent with the estimate of Fleck and Hutchinson [19] from 
fitting the micro-scale experiments. 

Motivated by the success to estimate the micro-scale flow stress from the dislocation model, 
Gao, Huang, Nix and Hutchinson [22,23] have derived a three-dimensional theory of Mechanism- 
based Strain Gradient (MSG) plasticity. The theory is based on a multi-scale, hierarchical 
framework to link the micro-scale dislocation interactions to the meso-scale continuum plasticity 
theories. The Taylor model in dislocation mechanics [20] is adopted as a founding principle at the 
micro-scale, based on which the meso-scale strain gradient plasticity theory is derived. The theory 
agrees very well with the aforementioned micro-indentation, torsion and bending experiments [24]. 
It has also been used to study plastic flow localization in order to predict the shear band thickness 
[25] in terms of the internal material length /. 

The theory of Mechanism-based Strain Gradient plasticity is reviewed in the next section, 
followed by the asymptotic analysis of the crack tip field. Unlike all existing crack tip fields, the 
asymptotic field associated with MSG plasticity does not have a separable form. Its implication 
on the fracture criterion is further discussed. 

2.   MECHANISM-BASED STRAIN GRADIENT PLASTICITY 

2.1 Taylor Hardeing Model 
The Taylor hardening model has been the central pillar of MSG plasticity. It provides a 

simple mean-field description of the dislocation interaction processes at the micro-scale. The 
dislocation theory indicates that the Peach-Koehler force due to a pair of dislocations is 

proportional to the shear modulus fi, Burgers vector b, and is inverse proportional to the distance 
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L between dislocations, i.e.,  oc pb/L.    This sets a critical value for the applied stress to break or 

untangle the interactive pair of dislocations so that slip can occur even if one of the dislocations is 
pinned by an obstacle. In the Taylor model this picture is generalized to the interaction of a group 
of statistically stored dislocations which trap each other in a random way. If the mean dislocation 
spacing is L, the critical stress required to untangle the interactive dislocations and to induce 
significant plastic deformation is defined as the Taylor flow stress, 

T = ajub/L = apbjp = apb^ps + pG , (3) 

where p = l/L2 is the dislocation density,  ps and pG are the densities of statistically stored and 

geometrically necessary dislocations, respectively, and  a is an empirical coefficient on the order 
of one [26]. 

2.2 Geometrically Necessary Dislocations and Statistically Stored Dislocations 
Geometrically necessary dislocations are dislocations which are necessary to accommodate the 

geometry of plastic deformation. The density of geometrically necessary dislocations results from 
the gradients of plastic strain [15-17], and is given by [22] 

PG=2i1/b, (4) 

where b is the Burgers vector,  r\ - Jrjijk7]ijk h is the effective strain gradient, and  riijk = ukij is 

the second order gradient of the displacement. 

The density of statistically stored dislocations ps can be determined from the uniaxial tension, 

a - ureff(e), which involves no geometrically necessary dislocations since the deformation is 

uniform.    For crystalline materials, the tensile flow stress a is approximately three times the flow 
stress in shear,  T [20,27-29].    These relations lead to the flow stress in Eq. (1). 

2.3 Multi-scale, Hierarchical Framework 
Figure 1 shows the multi-scale framework used to construct the theory of MSG plasticity 

[22,23]. On the micro-scale the scale of analysis is small compared with the length over the strain 
field varies. The dislocation activities are described by the slip of statistically stored dislocations 
in a background of geometrically necessary dislocations. The micro-scale flow stress obeys the 
Taylor hardening relation as exhibited by the strain gradient law, Eq. (1). Stresses and strains are 
defined in the classical sense at the micro-scale, and the associative rule of plastic flow normality 
holds if the dislocation slip is governed by the Schmid stress along an appropriate slip system 
[30,31]. 

On a higher level, meso-scale analysis, a continuum plasticity theory is constructed to represent 
the collective behavior of dislocations at the micro-scale. The strain gradients are introduced at 
the meso-scale as a measure of geometrically necessary dislocations at the micro-scale, and the 
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higher-order stresses serve as the corresponding stress measures in order to satisfy the essential 
thermodynamic restrictions. The meso-scale constitutive law of Mechanism-based Strain Gradient 
plasticity is derived by the equality of virtual work at the two scales. In other words, for given 
strains and strain gradients at the meso-scale, the strains at the micro-scale (Fig. 1) are obtained 
from kinematics; the associative flow rule and the strain gradient law, Eq. (1), then give the stresses 
at the micro-scale; and the equality of virtual work at the two scales then finally lead to the stresses 
and higher-order stresses at the meso-scale. 

Microscale:     s, ä 

Mesoscale:      (£,<?)    (v,*) 

Figure 1.      The multi-scale framework for strain gradient plasticity; dislocation interaction is 
considered on the micro-scale via the Taylor relation.    The higher order continuum theory of strain 

gradient plasticity is established on the meso-scale representative cell;   le is the size of the meso- 

scale representative cell. 

2.4 Constitutive Relation in MSG Plasticity 
The Taylor hardening model at the micro-scale and the multi-scale, hierarchical framework 

give the meso-scale constitutive relations of MSG plasticity, 

vijk 

oij=Kskk8ij+-?£e'ij, 

ijk 

(5) 

(6) 

where K is the elastic bulk modulus,   s^   and   £/■   are the volume and deviatoric strains, 
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respectively, s = \2e\je'y /3) is the effective strain, a is the flow stress in Eq. (1) that has 

incorporated the strain gradient effects,   areff{s)  is obtained from the uniaxial stress-strain 

relation, rjyk is the volumetric part of strain gradients 7]ijk, and Aijk and 77^ are third-order 

tensors that depend on the deviatoric parts of strains and strain gradients, as given in [22,23]. The 

coefficient lE scaling the higher-order stresses in Eq. (6) is the meso-scale cell size and is given by 

lE - 10fjbl<jY » where fi is the shear modulus, b is the Burgers vector, and <JY 
iS tne Vie^ stress. 

Polycrystal Cu 
5 -1 

a = 0.70 

4 - 

3 - ^^^               MSG Plasticity 

.A-'"^                    Experimental Data 
2 - J*^^                                (Nix and Gao, 1998) 

"""""V 
C lassical P lasticity 
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1/h (urn"1) 

Figure 2. Depth dependence of the hardness of polycrystalline copper; the solid line is the 
hardness predicted by MSG plasticity; the triangles are experimental data17,211; H is the micro- 

indentation hardness,  H0 = 834MPa is the indentation hardness for large depth of indentation, h is 

the depth of indentation, the uniaxial stress-strain curve a = 408s03 MPa, shear modulus n = 45 GPa, 

and the Burgers vector b = 0.255 nm. 

2.5 Equilibrium Equations and Kinematics Relations 
The equilibrium equations in the higher-order continuum theory are give by [19,23] 

aik,i + Tijk,ij (7) 
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The kinematics relations give the strains and strain gradients in terms of the displacements u as 

2.6 Experimental Validation 
Figure 2 shows the comparison between the MSG plasticity theory and the micro-indentation 

hardness data [24] for polycrystalline copper. The ordinate is the square of indentation hardness, 
H, normalized by its counterpart, H0, for large depth of indentation (i.e., no strain gradient effects), 
while the abscissa is the inverse of indentation depth, h'. It is clearly observed that the 
numerically predicted hardness based on MSG plasticity agrees very well with the experimental 
data for a wide range of indentation depth, from one tenth of a micron to several microns. The 
elastic moduli, Burgers vector, as well as the uniaxial stress-strain curve are known prior to the 
numerical study such that the only parameter to be determined is the empirical coefficient a in 
Taylor model. The coefficient is a = 0.7 in Fig. 2, which has the correct order of magnitude of 
one measured from independent experiments [26]. 

Gao et al. [24] have shown that the MSG plasticity theory also agrees very well with the micro- 
torsion [8] and micro-bending experiments [9]. The excellent agreements between the MSG 
plasticity theory and various micro-scale experiments validate it as a micron scale theory which 
successfully bridges the Taylor dislocation model and continuum plasticity. 

3.    CRACK TIP FIELDS IN MSG PLASTICITY 

Shi et al. [32] have investigated the structure of asymptotic crack tip field associated with the 
MSG plasticity theory. Following HRR field [33,34] associated with classical plasticity, the crack 
tip field is tentatively assumed to have a separable form, 

«,=^(0), (9) 

where (r,#) are polar coordinates centered at the crack tip, w, are the displacements,  «,-(#) are the 

corresponding angular functions, and X (>0) is the eigenvalue to be determined.    The mode III, 
mode I and mode II crack tip fields are presented separately in the following. 

3.1 Mode ffl Crack Tip Field 
It is straightforward to show that, for the separable field in Eq. (9), the higher-order stresses are 

more singular than stresses. Keeping the dominating singular terms, the traction-free condition on 
the crack face can be written as 

r3{e = n) = 'i3{e=n) = 0, (10) 

where  r3  and   t3   are the angular functions of the higher-order stress and stress tractions, 

respectively.    The anti-symmetry in a mode III problem requires 
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u3(e = o) = u'i(0 = o) = o. (ii) 

If only the most singular terms are kept, the equilibrium equation (7) gives an ordinary differential 

equation for the angular function u3(0) as 

where the numerator g, and the denominator g2 are functions of the corresponding variables, and 

very importantly, g2 vanishes when u3 =u3 =0.    It is observed that, at 9 = 0, the left hand side 

of Eq. (12) is zero due to anti-symmetry, while the right hand side would approach infinity because 

the denominator would vanish.    In fact, near 9 = 0, u3 can be expanded in a Taylor series of 9 

with the odd power only.    The left hand side and the denominator of right hand side are both on the 

order of 0, while the numerator of the right hand side is g\o,u3(9 = 0),0,u3 (0 = O)]+O(02). 

In order to match the power 0 on both sides of Eq. (12) near 0 = 0, the only possibility is to make 
the numerator of the right hand side vanish at  0 = 0, i.e., 

g1[o,ü'3(9 = 0),0,u'3" (9 = 0)^=0. (13) 

This imposes an additional boundary condition on the eigenvalue problem and makes it highly 
improbable to have solutions. In fact, the numerical shooting method has indeed found no 
solutions for this eigenvalue problem. 

It should be pointed out, however, this extra boundary contition (13) results directly from the 
assumed separable form (9) in the asymptotic crack tip field.    For general displacement field 

u3(r,0), it can be shown that the coefficient of the highest order derivative with respect to 0 in the 

equilibrium equation,  d4u3jd94 , is not zero.    In other words, only when the displacement field 

u3 takes the separable form (9), the coefficient of d4u3jd04 becomes the denominator g2 in Eq. 

(12) and vanishes at 0 = 0. Therefore, the asymptotic crack tip field associated with MSG 
plasticity is non-separable. 

3.2 Mode I and Mode n Crack Tip Fields 
The separable crack tip fields of (9) have also been investigated for the in-plane deformation, 

i.e., mode I and model II asymptotic fields. Even though the ordinary differential equations 
become much more complicated, they have exactly the same character as the mode III analysis, i.e., 
the coefficient of the highest order derivative with respect to 9 vanishes at 9=0 and therefore 
imposes an additional boundary condition.    This also makes the eigenvalue problem overly 
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constrained and solution-less. In fact, the numerical shooting method has indeed found no 
solutions for the eigenvalue problem. It is once again concluded that the asymptotic crack tip 
fields associated with MSG plasticity have non-separable solutions only. 

It is quite puzzling why there is no separable solution (9) associated with MSG plasticity, 
contrary to all other existing crack tip fields.    This is discussed in the following. 

3.3 Implications on the Fracture Criterion 
The asymptotic fields only hold within a small distance to the crack tip, typically one tenth of 

the smallest relevant geometry or material length. In classical plasticity, there is no intrinsic 
material length such that the dominance zone of the crack tip field is governed by the crack length 

or plastic zone size. In MSG plasticity, the meso-scale cell size lE = 10jub/aY scales the higher- 

order stresses and becomes the smallest relevant length. The dominance zone of the crack tip field 

can be estimated as le /10 ~ ph/cry .    For copper,   lE is around 500 nanometers [35] such that 

the dominance zone of the crack tip fields associated with MSG plasticity is on the order of 50 
nanometers. It is not only outside the intended range of applications for strain gradient plasticity 
(0.1-10 microns), but also too small for any continuum plasticity theories to be applicable because 
continuum plasticity represents a statistical average of hundreds of dislocations. For a typical 
dislocation density of 10'" m2, a zone of 50 nanometers contains at most one dislocation. Even for 
an extremely high (and probably unrealistic) local dislocation density of 10'6 m2 near the crack tip, 
50 nanometers contains only 5 dislocations. Therefore, even if there had existed a mathematically 
separable crack tip field as in Eq. (9), the solution would not have a domain of physical validity. 

The non-existence of separable solutions also indicates that the crack tip field associated with 
MSG plasticity is not governed by a single amplitude factor (e.g., J-integral [36]). What is the 
new fracture criterion in MSG plasticity? Recent efforts in simulation of crack initiation and 
growth make use of an embedded cohesive zone characterized by a work of separation and a 
separation strength [37-41]. The cohesive law has the potential to become the fracture criterion 
that is implicitly built into the continuum analysis. Gao and Klein [42,43] have developed an 
alternative approach, namely the Virtual-Internal-Bond (VIB) model, to build the fracture criterion 
into the constitutive model based on the interatomic potentials. If the cohesive zone or VIB model 
is introduced in MSG plasticity, it is not necessary to establish an explicit fracture criterion. 
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ABSTRACT 

The purpose of the present study is to investigate if it is possible to predict fatigue crack growth 
rate(FCGR) by using only the fluctuation of the parameter C and discuss the possibility of change 
of the parameter m in Paris' law. The fluctuation of fatigue crack growth rate is assumed only due to 
the parameter C. The fatigue crack growth resistance coefficient(Z=l/C) of the material to fatigue 
crack growth was treated as a spatial random process, which varies randomly on the crack path. 
Constant AK FCG test at the various stress intensity levels were performed on CT specimen for 
SM45C steel. The experimental data were analyzed to determine the autocorrelation function and 
Weibull distributions of the crack growth resistance. Using the statistical properties, comparison of 
experimental FCGR and predicted FCGR has been analyzed. And also, the effect of the parameter 
m of Paris' law due to variation of fatigue crack growth resistance was discussed. 

1. INTRODUCTION 

Experimental studies on the randomness of FCG have been performed [1-5]. Some deal with the 
means and variance of material properties and some focus on the characteristics of materials as 
spatial random processes. There have also been several attempts to construct theoretically a FCG 
model for the safety evaluation of fatigue critical structures. Such a model assumes FCG as a 
random process and, therefore, needs to know the stochastic nature of material parameters before 
any its practical application. For this purpose not only mean and variance of growth rate but also the 
spatial distribution of resistance are necessary. But, most of the studies for the randomness was on 
constant amplitude loading. From a statistical point of view, the characterization of the FCG 
behavior by the traditional constant A P test method requires many tests and is therefore time 
consuming and expensive. An effective and efficient technique for characterizing crack growth 
behavior is not yet established. The constant A K controlled test has the potential for the 
development of such a method and investigation of the spatial variation of FCGR[6]. The authors[7] 
already studied the spatial correlation of FCG using the constant A AT controlled tests. 

In the present study, the fatigue crack growth rate(FCGR) was assumed to be given by 
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^- = C(A/Qm (1) 

dN 

where, m and C are the material constants, a is the fatigue crack length, N is the number of cycles to 
load and A K is stress intensity factor range. The material constants m and C, hereinafter, called as 
growth rate exponent and coefficient, respectively, and as a one-dimensional random process model 
of FCG, only the growth rate coefficient, C, is treated as random variable along the crack path while 
the growth rate exponent, m, is assumed constant in any point. 

This paper will attempt to show the possibility of FCGR prediction if the statistical properties of 
the parameter Z=l/C are known, and to discuss the effect of the exponent, m of Paris'law. 

2. EXPERIMENTAL DETAILS 

Carbon steel for machine structural use, SM45C used in the present investigation was available 
in the form of an original 12-mm-thick hot rolled plate with an identifiable rolling direction. The 
chemical compositions (wt.%) are; C-0.47, Si-0.16, Mn-0.74, Mo-0.02, P-0.025, S-0.007, Cr-0.03, 
Al-0.001, Fe-bal. Compact tension specimens(CT) with a LT orientation were prepared as per the 
various recommendations of ASTM E647-81. In all specimens, the specimen width was held 
constant at W=100 mm. All specimens were cut off the same sheet. The microstructure of the 
material showed the presence of ferrite and pearlite. In order to align the specimens, circular 
washers were used to hold the specimens in the midplane of the clevis grips during fatigue crack 
growth testing. All the specimens were initially pre-cracked to produce a sharp crack front. The 
fatigue cracking was carried out in an servohydraulic testing machine at room temperature. All tests 
were carried out in tension-tension under constant A K control mode for stress intensity level of 25, 
30, 37.5 and 45 MPaV m, the stress ratio, 0.2 and the frequency, 10Hz. The A K level so adjusted 
was found to be within ± 0.2% of the range, and this was considered satisfactory. The micro 
computer generates a time series which is used as the input to a multiplying DA-converter. The 
crack-opening displacement is measured by clip gauge. This signal and the load cell output are 
simultaneously digitized and take into micro computer. The crack lengths were mainly measured by 
the compliance method. And also, the crack lengths were measured on both specimen surfaces with 
the help of a travelling microscope(x 100) by one person. 

3. PRESENTATION OF EXPERIMENTAL RESULTS 

3.1 Fatigue Crack Growth Behavior and the Scatter 
Figure 1 provides a diagram of the crack length, a, vs. the number of cycles, N, for each stress 

intensity level. This figure shows that there is scatter in FCGR data. This scatter seems to be 
increased for specimen with lower stress intensity level. As shown in this figure, though each 
relation is approximately linear, the difference of the inclination of each curve for a stress intensity 
level is seen. It is evident that there is obviously a spatial variation of the local mean value of the 
growth resistance of material to FCG from specimen to specimen. And, the results show that stress 
intensity level has apparent influence on the coefficients of variation of the growth resistance. 
Coefficients of variation of crack growth resistance is decreased by increasing stress intensity level. 

Figure 2 shows the form of da/dN versus A K plots obtained by constant A K control mode. It 
can be also seen that there is scatter in the data. Applying the Paris equation, value of the growth 
exponent, m, was obtained as 2.91, and C as 9.197x 10"9. It is known that the FCGR for the range 
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of stress intensity level investigated in this work is associated with striation formation. As shown in 
these figures, it is evident that the crack growth resistance is dependent on the spatial location 
within a specimen. It seems to be that m varies from specimen to specimen, and a higher frequency 
fluctuation is due to C. This problem will, however, not be discussed in the present investigation. In 
this work, the fluctuation of FCGR is assumed only due to the parameter C. 
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3.2 Probability Distribution of the Resistance Coefficient 
Since the inverse of C(x) seems better for describing the material property[4,7], Z(x)=l/C(x) is 

used and called as growth resistance coefficient. The resistance coefficients obtained from the 
experiments are plotted on Weibull probability paper, as shown in Figure 3. The two-parameter 
Weibull distribution function is used to fit the data. The parameters a and ß are estimated by the 
direct search of optimization method. The estimated parameters are also shown in the figure. The 
probability distribution functions of the resistance coefficient obtained from experimental data are 
two-parameter Weibull distribution and show dependence on the stress intensity factor range. The 
shape parameter is increased with increasing the stress intensity level, but the scale parameter is 
decreased. 

From all data of Z(x), the ensemble autocorrelation functions for each stress intensity level are 
shown in Figure 4. It is clear from this figure that the autocorrelation functions are almost 
independent of the stress intensity level. The rate of decay is very rapid. The exponential function 
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seems to be a reasonable shape. The function, exp(-ao|x| ), is also shown in this figure with the 
arbitrarily chosen coefficient. The value of the correlation length is about 0.125 mm. This is well 
coincide with the result of Itagaki et al[8]. The advantage of this approach is an understanding of 
the scale of variation for the spatial stochastic process. 

3.3 Prediction of Fatigue Crack Growth Rate 
As described in the above section, the resistance coefficient shows remarkable spatial 

variation in the individual specimens. In this section, consider the prediction of FCGR due to spatial 
variation of growth resistance coefficient. Under constant A K control FCG tests, the mean FCGR 
is proportional to the mean value of 1/Z. Therefore, The calculated value of FCGR considering 
spatial variation of growth resistance is written as: 

j;-fAz)dz=j; 
1 a / z 

zßlßj 
expJ- (-) \dz 

-C~{Z-\ ' exp(-*)P#l    ±c 
zßlß a \ z 

= — f x lla exp(-x)dx 
ß 
1 J,    1 —r i— 
ß   [    « 

(2) 

where, T is gamma function. This equation is called as the prediction value of FCGR considering 
spatial variation of growth resistance. 

Figure 5 shows the comparison of the experimental values of fatigue crack growth rate and the 
prediction values using the Eq. (2). As shown in the figure, it is be said that the prediction values 
describe the experimental value very well. Determining the values of the Weibull parameter for a 
stress intensity level by using the above results, it is said that the prediction of FCGR of the 
structures is possible. But, one should be careful when FCGR is estimated by using the statistical 
properties, because of the scale of the spatial variation according to materials. 
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3.4 Effect of m for Paris' Law 
Suppose that the scale parameter, ß is dependent on the size of any region, r, determined by 

the stress intensity level, A K. In this case, if the probability distribution for standard region, r0, is 
2-parameter Weibull, then the probability distribution for n time region of the standard region, 
namely ( nx ru) is assumed to follow the distribution of smallest values. 

First, the probability that a random variable zk is less than x can be expressed as: 

P(zkzx) = l-exp Uj) (3) 

The probability that all values in a sample of size n of a continuous random variable Z of 
distribution Fz(x) are larger than x can be expressed as: 

P(min(Z],Z2,---,Z„)>x) 

= P(z} >x,z2 >x,---,zn >x) 

= P(zl > x)P(z2 > x) ■ ■ ■ P(zn > x) 

Iß. 
= expJ - n 

(4) 

Therefore, the probability that all values in the sample of size n are less than x is given by: 

/>(min(z,,z2,---,z„ £x) = l-expj-n -^]   [ (5) 

Equation (5) is the probability function of the smallest value in a sample of size n in terms of the 
initial distribution. The factor of n(ß )'"" represents the size effect of the growth resistance. 

Therefore, the mean crack growth rate E(daldN) considering the distribution of smallest values 
is easily obtained by using the equation (2). That is: 

[dN)      ß     [     a) (6) 

from which for n=\ the mean crack growth rate is equal to Eq. (2). 
If n is especially proportional to power of p (proportional constant, f), the mean fatigue crack 

growth rate is then expressed as: 

4^) = ^r(i-I)(AKr 
\dN)      p a 

.(Mrr(I_i)(M). 
ß a 
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= -i—r(i - -)(AK)m+p,a y' 
ß a 

This is also proportional to power of (m+p/a ) for A K. 
As shown in the above discussion, there is a possibility that the parameter m can be changed by 

the spatial variation of the growth resistance within a specimen, even if m is constant condition. 
Therefore, it is necessary to investigate this fact theoretically and experimentally in the future. 

4. CONCLUSIONS 

The main results obtained from this investigation are as follows; (1) The scatter of the fatigue 
crack growth resistance is decreased with an increase in stress intensity factor range. (2) The 
autocorrelation function of the fatigue crack growth resistance coefficient is almost independent of 
stress intensity factor range. (3) The probability distribution function of the fatigue crack growth 
resistance obtained from experimental data is two-parameter Weibull distribution and show 
dependence on the stress intensity factor range. The shape parameter is increased with increasing 
the stress intensity level, but the scale parameter is decreased. (4) It is possible to predict fatigue 
crack growth rate by using only the fluctuation characteristics of Z. (5) There is a possibility that the 
parameter m in Paris' law is changed by the fluctuation of Z, even if m is in constant condition. 
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ABSTRACT 

This paper is concerned with a theoretical analysis of a rectangular array and a zig-zag array of 
elliptical holes in solids under uniaxial tension. Numerical results of the maximum stress 
represented in dimensionless forms in the whole range of the shapes of the holes including cracks, 
and the effective Young's modulus of the solids with the holes, are given for various values of the 
parameters. The analytical values are then fitted to reliable polynomial formulae for convenience of 
engineering applications. 

1. Introduction 

In this paper, we consider a rectangular array and a zig-zag array of elliptical holes in solids 
under uniaxial tension as two-dimensional models of randomly distributed holes in materials. 

In the analyses, we choose suitable unit regions, and express Laurent series expansions for the 
complex potentials in forms satisfying the traction-free conditions along the elliptical hole edges. 
Then the unknown coefficients in the Laurent series are determined from the boundary conditions at 
the outer edges of the used unit regions. At this stage, we use a procedure based on element-wise 
resultant forces and displacements in order to get highly accurate results. Numerical calculations are 
carried out for various shapes and sizes of the holes, and special arrays of the holes in solids. 

2. Theoretical Analysis 

In plane problems of elasticity, the Cartesian components of stress, resultant force and 

displacement are given in terms of two complex potentials <p(z), i/^z) as follows: 

ay+ax =V(z) 

<r -<rx +2/r   =2[z<p"(z) + y"(z)] (1) 
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Py+iPx = -<p{z)-z(p(z)-y/\z) 

2G(u - iv) = K<p{z) - z<p\z) -y/'{z) 

where G is the shear modulus and /ds defined by Poisson's ratio v   as 

'3-v 
K = < 1 + 1/ 

3-4v 

(plane stress) 

(plane strain) 

(2) 

(3) 

(4) 

This paper deals with the following two typical distributions of elliptical holes in infinite solids 
subjected to uniaxial tension: 

Problem (a): Rectangular array of elliptical holes (Fig. 1(a)) 

Problem (b): Zig-zag array of elliptical holes (Fig. 1(b)). 

In both the problems, let 2a and 2b be the major and minor diameters, p be the radius of 
curvature at the end of the major axes of the elliptical holes, and c, d be the spacings in the 
directions parallel and vertical to the load, respectively, as shown by Figs. 1(a) and 1(b). The x- and 
y-axes are taken with their origin at the center of one of the elliptical holes, and the solids are 
subjected to an average tensile stress crin the ^-direction. 

We take proper unit regions and express the complex stress potentials in forms satisfying the 
symmetry conditions of the stress state, as well as the traction-free conditions along the elliptical 
hole edges. We then determine the unknown coefficients in the stress potentials from the boundary 
conditions at the outer edges of unit regions. 

For the above unit regions, we have chosen the rectangle ODHKO for Problem (a) and the 
triangle ODFO for Problem (b) shown in Fig. 1(a) and 1(b), noting the symmetry of stress field 
about both the coordinates' axes. 
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The complex potentials <p(z), yA?) must be analytic in the unit regions, and they can be expanded 
in the following Laurent series: 

»=o 

V{z) = -D,\ogz + t(D2n+2z-2"-2 +K1„z2n+2), (5) 

where Gi„, Mi„, Din > Kin sre real coefficients. Eq. 5 also satisfies the conditions of symmetry 
of the stress state about the x- andy-axes. 

Since the elliptical hole is traction-free, some relations must exist among the coefficients of Eq. 
5. These relations were given by Isida [1] as follows: 

Dln = ia1"1"*^*!, +K
M

2P) 
p=0 

Gln = - £a2"+2'+2 (Ql; Klp + S\;M1P ) (6) 

where p\"p etc. are constants given by b/a (=^jp/a), the ratio of the shape of the elliptical hole. 
Then the unknown coefficients in the Laurent series are determined from the boundary 

conditions at the outer edges of the rectangular unit region ODHKO in Fig. 1(a) for Problem (a) and 
the triangular unit region ODFO in Fig. 1(b) for Problem (b). At this stage, we use a procedure 
based on element-wise resultant forces and displacements [2, 3]. 

3. Numerical Results and Discussions 

3.1. Physical Quantities and Accuracy of Results 
Numerical results of the treated problems depend upon the ratio of a, b, c and d, or upon the 

three dimensionless parameters below: 

„='    * = -,.= * =J£. (7) 
a c a     V a 

In the present problem, we are especially interested in two quantities. One is the distribution of 
tangential stress along the hole, and other is the effect of holes on the apparent tensile stiffness of 
the solid. With reference to the latter quantity, the following dimensionless factor C is defined: 

E* 
C = — = tensile stiffness factor 

E* = apparent Young's modulus of solid with elliptical holes 

E0 = Young's modulus of material 

E (plane stress) 
, > (8) 

£7(1 - v )   (plane strain) 

where E is Young's modulus of the material measured with thin plate specimens. E" and E0 

depend on E and v, but C is independent of them and is common to the plane stress and the plane 
strain cases. 
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3.2. Stress Magnification Factors and Their Formulae 
In Problem (a), ermM, the maximum stress around the hole, occurs at point A as shown in Fig. 

1(a). In Problem (b), amax occurs at point A (0 = 0) in most of the calculated cases of p/a and A, 
but in some cases of p/a and A, crmax takes place at some other point B {6 * 0) due to interference 
by the presence of obliquely located holes. 

In representing these stresses, we use the following dimensionless factors Sm   : 

^max  - °"max I °"o » ■a^ + l^Tp'), (9) 
where a0 is the maximum stress for a single elliptical hole in a wide plate subjected to tension. 

In the case of cracks (p->0),  CTmax diverge towards infinity, but 5max remain finite and are 
equal to the dimensionless stress intensity factor based on a-im , that is 

(Smax:Uo=#i/<W^\ (10) 
The values of Smax for Problem (a) and Problem (b) are plotted with solid curves in Fig. 2(a) 

and 2(b), respectively.  5max  for both the problems increases monotonically as A increases and 
diverges towards infinity in extreme cases of A in which some of adjacent holes touch each other. 

Considering the above aspects, we have fitted power series to the analytical values of Smax for 
both the problems, and the following formulae are obtained: 
(a) Square array of elliptical holes for Problem (a)    G#=l) 

S_    =1 + - 
\-A 

[0.2752 - 0.4126s + 0.1302s2 - 0.0376s3 

+ A(-0.2764 + 1.1465s - 1.4701s2 + 0.5137s3) 

+ A1 (0.7736 - 2.5802s + 6.9170s2 - 2.2693s3) 

+ A3 (-1.0006 + 3.7412s - 11.9176s2 + 4.4548s3) 

+ A4(0.3349 - 2.2530s + 7.6266s2 - 3.2603s3)] 

(mean error = 0.05 percent) (11) 
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(b) Zig-zag array of elliptical holes for Problem (b)    (ju= 1) 
For the range of p/a<l/3 

A1 

[1.8169 +1.0436s + 0.5876s' 

+ A(-2.1638 + 1.1838s - 6.2676s2) +A1 (3.8925 - 9.3537s + 35.7642s2) 

s™-1 + i-z 

+ A3 (-12.7934 + 3.9338s - 56.6534s2) + A4 (10.5138 + 1.9845s + 31.5175s2)] 

(mean error = 0.04 percent) (12.1) 

For the range of p/a>l/3 

Sm„ =1 + - 
A1 

[1.7170 + 1.3916s + 0.2840s2 
2sA 

Vs7^! 
+ 2(-1.6954 - 0.0039s - 6.7001s2) + A1 (36.2512 - 83.2978s + 80.8250s2) 

+ A3 (-138.479 + 306.085s - 254.227s2) + A4 (129.517 - 298.641s + 246.157s2)] 

(mean error = 0.6 percent) (12.2) 

Values from Eqs. 11-12.2 are plotted in Fig. 2(a), (b) as dotted curves and dashed curves, 
respectively, showing close agreement with the analytical curves. 

3.3. Tensile Stiffnesses and Their Formulae 
Tensile stiffness factor C defined by Eq. 8 has been calculated for various values of p/a and A. 

Results for both the problems are plotted with solid curves in Figs 3(a) and 3(b), respectively. 
Tensile stiffness factor C decreases with increasing values of p/a and A in both the problems. As 
compared with both problems, the magnitude of decreasing C for Problem (b) is lower than that for 

Problem (a). 
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We have fitted power series to the analytical values of C for both the problems, and the 
following formulae are obtained: 
(a) Square array of elliptical holes for Problem (a) (JJ=\) 

C = — = 1 + A2 [-1.5676 - 0.9146* + 0.2219*2 - 0.0803*3 

+ A(-0.0873 + 2.2217* - 3.9416*2 +1.4311*3) 

+ A2 (2.7891 - 7.0999* + 20.0590*2 - 6.9753*3) 

+ A3 (-2.7733 +14.4914* - 36.5721*2 +12.5757*3) 

+ A4(0.8377 - 9.5030* + 21.3973*2 - 7.3065*3)] 

(mean error = 0.1 percent) (13) 

(b) Zig-zag array of elliptical holes for Problem (b) (/U=\) 

C = ^- = 1 + A2[-3.1465 -1.3896* - 0.5452*2 + 0.4750*3 - 0.1201*4 

E„ 

+ ^(0.1489 - 2.2622* + 6.6989*2 - 5.6249*3 +1.3413*4) 

+ A2 (2.8106 + 8.6220* -16.4720*2 +12.7023*3 - 2.8505*4) 

+ A3 (5.1229 + 3.7628* - 0.6958*2 - 5.1790*3 + 3.1437*4) 

+ A4(-6.7096-10.4973* + 8.9222*2 +4.1250*3 -4.2437*4)] 

(mean error = 0.7 percent) (14) 

Values from Eqs. 13 and 14 are plotted in Fig. 3(a), (b) as dashed curves, respectively, showing 
close agreement with the analytical curves. 

4. Conclusions 

(1) A rectangular array and a zig-zag array of elliptical holes in solids under uniaxial tension were 
analyzed theoretically. Numerical results were given for a dimensionless stress Smax and a tensile 
stiffness C. 
(2) In Problem (a), SmBX occurred at point A. In Problem (b), Sma5 occurred at point A (6> = 0) in 
the most of A without small and large values of p/a, but it took place at some other point B (0 * 0) 
for intermediate values of p/a and large values of A, due to interference by the presence of obliquely 
located holes. 
(3) The tensile stiffness C decreased with increasing values of p/a and A in both the problems. 
(4) The analytical values of 5mai and C were fitted to reliable polynomial formulae for 
convenience of engineering applications. 
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ABSTRACT 

The crack growth behavior in stainless steel 304 is investigated at 538°C in air. The effects of 
frequency (f), load level (P) and hold time on the crack growth rate are examined. It is shown that 
fracture mechanics parameters AK and AJ can correlate crack growth rates reasonably well beyond 
the regime of small scale yielding for no hold time tests. Depending on the values of fxPmax, three 
(f-Pmax) domains are suggested for characterization of the da/dN-AK relation. The crack tends to 
grow faster at low values of fxPmax for AK < 25MpaVm. The trend is reversed for AK > 25MPaVm. 
The SEM fractographs and optical micrographs of fracture surfaces indicate that oxidation plays a 
significant role on crack growth. The mode of crack propagation is transgranular for loading without 
hold time, and it becomes intergranular for loading with hold time. The crack growth rate is found 
to be much higher for loading with hold time. 

1. INTRODUCTION 

The crack growth behavior in a high temperature component is influenced not only by the 
mechanical load acting on it, but also by the environmental condition in which it is operating. 
Mechanical loads could give rise to interaction of fatigue and creep modes of fracture in the high 
temperature environment. The chemical interaction of the crack tip material with elements in the 
surrounding often accelerates crack growth. The creep damage and environmentally assisted crack 
growth are time-dependent and thermally activated processes. Therefore, the frequency of loading 
and hold time in fatigue cycles influence the crack growth rate. James [1-4] presented a series of 
papers dealing with fatigue crack growth at elevated temperatures, which covered the effects of 
frequency [1], hold time [2], environment [3] and stress ratio [4]. Plumtree et al. [5,6] investigated 
the effects of waveform and hold time. They reported that tensile hold time accelerates crack growth 
under higher crack driving forces than those of James [2]. The interaction of fatigue, creep, and 
environment in crack initiation and growth was reviewed by Coffin [7], Pineau [8], Ellison [9] and 
Michel [10], among others, for a variety of metals including austenitic stainless steels. 

The present study is aimed at investigating the combined effects of the applied load level, 
frequency and hold time to the crack growth behavior in stainless steel 304 at 538°C. The load 
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level in this study is extended to an elastic-plastic regime. Crack growth parameters to be 
investigated in this study are the ranges of the stress intensity factor (AK) and the J-integral (AJ). 
The dependence of the frequency effect on the magnitudes of AK and AJ is examined. The effect of 
hold time on the crack growth rate is also investigated. 

2. EXPERIMENTAL PROCEDURES 

The material used in this study is stainless steel 304 with chemical composition given 
in Table 1. The material was acquired in the form of a 15mm-thick plate, which was solution- 
treated at 1050°C for 24minutes. The compact tension (CT) specimen with width of 50mm and 
thickness of 12.5mm was used for the test. The specimen was cut in the T-L direction and no 
side grooves were introduced. All tests in this study were carried out under a load ratio of 
R=0.05 at 538°C in air using an MTS machine. Specimen temperature was achieved by split 

Table 1. Chemical Composition of the Test Material (wt. %) 

c Si Mn P S Ni Cr Mo Cu Sn As 
0.034 0.62 1.05 0.026 0.003 8.16 18.18 0.097 0.18 0.006 0.002 

furnace and controlled to within ± 1°C. A pre-crack of approximately 2mm in length was 
introduced at room temperature under fatigue loading of low amplitudes. The crack length was 
measured using a direct current potential drop (DCPD) system. To examine the effect of hold time, 
the maximum load was held for time periods of 10 or 30 minutes. The loading and unloading ramps 
took 0.5 seconds for each. Test conditions were given in Table 2. The fracture surface was 
examined under a SEM for several specimens to get an insight on the damage mechanism. The 
fracture surface was examined using an electron probe micro-analyzer (EPMA) for a few specimens 
to check the degree of oxidation. 

Crack growth parameters to be investigated in this study are the range of the stress intensity 
factor (AK) and that of J-integral (AJ). The stress intensity factor for a CT specimen is given by 
[11]: 

K = ^g (1) .   BW1/2 

„. .     (2 + oc)(0.886 + 4.64a-13.32a2+14.72a3-5.6a4) 
WCt) = 57:  

(l-a)3/2 

where and a, W, B are the crack length, specimen width and thickness, respectively, a = a / W, and 
P is the applied load. The ratios of Vmail?0, where Pmax is the maximum load in a fatigue cycle and 
P0 is the limit load [12] at the initial crack length, are in the range of 0.2-0.7 in this study. It is 
expected that the amount of plasticity developed at the upper end of this load range be well beyond 
the small-scale yielding regime. Therefore, nonlinear fracture parameters are worth to be explored. 
The equation for AJ under load control can be written as, [13]: 

AJ = J^Ac+qAP(Vmax-Vmin)] (2) 
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_nc-T1r ^r 

where b is the ligament (W-a) on the crack plane, AP=Pmax-Pmin, Vmax and Vmin are the load line 
displacements (V) at Pmax and Pmi„, respectively, Ac is the complimentary energy defined by the P-V 
curve, T|c and r\, are the Merkle-Corten constants [14]. The underlying assumption in the above 
equation is that the compliance of a specimen at a certain crack length can be determined by the 
loading part of the P-V loop. 

3. RESULTS AND DISCUSSION 

Crack growth test conditions and results are summarized in Table 2. Simple calculations of the 
limit load indicated that the final failure of the specimen occurred in all cases due to plastic 

Table 2. Summary of fatigue crack growth tests with and without hold time 

Speci- 
men (kN) 

Freq. 
(Hz) 

a* 
(mm) 

ar 

(mm) 
Nf 

(cycle) 
Speci- 
men (kN) 

Freq. 
(Hz) 

a, 
(mm) 

ar 
(mm) 

Nr 
(cycle) 

6f005 6 0.05 22.7 40.4 30262 12f005 12 0.05 22.1 34.2 5398 

6fl>5 6 0.5 22.0 40.9 50775 12fD5 12 0.5 22.2 34.0 5843 

6f2 6 2 22.4 40.5 54035. 12f2 12 2 21.9 31.5 4034 

6f5 6 5 22.5 37.2 47426 12f5 12 5 22.4 30.0 3778 

6fl0 6 10 22.3 37.5 51140 12fl0 12 10 22.5 31.4 4201 

8K)05 8 0.05 22.4 37.3 16814 14105 14 0.5 23.2 30.5 2106 

8f05 8 

8 

8 

8 

10 

0.5 

2 

5 

10 

0.05 

22.5 

22.9 

22.2 

22.4 

22.5 

38.2 

38.2' 

35.4 

34.8 

35.5 

19733 

19422 

16734 

17156 

9215 

16A35 16 0.5 22.1 28.7 1454 

m 
8f5 

8fl0 

Speci- 
men (kN) 

Hold 
time 

(minute) 

ai 

(mm) 
ar 

(mm) 
Nf 

(cycle) 

10f005 14hl0m 14 10 22.3 30.0 1219 

10f05 10 0.5 22.4 36.2 9891 16hl0m 16 10 22.7 27.6 348 
10G 10 2 22.5 32.3 6828 16h30m 16 30 22.5 27.8 201 
10ß 10 5 22.1 32.0 7656    . 18hl0m 18 10 23.0 28.1 241 
lono 10 10 22.4 32.0 7052 18h30m 18 30 22.3 26.7 92 

collapse. In an attempt to better represent the obtained data for practical applications, the da/dN-AK 
relation was considered for three frequency-load (f-Pmax) domains. These domains are shown in 
Fig. 1. Domains I and II were chosen such that da/dN-AK data points fall mostly within the band of 
factor 1.5. Most test conditions in this study fall in these domains. In domain I, the da/dN-AK 
relation can be approximately represented by a. single Paris equation for engineering purposes. In 
domain II, da/dN-AK relation appears to be frequency-independent. Meantime, in domain III the 
frequency dependence of crack growth rate is prominent. Thus the frequency effect must be 
explicitly considered. Domain III maybe defined as f xPmax < 2kN/s, ?msx< 8kN. The boundary 
between domains I and II may be described by fxPmax= 18kN/s and Pmax= 13kN. These boundaries 
are based on the best engineering judgement within the test data and may be refined by further 
testing. The variation of da/dN-AK with frequency for ?max= 6kN is shown in Fig. 2. For AK less 
than 25MPVm, higher growth rates are found for 0.05Hz. This would perhaps result from the 
embrittlement of the crack tip material due to oxidation. However, the frequency dependence is 
obscure in the range of 0.5-10Hz. Figures 3 and 4 represent the crack growth data in domains I and 
II. The crack tends to grow faster at low values of fxPmax when AK is less than 25MPaVm. The trend 
is reversed when AK is greater than 25MPaVm. There may be two reasons for this phenomenon. At 
higher growth rates for AK > 25MPaVm, the crack tip embrittlement is less significant. The higher 
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degree of oxidation at lower frequencies produces micro-cracks on the fracture surfaces, which 
disperses the energy for events other than the growth of the main crack [7]. Also, plasticity in the 
wake of crack growth, the oxides formed on the crack surface and the increased roughness of the 
crack surface in low frequency tests could results in reduction in effective crack driving force and 
consequently retardation of crack growth. It is also worth noting that Clavel et al. [15] argues that 
the unevenness of the fracture surface causes the propensity to deviation of the crack and reduction 
in the macroscopic crack growth rate. 
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The da/dN-AJ relations were also obtained for domains I and II. The results are shown in Fig. 5 
and Fig. 6. The correlation was again good except that there is a branch off from the regression line 
in Fig. 5. This deviation includes the data from f=0.05Hz, P=6kN and f=0.5Hz, P=6, 8kN tests. The 
phenomenon is thought to be due to the frequency effect. 
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The AK considered in this study is in the range of 15-80MPaVm, which is considerably wider 
than that of James [1] (approximately 12-35MPaVm). The data obtained for all specimens are 
shown in Fig. 7 in comparison with James's da/dN-AK lines appropriate to the frequency range 
in this study. The overall trend of no hold time data indicates that da/dN can be related to AK by 
the Paris law. The hold time crack growth rates are found much higher in Fig. 7 than those of 
no hold time, which is consistent with Plumtree et al. [6] at relatively high load levels. 
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Fig. 8 SEM fractographs of fracture surfaces: (a) 6kN,0.05Hz, 
(b) 18kN, 30min hold time 

The fracture surface was examined under a SEM. The crack growth direction in Fig. 8 is 
downward. Fig. 8(a) shows oxidized fatigue striations on the fracture surface of a specimen tested 
under Pmax = 6kN, f=0.05Hz with no hold time. This picture was taken in the stage II propagation 
region approximately 3mm from the initial crack tip. An EPMA analysis for this specimen indicated 
that the weight percent of oxygen on the surface in the stage I growth region was 8.3%. This was 
reduced to 4.6% for the Pmax

=6kN, f=5Hz specimen for which test duration was much shorter. In the 
18kN, 30 min hold time test, the weight percent of oxygen at a point in the stage I was 9.7%. The 
oxide was found to be mostly Fe2C>3 according to an X-ray diffraction analysis. Fig. 8(b) shows 
intergranular fracture surfaces of the specimen under Pmax=18kN, 30 min hold time. The fracture 
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mode was transgranular in no hold time tests, and it was changed to intergranular in hold time tests. 
This observation indicates that the acceleration of the crack growth in hold time is associated with 
the fracture mode change. Similar observations were also made by other researchers [7,10]. 

4. CONCLUSION 

1. The crack growth rate in stainless steel 304 at 538°C with no hold time can be correlated with 
AK for the test conditions used in this study that include a substantial amount of plasticity. 

2. Three (f-Pmax) domains can be considered for approximate characterization of the da/dN-AK 
relation. The da/dN-AK relation can be approximated by a single Paris equation in each of the 
two domains where most tests were carried out. In the third domain, where fxPmax is small, the 
relation is expected to be highly frequency-dependent. 

3. The crack tends to grow faster at low values of fxPmax when AK is less than 25MPaVm. The 
trend is reversed when AK is greater than 25MPaVm. 

4. AJ can also be used as a crack growth parameter. The domains appropriate for AK are applicable 
also to AJ with a few exceptions for which the frequency effect is prominent. 

5. The fracture mode of fatigue crack growth without hold time is transgranular, and it becomes 
intergranular when hold time exists. 

6. The hold time accelerates crack growth under the loads used in the study. 
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ABSTRACT 

Fracture is a peculiar phenomenon of solid material. The study of inverse fracture problem is 
the common needs of crack theory and fracture design. The inverse fracture problems are described 
first in this paper. Then taking shear specimen with double cracks as example, the boundary 
conditions of stress and displacement are designed. The actual two level finite element method is 
used to evaluate the stress intensity factor. Finally, some new useful results are obtained. 

l.INTRODUCTON 

Fracture is a peculiar phenomenon of solid material. The brittle failures in components are 
usually caused by flaws or cracks which have been considered as a disaster in traditional viewpoint. 
The purposes of fracture mechanics are to avoid the emergence and control the propagation of 
cracks. The history of exploiting the flaw to achieve the fracture is much more remote than the 
history of fracture mechanics. In fact, making primitive tools using the process of fracture are the 
one of major starting point of human civilization. Some scientific researchers have paid close 
attention to inverse fracture problems recently [1-3]. One can turn the disastrous character of crack 
into profitable effect and apply the low-stress brittle fracture to separate solid materials. This new 
technique is called "Crack Technique"[7]. 

Crack technique includes three parts, i.e. the principle of fracture design, the method of 
fracture design and the fracture equipment. There are several inverse fracture problems in the 
principle of fracture design, for example, the design of notch's parameters, the regular propagation 
of crack and the design of boundary conditions. 

Crack and it's propagation have three forms. Mode I crack is the focal point in fracture 
mechanics because it is the most common and dangerous. It is followed with interest in fracture 
design also. Mode II crack must be applied in fracture design when the boundary conditions present 
some limitation. The fracture problem of shear specimen with double cracks is studied and the 
boundary conditions of stress and displacement are designed in this paper. The actual two level 
finite element method is used to evaluate the stress intensity factor. Some new useful results are 
obtained. 

2. INVERSE FRACTUER PROBLEMS 

The study of inverse fracture problem is the common needs of crack theory and fracture design. 
Some inverse fracture problems have been followed with interest at present. Most typical theoretical 
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problems in fracture design are regarded as inverse problems of fracture mechanics. The inverse fracture 
problem that maintain close links with fracture design can be so defined: for a given body Q with a 
crack whose shape and parameters have been specified (Fig. 1), how should boundary conditions be 
applied to keep the crack propagation in a given direction and obtain a maximum stress intensity factor 
in the local region near the crack tip? In fact, there are three inverse fracture forms in the problem: 1) for 
a given body Q with crack and stress boundary conditions, design an optimum displacement boundary 

Fig.l. The model of inverse fracture problem 

conditions which makes the crack propagation in a given direction and results in a maximum stress 
intensity factor in the local region near the crack tip. 2) for a given body ß with crack and 
displacements boundary conditions, design an optimum stress boundary conditions which does the same 
as above mentioned. 3) for a given body Q with crack and partial stress and displacement boundary 
conditions, design all remainder unknown boundary conditions which does the same as before. 

The above problems show the features of fracture design. One can turn the problem into extreme 
value seeking with the aid of weight function M(x, a) given by fracture mechanics as shown below: 

K=%a°yM(x,a)dx (1) 

The <r° corresponding to the maximum stress intensity factor can be obtained accurately or 

approximately with the aid of different mathematical methods as long as the weight function M(x, a) is 

known. The inverse fracture problem, hence, can be solved subsequently. The. analytic solution of 

weight function M(x, a) for finite body is very difficult to be obtained, generally. The stress intensity 

factor can't be obtained by means of equation (1). The boundary collocation, the boundary integral, and 

finite element methods have been applied to the inverse elastoplasticity problems [4-6]. The stress 

intensity factor under one or several boundary conditions can also be obtained by using above methods. 

3.   THE ACTUAL TWO LEVEL FINITE ELEMENT METHOD AND IT'S FORMULATION 

The infinite series formulas defining displacement field in plane crack problem can be written 
as follows [9]: 

»x =i^{c; [(^ + l + (-iy)cos|ö-|cos(|-2)ö] 

+ C;[(^ + i-(-iy)sin^-|sin(i-2)4 
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»   rjl2 

- C'j [(ic-i + (-iy )cos ie + i cos(f - 2)6»} (2) 

where C*and Cjare coefficients to be determined after loads and other boundary conditions 
being imposed. It should be noted that the terms withy-0 denote the rigid body translations and the 
terms withy-1 in equation (2) contain a factor which accounts for the singular behavior near the 

crack tip. Therefore the relationship between stress intensity factor and coefficients C; becomes 

Kx -ü^V^C^-zC,'] (3) 

In order to study the effect of a crack on the plane elastic problem, an area Q is taken and divided 
around the crack tip with an outmost polygon boundary Lx and, then, a super element for dealing with 
the singularity is established (Fig. 2). The thickness ratio of the neighboring layer is c<l. 

Fig.2. Similar shape element configuration 

Equation (2) can be written as following matrix form 

{u} = [T]{C} (4) 

3.1. Transition Formulation of First Layer 
Let the nodes on the boundary polygon I, be master nodes and those on other inner polygons 

slave nodes. For solving the problem linking with other elements out of Q, only the degrees of 
freedom of slave nodes need to be transformed. The stiffness matrix of first layer after being 
transformed can be written as follow 

[Kf mm 

Rr(T')rK, Rr(T/)7'KSJT
/R 

(5) 

where [T7] is the transition matrix of the boundary polygon I, and [R] the relation matrix of the 
boundary polygon L2 and boundary polygon I,. ^ 

3.2. Transition Formulation of Other Layers 
All degrees of freedom of inner nodes need to be transformed. The stiffness matrix of inner 

layers after being transformed can be written as follow 
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K„ = c(*,+*,X»-0/2 [(T/)r     ck, {Tfy ] K„    K12 

K21    K22 

T/ 
(6) 

It can be found from equation (6) that Kv of different inner layers form geometric progressions. 
Therefore, we have 

K„    K12 

K21    K22 ckjT{ 

where 

R„=c _     (*,+*y)/2 <1 for    i,7>l 

(7) 

(8) 

By using equation (5) and equations (7)~(8), global stiffness matrix for domain Q can be 
assembled. Adding the global stiffness to the stiffness matrix of other elements, the general stiffness 
matrix can be obtained. Solving the equation, the column matrix {C} and stress intensity factor can 
be obtained directly. 

4.   DESIGN OF DISPLACEMENT BOUNDARY CONDITIONS 

Designing the suitable boundary conditions is one of main tasks in fracture design. The design 
of boundary conditions means to solve the inverse fracture problem. For the fracture design in 
engineering, the maximum stress intensity factor in the local region near the crack tip should be 
gained under the condition of keeping the crack propagation in a given direction. For the finite 
plane problem, the stress intensity factor can be written as follows [10] 

K^F^alb) 
P^nalb 

bU2B 
(9) 

Kn=F2(a/b) 
P^nalb 

bU2B 
(10) 

where F, (a/b) and F2(a/£)are dimensionless stress intensity factors. Several forms of displacement 
boundary conditions are shown in Fig. 3. As shown in Fig. 3, the extended force line of loading P is 
tangential to the inner boundary of the crack and, in the situations (c) and (d), the fulcrums are 
located just at outer edge of the cracks. The dimensionless stress intensity factors F^a/b) and F2(a/b) 
are listed in Tab. 1. It can be found from Tab. 1 that F^alb) is much greater than F2{alb) in model 
(a). For either fixed or simply support problems, the experimental research achievements show that 
the crack can't propagate alone the given direction in the fracture process if either the crack doesn't 
lie in the symmetry plane of the model or the tensile stress plays a leading role. Therefore, model (a) 
is not suitable to fracture design. The dimensionless stress intensity factors F^alb) are small in 
situation (b) and very small in (c) and (d). The dimensionless stress intensity factors F2{alb) are 
nearly identical in all situations. The model (c) and (d) are suitable to fracture design because they 
can be taken as pure shearing problem and the cracks propagate alone the given direction. 
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Fig.3. Displacement boundary conditions of a specimen with two cracks 

Table 1. Dimensionless stress intensity factors under different displacement boundary conditions 
(176=4, //Z=0.5) 

a/h 
0.10 0.20 0.30 0.40 0.50 0.60 0.70 

Model (a) Fx{a/b) 
F+a/b) 

2.9197 
0.3083 

2.6316 
0.2968 

2.2544 
0.2935 

1.8146 
0.2947 

1.4947 
0.2828 

1.0334 
0.2676 

0.6123 
0.2514 

Model (b) F,{a/b) 
Fj{a/b) 

0.2912 
0.3311 

0.2792 
0.3176 

0.2674 
0.3060 

0.2557 
0.2911 

0.2488 
0.2729 

0.2337 
0.2589 

0.2252 
0.2461 

Model (c) Fla/b) 
F7(a/b) 

0.0912 
0.3315 

0.0792 
0.3181 

0.0674 
0.3069 

0.0557 
0.2918 

0.0488 
0.2738 

0.0337 
0.2606 

0.0252 
0.2479 

Model (d) F,{a/b) 
F,(a/b) 

0.0905 
0.3318 

0.0785 
0.3185 

0.0665 
0.3075 

0.0551 
0.2926 

0.0475 
0.2756 

0.0332 
0.2644 

0.0248 
0.2498 

5. DESIGN OF STRESS BOUNDARY CONDITIONS 

Several forms of stress boundary conditions for simply support specimen are shown in Fig. 4. 
The dimensionless stress intensity factors Ft(a/b) and F2(a/b) are shown in Tab. 2. It can be found 
from Tab. 2 that the dimensionless stress intensity factors F,(a/b) is greater than the F2{alb) in (a), 
(b) and (c). Therefore, the propagation of mode I crack plays a leading role and doesn't take place 
alone the given direction in the process of fracture. The dimensionless stress intensity factors F2(a/b) 
have little difference in several models. The model (d) can be taken as pure shear because the 
dimensionless stress intensity factors F^a/b) is very small. The crack can propagate alone the given 
direction and the fracture face is regular and smooth. It is a suitable model in fracture design. 

6. CONCLUSIONS 

The inverse fracture problem can be applied in engineering. According to the practice of fracture 
engineering, inverse fracture problems can be divided into three kinds. The solution of these inverse 
fracture problems must meet the needs of fracture engineering. The inverse fracture problem can be solved 
by actual two level finite element method. The crack can't propagate alone the given direction and 
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Fig.4. The stress boundary conditions of a specimen with two cracks 

Table 2. Dimensionless stress intensity 
(L/b-- 

factors under different stress boundary conditions 
=4,//£=0.5, M=0.5) 

a/h 
0.10 0.20 0.30 0.40 0.50 0.60 0.70 

Model (a) F^a/b) 
F,(a/b) 

3.1188 
0.3211 

2.9421 
0.3047 

2.6541 
0.2915 

2.2135 
0.2736 

1.7946 
0.2603 

1.3326 
0.2354 

0.9121 
0.2205 

Model (b) Fx{a/b) 
F,(a/b) 

2.7192 
0.3223 

2.4324 
0.3068 

2.2231 
0.2935 

1.7146 
0.2747 

1.3947 
0.2628 

1.0234 
0.2376 

0.6022 
0.22.14 

Model (c) F^a/b) 
F,(a/b) 

2.6277 
0.3287 

2.3816 
0.3124 

2.0515 
0.2988 

1.6603 
0.2807 

1.3751 
0.2649 

0.9559 
0.2429 

0.5694 
0.2275 

Model (d) F,{a/b) 
F7(a/b) 

0.0912 
0.3315 

0.0792 
0.3181 

0.0674 
0.3069 

0.0557 
0.2918 

0.0488 
0.2738 

0.0337 
0.2606 

0.0252 
0.2479 

the fracture face isn't regular and smooth when the mode I crack plays a leading role for the 
specimen with double cracks. Pure shear model is the suitable model in fracture engineering. 
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ABSTRACT 

The enhancement of service life of damaged or cracked structures is currently major issue to the 
researchers and engineers. In order to evaluate the life of cracked aging aircraft structures, the repair 
technique which uses adhesively bonded boron/epoxy composite patched is being widely 
considered as a cost-effective and reliable method. But, this repair method contains many 
shortcomings. One of these shortcomings, debonding is major issue. When the adhesive shear stress 
increases, debonding is caused at the end of patch and plate interface. And this debonding is another 
defect except crack propagation. In this paper, we assess safety at the cracked Al-plate repaired by 
Br/Epoxy composite patch. Firstly, the reduction of stress intensity factors near the crack-tip are 
determined to the effects of various non-dimensional design parameters. Secondly, using the finite 
element analysis, the distribution of adhesive shear stresses are acquired. Finally, the problem of 
how to optimize the geometric configurations of the patch has been discussed. 

1.   INTRODUCTION 

The method which had been suggested is not sufficient to restraint the propagation of crack 
structures. To extend the service life, cracked components must be replaced or repaired. However, 
replaced method has many shortcomings; inefficiency, difficulty of fabrication, etc., so, the use of 
bonded composite patch or stiffener on the cracked surface is required. 

Baker and Jones[l] studied the repair technique, which uses adhesively bonded Boron/Epoxy 
composite patches and it is widely considered as a cost effective and reliable method. It is often 
most economical to employ crack arrestment methods to regain the load carrying capability of the 
component. Composite material have outstanding strength, stiffness and low specific gravity. The 
potential use of such composites due to their superior mechanical and thermal properties is well 
recognized in the aerospace and ship building as well as in other lightweight engineering 
constructions. A repair method using composite patches to reinforce the damaged or cracked 
component has been shown to be vary promising due to the high stiffness, high strength, and light 
weight of the component. 

For a successful implementation of this repair technique, however, a thorough understanding of 
the effect of various design parameters of repair, on the crack-tip stress intensity factors, is 
necessary. These design parameters included: the size of patch, thickness and material properties of 
composite patch, and the thickness of adhesive layer. Jone and Callinan [2-3] studied the design 
aspect of the crack patching using the finite elements method. Chu and Ko[4] proposed using 
collapsed isoparametric element to preserve the singular stress characteristic at the crack tip. But, 
this method required large numbers of nodal degree of freedom. To recover this problem, 
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DenneyJ5] suggested the finite element alternating method to reduce the analysis time. 
In this paper, we studied the fracture mechanics analysis at the crack tip and the behavior of 

debonding which is caused by adhesive shear stresses. Finally, we will suggest the optimal shape to 
prevent the propagation of crack and debonding. 

Fig.l Configuration of bonded repair for cracked plate 

2. FRACTURE MECHANICS ANALYSIS 

2.1 Analysis of cracked plate repaired by composite patch 
Consider a aluminum plate which has center crack repaired by Br/Epoxy composite patch as 

shown in Fig. 1. Our present analysis is based on the following simplified assumptions. 
(1) There is no bonding. The Al-plate, the Br/Epoxy composite patch and epoxy adhesive layer 

must remain linear elastic. 
(2) The adhesive layer thickness is relatively thin compare with plate/patch thickness. So it is 

considered to be a generalized plane stress condition. And the shear stress between plate and 
patch is treated as a oody force. 

(3) The bending effect is ignored. 

2.2 Stress Intensity Factor 
Firstly, we compare the 2-dimensional finite element solution with the theoretical solution, and 

then extend to 3-dimensional finite element analysis. 
Isida[6] proposed the 2-dimensional S.I.F for the cracked plate. 

(1) K, = o^(n x a) ■ (a,ß) 
At the crack tip, calculation of the S.I.F is expressed as : 

*/=■ 

2G 
[(4vB2-vC2)-(4vBI-vcl)]' (2) 

(*r + lK2/, 
where, vB,vcare y-direction crack opening displacement at the collapsed crack tip elements. 

Fig. 2 shows that Ingraffa and Manu[7] proposed the calculation of S.I.F. for the 3-dimensional 
quarter point finite element analysis: 
From Table. 1. 2-dimensional S.I.F. corresponding theoretical results and finite element results are 

shown. 

K,= 
n 

-T—[(2VB ~ VC + 2vE ~ VF - 2vB- + VC - 2v£' + VF' ~ VD') 4(l-v')^2L 

1 1   , ' 
+ -T](-4vB +vc+ 4vE -vF+ 4vB, - vc. - 4v£. + vF.) + -t]  (vF + vc 

■2vr ■vF,-vc, + 2vD,)] 

(3) 
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Table 1. Comparison of S.I.F. of 
cracked plate (unit: MPa-mm"2) 

crack   (2a) Analytical F.E.M ErrctK^W 
10 2.74 277 1.08 
12 3.00 3.04 1.32 
16 3.47 3.51 1.14 
20 3.88 393 1.52 
24 4.26 432 1.39 
28 4.62 468 1.28 
30 4.79 485 1.24 

C*ockfact« 

Fig. 2 Arrangement of quarter point 
element along segment of crack front. 

2.3 Reduction of Stress Intensity Factor 
For the fracture mechanics safety criteria, we define the reduction of stress intensity factor. 

K*=\-KPIKU (4) 
where, K and K are the stress intensity factors for the unpatched and patched cracked plate. From 

Table 1., the stress intensity factor for the unpatched cracked is 3.93Mpa.mml/2 at crack length 
2a=20mm. 

As K* increases, the crack propagation decreases respectively. On the other hand, as K* decreases, 
the possibility of fracture increases. 

2.4 Adhesive Shear Stress 
Adhesive shear stress causes the debonding at the patch and plate interface. 

The equilibrium equations for a plate and patch are, respectively: 

dayy _ ry *°'» (5) 
A„ dy       hs       dy ..p 

The stress-strain relationships of plate and patch are given by: 

s s 

Jones and Callinan[2] proposed the compatibility condition between plate and composite patch; 
_{ys-v")        _    h.      h.      3A„ 

■v.*'*) 
(6) 

G,    4Gr    8G (7) 

Table 2. Material properties for plate, patch and adhesive 

Young's 

modules 

(GPa) 

Shear 

modules 

(GPa) 

Poissons ratio 

Ei & & Gl2 Gl3 Cos V]2 "13 vx 

Al- 

plate 
71.02 - - - - - 0.32 - - 

Pat 

ch 
208.1 8.18 8.18 7.24 7.24 4.94 0.677 0,677 0.035 

Adhe 

slva 
2.2 - - - - - 0.32 - - 

*-¥ 

II    ' £.£ ■jt ■ k i>? 

IN: 
stfe- 'fit 3p t. - 

IP ■^i' 'ik '&M- 
in *Wi ■»it w-% 

if 
ftfj% III m 

Ml < -: 

l ft 1 a '-v: 

1 -3 

Fig. 3 Finite element modeling 
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3. FINITE ELEMENT ANALYSIS 

The Al-plate with dimensions 240x360x3mm contains a central through-crack. The crack is 
repaired by patching the [0/90]s boron/epoxy laminate on both sides of the plate. The patch 
dimensions are 80x160mm. The thickness of adhesive is 0.2mm. The material properities and 
example finite element mesh for a composite patch repair are shown in Tabfe z.and Fig.3, 
respectively. Only the upper half of the patched plate from the middle plane is considered due to 
geometric symmetry. To solve this problem, ABAQUS v 5.8 is used. 

4. RESULTS AND REMARKS 

4.1 Effect of Patch Thickness 
Fig. 4 and 5 show the stress intensity factors and reduction of stress intensity factors with respect 

to the thickness of the composite patch. It is seen that the reduction of stress intensity factor 
increases on the variation of patch thickness. The reductions of stress intensity factors are about 
78-90% with the patch thickness increasing. 
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Fig.4 S.I.F. with respect to patch 
thickness. (2a =20mm) 
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Fig.5 Reductional of S.I.F. with 
respect to patch thickness. 

4.2 Effect of Patch's Material 
Fig. 6 and 7 show the effect of patch material, it is evident that using composite material as patch 

is more effective than using Al material. 
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Fig.6 S.I.F. with respect to Al-patch 
thickness. (2a =20mm) 
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Patch thickness (mm) 

Fig.7 Reduction of S.I.F. for Al 
and Br/Ep patch. (2a =20mm) 

1.5 

4.3 Effect of Patch Shape 
Fig. 8 and 9 show the stress intensity factors and reduction of stress intensity factors for the two 

patch type. Overall type is perfectly bonded over the crack. Otherwise, partial type is partially 
bonded the patch at the crack-tip. 

Compared Fig. 8 and 9 with Fig. 4 and 5, stress intensity factors of overall type increases about six 
times as many as one of partial type, reduction of S.I.F of overall type increases about two times as 
many as one of partial type. 
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4.4 Distribution of Adhesive Shear Stress 
Fig. 10-12 show the adhesive shear stress distribution around the end of patch which is tapered to 

reduce shear stresses. Generally, adhesive shear stress causes debonding. Adhesive shear stresses 
are larger at the patch end and thick patch. To reduce adhesive shear stresses, tapered-patch type is 
suggested. In the paper, tapered degrees are 15°, 30°, 45°, 60°, 75° and 90°. Fig. 10 shows the 
distribution of shear stresses at the center of the patch. From Fig. 11 it is seen that shear stress is 
significantly reduced due to tapered patch. From Fig. 12 it is note that tapered patch type prevent 
the boundary-layer effect [8]. 
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5. CONCLUSIONS 

The objective of the study was to analyse the availability crack-repair method and to suggest the 
optimal patch shape. Using finite element method, we can obtain satisfactory results on the 
variation of design parameters. The results as following: 
1. Reduction of S.I.F is more improved when using the stiffer boron/epoxy patch, whereas the 

adhesive shear stress at the end of the patch increases more. 
2. For the repaired patch, composite material is more effective to prevent the propagation of crack. 
3. Reduction of S.I.F of the overall patch type is approximately two time as many as one of partial 

patch type. If possible, overall type is more effective than partial patch type to restraint cracks 
growth. 

4. Considering both fracture mechanic and debonding, the optimal patch sape is stiffer at the center 
of the patch and gradually thinner to the end of the patch. But this patch shape is diffcult to 
fabricate, we suggest the tapered patch type. 
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ABSTRACT 

The fracture toughness test was carried out by using small CNS (Compact Normal and Shear) 
specimens subjected to mixed-mode loading. Small CNS specimens made of 62Sn-38Pb and epoxy 
resin enable us to carry out the experiment under various kinds of mixed-mode loading. The 
complex stress-intensity factor associated with an interface crack was evaluated by the virtual crack 
extension method. Ki and Kn values at unstable crack growth were measured under various 
mixed-mode loading. The energy release rate of interface crack was not constant under various 
mixed-mode loading. The relationship between Kj and Kn values shows the elliptic law. 

1. INTRODUCTION 

The strength evaluation of the composites, electronic packages, bonded dissimilar materials and 
adhesive joints have become very important in recent years. Therefore, the strength evaluation and 
testing method should be established to estimate the strength of interface crack quantitatively. A 
CNS specimen with an interface crack proposed by Richard et al. [1] was employed. Small CNS 
specimens made of the 63Sn-37Pb alloy and epoxy resin enable us to carry out the fracture 
toughness test under various kinds of mixed-mode loading. The energy release rate of interface 
crack is not constant under the various mixed-mode loading. Then, it is necessary to evaluate the 
fracture toughness by the components of complex stress intensity factor K. The evaluation of stress 
intensity factors of the interface crack has been carried out by the finite element analysis. The 
complex stress intensity factor associated with the elastic interface crack was evaluated by the 
virtual crack extension method (VCEM) [2-4]. The fracture toughness of interface crack was 
estimated by using two parameters (Kj, Kn). The result of fracture toughness test reveals that the 
interface is strong to the shear but weak to the delamination. 

2. STRESS STATE NEAR AN INTERFACE CRACK-TIP 

The stress state along the interface ahead of the crack tip is expressed as follows: 
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where (oyy+z'axy) is the complex stress, K is the complex stress-intensity factor (K^iK/j), r is the 
distance from the crack tip, lk is the typical length like a crack length, JX, and \i2 are the shear 
moduli of materials 1 and 2, £ is a bi-material constant, and v is the Poisson's ratio. 

The absolute value and argument are expressed as follows: 

\K, +iKn\    *JK, +K„ 

2nr 

arg(ow + iav )= argfo + iK„)+ elnf ^ ) = tan"1 (K^ ) + eln^ j 

When lk changes to /', K,' and K,,' are simply evaluated by the following equation. 

(4) 

(5) 

\K'„ 

cos0   -sin6 

sin0    cos0 
6 = ein 'L (6) 

First, K, and Kn were calculated by setting lk=2a where a is a crack length. Kj and Kn values were 
transformed into the final stress-intensity factors (K/' and Kn') at /'=0.01mm considering the 
compatibility with the stress-intensity factors obtined by the modified crack closure integral [5,6]. 

3. EXPERIMENT 

Figure 1 shows the configuration of compact normal and shear specimen. The loading device is 
shown in Fig.2. The materials of upper and lower parts of specimen are the 63Sn-37Pb alloy and 
epoxy resin, respectively. The mechanical properties of two materials are shown in Table 1. A crack 
was introduced by putting Teflon sheet 0.02mm thick between two pieces. The crack length is 6mm. 
The specimen was polymerized for 48hours at 120°C, and cooled to the room temperature at the 
cooling rate of 10°C/h to remove the residual stress. Seven kinds of mixed-mode loading from mode 
I to mode II were applied to CNS specimens by changing a load application angle. The fracture 
toughness test was carried out at the tensile speed of 0.5mm/min. 

4. MODEL FOR ANALYSIS 

Figure 3 shows the model for the 3-D finite element analysis. The half portion of specimen was 
modeled by the symmetry with respect to the midsection of specimen by using 20 nodes 
isoparametric elements. Here W'vs 12mm, H is 20mm, Bis 5mm, Zr is 7.2mm and   l2 is 14.4mm. 
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Fig.l Specimen configuration. 

Table 1. Mechanical properties. 

Fig.2 Loading device. 

\ 

Young's 
modulus 

(GPa) 
Poisson's 

ratio 

Yield 
stress 
(MPa) 

Solder 25 0.40 27.8 
Epoxy 
resin 

2.94 0.38 39.2 

Fig.3 3-D FEM model. 

The ratio of layer division was 1:2:3, and the numbers of elements and nodes were 1440, and 
7801, respectively. The crack tip was constrained in x and y directions. 

The forces and moments meet the following equilibrium equations. 

Psina = P2 

Pcosa = Pi + P2 

PI +PI  = PI ■MM + * 2*2       rr  3 

(7) 

Pi, P2 and P3 were applied to the centers of each bolt hole in order to make the uniform loading. P 
is the load applied to the bolt hole on the periphery of loading device shown in Fig.2 and a is the 
load application angle. The stress-intensity factor was evaluated by the virtual crack extension 
method. The components of complex stress-intensity factor K were evaluated by the superposition 
of asymptotic plane-strain solution derived by Sun and Jih [7]. 
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5. RESULTS AND DISCUSSION 

The normalized stress-intensity factors (Fh Fn) were evaluated by the following equation from 
the stress-intensity factors (K>, Kn). 

F. '- 
'      P 

WB 

0'-/,//) (8) 

Figure 4 shows the distribution of stress-intensity factors along the crack front. Here Z is the 
distance from the midsection of the specimen. F/ is nearly uniform from the midsection of the 
specimen to 2Z/B ~ 0.4 and decreases gradually towards the free surface. Fn is nearly uniform 
along the crack front, but increases slightly near the free surface. Fu is not zero even in the case of 
a=0 degree. Therefore the stress state near the interface crack shows the mixed-mode condition 
under the mode I loading. In the case of a=90 degrees, Fj is nearly zero. Consequently the specimen 
is nearly in the pure mode II condition. 
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Fig.4 Distribution of stress-intensity factors along the crack front. 
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Figure 5 shows the variation of stress-intensity factors at the midsection with the load 
application angle a. As a increases, F/ decreases. On the other hand, Fn increases, becomes 
maximum at about 60 degrees and then decreases gradually. Fu at a=0 degree is 0.816 and not zero. 
Fi at a=90 degrees is 0.14 and nearly zero. The following stress-intensity factors were evaluated by 
using Fj and FJJ values at the midsection of the specimen. 

Ki corresponds to the energy release rate and y denotes the ratio of mixed-mode. Both values are 
expressed as follows: 

Ki = V Ki  + Kn 

K 
y = tan" 

K, 

(9) 

(10) 

30 45 60 

a (degrees) 

♦     Odeg —■—15deg     —*—30deg 

-X—45deg —*—60deg     —•—75deg 

—1—90deg  Average 

Fig.5 Variation of stress-intensity factors 
at the midsection with a load 
application angle. 

30       45       60 

Y (*£) 
Fig.6 Variation of fracture load with the 

mixed-mode ratio y. 

Figure 6 shows the variation of fracture load with the mixed-mode ratio y. An angle in the 
legend denotes the load application angle a. As y increases, the fracture load increases gradually up 
to Y=45 degrees and then increases rapidly. The fracture load is maximum at a=90degrees. All 
specimens fractured in the brittle mode. 

Figure 7 shows the variation of Kt with the mixed-mode ratio. Kt increases linearly with an 
increase in the mixed-mode ratio and is not constant. Accordingly, the fracture toughness of 
interface crack cannot be estimated by the single parameter like the energy release rate. Therefore 
the mixed-mode criterion using two parameters (Kj, Kn) is needed to estimate the fracture toughness 
of interface crack. 

Figure 8 shows the relationship between Ki and KJJ at the unstable crack growth. An elliptic law 
holds in those values as follows: 
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Fig.7 Variation of Ki with mixed-mode ratio.      Fig.8 Relationship between Kj and Kn. 

t K, 

K-ic )      \K-uc 

K„ 
= 1 (11) 

where KIC (=0.71MPam1/2) and Kac (=1.155MPam1/2) are the fracture toughness of mode I and 
mode II, respectively. KUc is about 1.63 times KiC. Therefore it is considered that the interface is 
strong to the shear but weak to the delamination. 

6. CONCLUSIONS 

1. The energy release rate of interface crack at the unstable crack growth varies depending on the 
mixed-mode ratio. 

2. An elliptic law holds in the relation between Kj and Kn as follows: 

K, 

K-ic )     \ KIIC 

K„ 

3.   Knc is about 1.63 times KIC. Therefore it is considered that the interface is strong to the shear 
but weak to the delamination. 
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ABSTRACT 

Aiming to investigate the controllable fracture procedures and exploit the benefits of cracks, 
the paper theoretically analyzes the following essential aspects of Controllable and Regular 
Fracture Theory(CRFT) through both Engineering Control Theory and Fracture Mechanics: (a) 
The mathematical model of CRFT. In this item, any fracture procedure is regarded as a 
mathematical transformation named as Fracture Transformation, and a regular fracture 
procedure can be described as s-Stability. (b) The fundamental analysis models of CRFT are 
presented after introducing Engineering Control Theory. A fracture procedure is considered as 
the behavior of the named "Crack System", (c) The conceptual stability of regular fracture 
procedure is investigated. With the help of Lyapunov's theory of stability in Engineering 
Control Theory, the stability of crack growth is analyzed. Using a transformation, the 
s-Stability is proved to have the same meaning of the stability in Lyapunov's theory, and then 
can be described and analyzed by Lyapunov's stability theory, (d) A sufficient stability criterion 
of growing crack is established by means of Energy Method. 

1. INTRODUCTION 
Ordinarily, Fracture Mechanics, in which crack is considered as a disaster and fracture of 

solids is considered as a kind of loss of stability, deals with the mechanism of fracture, seeks to 
discover ways to prevent its occurrence and assure the "Safe Design" and "Safe Application" of 
the practical components or structures. However, as the dialectics of nature shows, the so-called 
"misfortune" of cracks, could be explored and, where possible, might be exploited so as to be a 
benefit to human beings. Based on the thought of changing the misfortune into a benefit, 
combining the "benefit" of crack with Mechanical Manufacturing Engineering, a new 
technique, which is named as Crack Technique, has been established. Crack Techniquefl] is a 
stress cutting technique using the stress concentration of the artificial cracks under the sensitive 
stress fields caused by suitable types of loading to separate the continuous faces of the solids 

' Corresponding author. Currently pursuing Ph.D. degree at the Dept. of Engineering Science & Mechanics, Virginia 

Polytechnic Institute and State University, Blacksburg, VA 24061, USA. Email: azhou®.vt.edu 
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quickly and regularly through the growth of crack after initiation. This new prospect for 
investigation indicates that the crack could be purposely made in advance, controlled to 
propagate orientationally, and used to perform a task of machine work. The benefit from crack 
investigation is first related to stock break-off. Conventional methods of stock break-off are 
metallic cutting (sawing, turning, milling, etc.) and cold or hot shearing. The new technique, 
called " stress cutting", however, makes use of the singularity of the stress at the sharp end of an 
artificially cut notch subjected to pre-load to force the notch to be fractured suddenly and 
propagate quickly with directional stability all the way of the whole stock body. High efficiency 
and low energy consumption are two unparalleled advantages possessed by stock break-off 
with crack propagation [1]. In addition to machinework industries, other industries such as 
military, explosive, building, quarrying, mining and steelworks industries should also recognize 
and then exploit the benefits of cracks. 

This paper investigates the following essential aspects of CRFT: (a) the mathematical model 
of CRFT;. (b) the fundamental analysis models of CRFT; (c) the conceptual Stability of 
Regular Fracture Procedure; and (d) a sufficient stability criterion of growing crack. 

2. MATHEMATICAL MODEL OF CONTROLLABLE & REGULAR FRACTURE 
The fracture procedure is considered as a kind of motion of the Crack System, which includes 

the notches or cracks, boundary conditions, loading, etc., of the solid body. The following two 
hypotheses for the model were introduced: (1). The described Crack System is considered in 
Banach Spaces. (2). The solid body is a continuum and meets the axiom of continuity in 
Continuum Mechanics. 

A fracture procedure is regarded as a mathematical transformation. Q ;(i=0,l,2) are assumed 
to be vector space, and Q ic R3 where R3 is the 3-D Banach Spaces. Q 0 is the whole vector space 
of the solid body before fracture; Q , and Q 2 are vector space of the two solid bodies 
respectively after fracture. Then the fracture procedure 

S2 o -* £21 + &2 (1) 

is considered as a kind of mathematical transformation by which the original single and 
continuous vector spaceQ 0 is transformed into two separate parts spaceQ , and Q 2. The detailed 
definitions of fundamental concepts of a regular fracture procedure follow as: 

AssumeQ 0, ßi, Q 2 c R3, and Q , n Q 2 = O, Q , U Q 2 = Q 0, T is a self-transformation in R3. If 
T transform Q 0 as : Q „-> Q ,+ Q 2Then T is defined as Fracture Transformation in R3. 

Q ,, Q2c:R3, andQ ,n Q2 = $.x0 is a partofthe boundary of Q ,, S(X0)8) is the neighborhood 
of X0. If for V5>0 then : S(X0,5)n Q 2*)>, Then Q , and Q 2 are Contiguous and part Q , and part Q 2 

is defined as Contiguity. All X0 in Q , (or in Q 2) are called Contiguity Boundary of Q , and Q 2. 
A, BcR3, andAcB, Vxe A. Fs(x)is a mathematical transformation: Fs:x->x' [where x'eB,x'= 

Fs(x)]. If for any expected s>0, then, p[x, Fs(x)]< s, where p is the distance between two vectors 
x and Fs(x) in Banach Space. The above-mentioned Fs(x) is denoted as Bs. Transformation Fs is 
defined as s Limited Boundary Transformation, and the transformation Fs(x) is regarded as a 
kind of E Limited Boundary. Bs is defined as e Limited Boundary Path of A under the 
transformation of Fs(x). 

Q 0,Q ,,Q 2e R3, Q , and Q 2 are Contiguous, and C is the contiguity boundary of Q , and Q 2, Bs is 
the expected sLimited Boundary Path, and C c Bs. If for Ve>0, 3T(Fracture Transformation) 
where CcB, exists all through the whole procedure of the fracture transformation for Q , and Q 
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2. Then the fracture or transformation procedure T is considered as stable and controllable. The 
whole procedure T is defined as s Stability. If Bs is Uniform s Limited Boundary Path in the 
above situation, T is called as Uniform s - Stability. If C c Bs does not exist through the whole 
procedure (sometimes C c Bs), then T is defined as E Instability ./Fig. 1 shows the Uniform e - 
Stability and Uniform s - Instability, in which crack 1 and crack 2 are stable whereas crack 3 is 
unstable. 

Y 

Fig.l Uniform e - Stability and Uniform s - Instability 

For a fracture procedure, which grows stably and regularly for the expected or predicted path, 
can be described as the following: Consider a solid bodyQ 0, if for an expected e Limited 
Boundary Path, one can find a Fracture Transformation T which makes: Q 0-» Q ,+ Q 2, where Q 
i and Q 2 are s Congruity. Then the fracture procedure is called e Stability, and the fracture 
procedure is called as Stable and Regular Fracture Procedure. 

3. ANALYSIS MODELS USING ENGINEERING CONTROL THEORY 
Consider a solid body with cracks, with the boundary of S = SQ + S„ + Sc + Sf, where S0 is the 

stress boundary; Su is the displacement boundary; Sc is the crack or notch boundary, or the crack 
tip boundary after initiation; Sf is the free boundary. A fracture procedure can be divided into 
two sub-procedures: (1). In first sub-procedure, the Generalized Loading X(S, P, T, t) is the 
First-step Input (General Input) and the body's mechanical parameters Yfoj, Ey, u^in Fig.2 
describing the mechanical conditions (such as stress, strain and displacement) in Sc and the 
region around Sc is First-step Output. (2). The mechanical parameters in item (1) act as the 
Second-step Input, and the crack growth path P(Q ,,Q 2) in Fig.2 is the Second-step Output 
(General Output). X(S, P, T, t) is the Generalized Loading ( or General Input), which implies the 
loading may be caused by boundary changing (S); force, moment and pressure (P); Thermal 
Effects (T) and may be related to time t. 

First-step Input 
(General Input) 

First-step Output 
(Second-step Input) 

Second-step Output 
(General Output) 

Solid Body Crack Tip k 

P(Q ,,Q 2) X(S, P, T, t) Y(aij, Eij, Uij) 

Fig.2 Opened Loop Control of a Crack System 

4. STABILITY OF CRACK GROWTH IN CRFT 
In the above definitions, and in practical engineering problem of controllable and regular 

fracture, the expected crack growth path is banded. For example, it is a banded area in 
2-dimension (Fig. 1). However, in Lyapunov's description, the stability limitation of a motion 
is a circle. The above-mentioned difference can be solved by using complex function theory. A 
banded area can be transformed into a circular region. The banded region as in Fig.l can be 
transformed into a unit circle through the following transformation 
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j_gU        2) 
Z.= f^T (2) 

72°+'7 

After the transformation, the stability in crack growth path (e stability) has the same 
meanings as in Lyapunov's stability theory in Engineering Control Theory. Then, the stability 
of a fracture procedure can also be defined using Lyapunov's stability theory in the transformed 
coordinate system. 

Solveing Melin[2] has also studied the directional stability of cracks in his series papers. 
Melin made the definition of crack's directional stability concentrating on the slope Y(a)/a 
(where a is the crack length) of the crack. The corresponding definition of directional instability 
would be that Y(a)/a increases with a or, more precisely, that [Y(a)/a]l[Y(a0)/a0] exceeds any 
predetermined value if a/a0 is sufficiently large and Y0 /a0 infinitesimally small. Then the 

outcome of his stability analysis depends on the ratio between the principle stress CT" and a". 
The other candidate for the definition of directional instability concentrates on the absolute 
position of the crack tip as stated in the definition in this paper. However, Melin's definition can 
not describe the controllable and regular fracture problem in practical engineering application, 
which is possible in Crack Technique. In addition, Melin investigated the directional stability 
and instability concentrating only on Fracture Mechanics, no Engineering Control Theory is 
considered in his research. Other researchers, such as Vladimir V Bolotin[3] who considers 
Fracture as dynamic instability, have also studied the stability or instability problems in 
Fracture. However, in this paper, the same work using different analytic tools based on a 
different approach is studied. 

5. CRITERION OF CRACK GROWTH 
Several instability criteria of crack growth[4,5,6] are available at the present, which consider 

the directional stability only on the basis of pure Fracture Mechanics research. This part tries to 
investigate the stability criterion by Engineering Control Theory. 

According to Lyapunov's stability theorem, a Generalized Energy Function is to be found in 
order to investigate the stability of a control system; the Generalized Energy Function, which is 
alterable and can be substituted, has to be composed in advance. The following aspects should 
be considered when choosing the function: (1) It should possess the characteristics of an energy 
function stipulated in Control Theory. (2) The physical nature of the solid body of the Crack 
System should be considered. (3) The mechanical parameters of the fracture procedure should 
be included. (4) The function should generalize as many types and conditions of fracture as 
possible. For these reasons, the Strain Energy Density Function defined by G.C. Sih is chosen 
as the Generalized Energy Function. And consider the straight path when E=0 in e Limited 
Boundary as the equilibrium state of the growing crack. Then, the Generalized Energy 
FunctionZ(x) is showed as: 

Z(x) = auK2 + 2anK,K„ + a12K
2

u + a„K2
m (3) 

where a,,, an, a22, a33 are denoted as : *22 '"33 

1       / 
a,, = = —— ix ~ cos ^X1 + cos (9) 

\6njj. 
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«.2=7^— sinö[2cosÖ-0r-l)] 
\67tfJ. 

a22= [(z + lXl - cos 0)+(l + cos d\3 cos 9 -1)] 

1 

(4) 

3-v 
fl + v 

(Plane Stress) 

* = 
. 3 - Av       (Plane Strain) 

where 0 is the polar angle, (i and v are material parameters, Ki,Kn, and Kra are Stress Intensity 
Factors. Obviously, Z(x) is a quadratic form type Lyapunov function, and the sign 
characteristic of Z(x) can be analyzed by its real matrix after represented in matrix form. If the 
real matrix of Z(x) is larger than zero, then, Z(x) >0. 

Z(x) = anK2, + 2anK,K„ + a22K
2

u + a33K
2

m = [K\P\K]
T (5) 

where an=a2X,   [K]=[K,    K„    Km],   [p] = 

a,,    an     0 

a21    a22     0 

0      0     a„ 

Assume X{ (i=l ,2,3) are real proper values of matrix [p], According to Matrix Theory, if X{ >0, 

then [p] >0. Considering \A.I - P\ = 0, we have, 

K = «33 = > 0 Ann 

A2 =—l— (cos26>-2cos(9 + 2^-l)=^— f(l-cos6>)2+2(j-l)l (6) 
\67Vju \6KH 

23 = 
\67Zfi 

(cos2 8 + 2 cos 9 +1) = (l + cos 9) 
WftjU 

For most metal materials, v =0.3. Replace v in equation (4) and (6), we can get that Xt (i=l,2,3) 

>0. Then, the matrix [p] >0, so Z(x) >0. Now, we consider the sign characteristic of Z{x), 

Z(x) = 2auK,k, + 2an{KIk„ + K;Kn) + 2a22KuKu + 2a„KmKn (7) 

According to Lyapunov's stability theorem, the following two conditions must be satisfied 
for a stable system:Z(x)>0 and Z(x)<0.Tt has been proved above that Z(x) is a positive 

definite function for a certain Crack System. If Z(x) is semi-negative definite, then the 
equilibrium state of the growing crack of the Crack System is stable according to Lyapunov's 
theory. Then, Z(x) must satisfy the semi-negative condition if the Crack System is a stable 
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system. Hence 

auK,Kl+an(K,Kn + k,K„) + a12K„k„ + a33Kmkm < 0 (8) 

If the Generalized Energy Function of a Crack System satisfies expression (8), then, the 
system satisfies the Lyapunov's Stability Theorem, and the system is stable. Expression (8), 
which is called the Stability Criterion of Growing Cracks, is the sufficient condition for a Crack 
System to be stable. 

6. CONCLUSIONS 
1. It is necessary and feasible to investigate the directional stability problem of dynamic 

growing cracks using Lyapunov's Stability Theory. Though fracture of solids is a kind of loss 
of stability in common Fracture Mechanics research, the growth direction of the growing cracks 
can be described and analyzed as an engineering stability problem when given certain meanings 
of the directional stability. 

2. It has been theoretically demonstrated that, as shown in expression (8), the directional 
stability of the growing crack is related to the crack position (polar angle), material parameters, 
the stress intensity factors, and the ratio of SIFs on the crack tip. 

3. ki,kII,km are real ratios of SIFs on crack tip. They are different from the ratio of the 

SIFs in Experimental Fracture Mechanics in which k,,k„,km denote the loading ratio, not 
the real ratio of the SIFs. 

4. Expression (8) is a sufficient criterion. Lyapunov's Stability Theorem in control theory is a 
sufficient condition, not a sufficient and necessary condition. According to Lyapunov's 
Stability Theorem, if a Crack System does not satisfy expression (8), it can not be stated that the 
system is not stable. 

5. It must be noted, however, that our work, as reported in this paper is just a first-step 
theoretical investigation. Numerical and experimental investigation and other analysis work 
should be performed in the future. 
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ABSTRACT 

It has been established that a crack has an important effect on the dynamic behavior of a structure. 
This effect depends mainly on the location and depth of the crack. To identify the location and 
depth of a crack in a structure, Nikolakopoulos et al. used the intersection point of the superposed 
contours that correspond to the eigenfrequency caused by the crack presence. However, the 
intersecting point of the superposed contours is not only difficult to find but also incorrect to 
estimate. A method is presented in this paper which uses optimization technique for the location and 
depth of the crack. The basic idea is to find parameters which use the structural eigenfrequencies on 
crack depth and location and optimization algorithm. With finite element model of the structure to 
calculate eigenfrequencies, it is possible to formulate the inverse problem in optimization format. 
Method of optimization is augmented lagrange multiplier method and search direction method is 
BFGS variable metric method and one dimensional search method is polynomial interpolation. 

1. INTRODUCTION 

Techniques to detect cracks and defects hidden in structure and to evaluate their residual life time 
are very important to assure the structural integrity of operating plants and structures. Many 
researchers have investigated the potential of system identification to determine the properties of a 
structure. A state of damage could be detected by a reduction in stiffness. A crack which occurs in a 
structural element causes some local variations in its stiffness, which affect the dynamics of the 
whole structure to a considerable degree. An analysis of the changes is tried to identify the crack. 

A number of papers have dealt with the problem of crack location and size identification in order 
to propose efficient and more precise methods. Inagaki et al. [1] used a procedure with 
eigenfrequency measurements to find the crack size and location. Leung [2] and Anifantis et al. [3] 
proposed crack identification methods through measurements of the dynamic behavior in bending. 
Dimarogonas and Massouros [4] investigated the dynamic behavior of a circumferentially cracked 
shaft in torsion and proposed nomographs for finding the crack depth and location. 

Nikolakopoulos et al. [5] presented the dependency of the structural eigenfrequencies on crack 
depth and location in contour graph form. To identify the location and depth of a crack, they 
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determined the intersection points of the superposed contours that correspond to the measured 
eigenfrequency variations caused by the crack presence. However, the intersecting points of the 
superposed contours are not only difficult to find but also incorrect to evaluate since the procedure 
mainly depends on men's eye. 

To identify the location and depth of a crack in a structure, a method is presented in this paper 
which uses optimization technique. A beam model constructed by finite element method is used to 
identify the parameters which are crack location and depth minimizing the difference between the 
frequencies of the parameter model and the measured frequencies. 

2. INVERSE ANALYSIS METHOD 

The inverse analysis is generally defined as identifying the parameter set x' e X when the 
measured or reference data /ey and direct mapping ^x-».rare known [6]. There are two main 
strategies for solving inverse problems. One is to solve a set of equations and the other is to directly 
find the minimum or maximum of a certain function. However, the former is worth noting the 
following difficulty: the inverse problem can always be defined as an abstract theoretical concept. 
In general, inverse function is a subset of original input, in fact such a subset could even be empty, 
so that the usual concept of "function" as a "one-to-one" injection breaks down. Generally, it is 
reasonable to solve the latter. Out of them, minimizing a least square criterion has been most widely 
used for identification. 

In this approach, optimization techniques are used to find the input by adjusting them until the 
measured, or reference data match the corresponding data computed from parameter set in the least 
square fashion, i.e., 

min /(*) (la) 
with the cost function 

m^k-ti-%{xjf (ib) 

where k, is a weighting factor. Various calculus-based optimization techniques have been 
intensively used to solve this optimization problem. 

3. STRUCTURE ANALYSIS 

In the finite element model of the damaged structure, the effect of the crack on the behavior of 
the structure can be simulated through the introduction of the transfer matrices which are method 
for finding the stiffness matrix. A planar frame structure can be modeled using two-dimensional 
beam elements having 3 d.o.f. (sx, Sy, 0Z) per node ,that is, with extension and bending, in Fig. 1. 

Fig. 1 A beam finite element with extension and bending d.o.f 

The corresponding stiffness and consistent mass local matrices [7] are 

ßü 0 0 -ßl1 0 0 

0 12 6£ 0 -12 61 

E4 0 61 4L2 0 -6L 11} 

£ -ßL2 0 0 ßl} 0 0 

0 -12 -61 0 12 -61 

0 6i 11} 0 -61 4L2 

(2) 
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k] 
pAL 

' 420 

140 0 0 70 0 

0 156 22L 0 54 

0 22£ 4I2 0 13£ 

70 0 0 140 0 

0 54 131 0 156 

0 -13i -3£2 0 -22£ 

0 

-13£ 

-3I2 

0 

-22Z 

4£2 

(3) 

where ß = AIIr, L is the length of element e, A is the cross section area. E and p are 
the modulus of elasticity and mass density, respectively, and Izz is the second moment of inertia 
about the local z-axis. 

From the Euler-Bernoulli theory for the above mentioned degrees of freedom, the transfer matrix 
[7], which transfers the state variables (displacement, force) from one node to the other node, is 

[TA- 

1    0   0 

0    1    L 

0   0    1 

-L 

AE 

0 

-1 

0 

0 

0 

_e_ 
6£/_ 
jf_ 
2£/_ 

0 

-1 

L 

0 

L2 

6EU 
L 

El. 
0 

0 

-1 

(4) 

A beam finite element of length Le, containig a crack of depth a at distance i,e from its left 
end, is depicted in Fig. 2. 

A, 

A-A 

1 : : 

Fig. 2 A cracked beam finite element 

The crack introduces a local compliance in the structure. The state vectors at positions 
i,CL,CRand 7 are 

{*,} = &   S„   0,   F,   Fyi   Mzif (5a) 
k)=K/.  syL  ezL 

JxR      °yR ' yR 

(5b) 
(5c) 
(5d) 

{^}=k..   ... 
U=K;    SyJ    6ZJ    FXJ    FyJ    MZJf 

If no force is acting between nodes / and j, then it can be derived from simple beam theory, 
where the four state vectors are related as follows: 

W) = [TM (6a) 
W = »J (6b) 
W=fciw (6c) 

where [7;] and [r2] are the transfer matrices of the subelements CL-i and CR - j, respectively 
and [TC] is the point transfer matrix due to the crack. Matrix [TC], which relates the state vectors 
on the left and right of the crack, is 
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[Teh 

1 0 0 Cll 0 C13 

0 1 L 0 C22 0 
0 0 1 C31 0 C33 

0 0 0 -1 0 0 

0 0 0 0 -1 0 

0 0 0 0 0 -1 

(7) 

where subscripts 1, 2 and 3 correspond to tension, shear and bending, respectively. Terms c13 

and c31, responsible for the coupling of tension and bending[8], are not considered here, whereas 
the rest are known as follows[9]: 

20, 

E(l-v2)b 

242<D, 
c„ = - 

E(\-v2)b 

72<D, 

E(\-v2)bh2 

(8a) 

(8b) 

(8c) 

where v is Poisson's ratio, k is a constant which for rectangular cross sections is known to be 
1.5 and ©. are functions of the nondimensional crack depth alh [9]. These functions, which are 
presented in Fig. 3, are integrals of the empirical formulas used by Tada[10] for computation of 
stress intensity factors K,  in single edge notch specimens under pure tension, bending and shear. 

Fig. 3  O, vs alh  for single edge notch specimen under pure tension, bending and shear 

From equation(6a-c) the following is obtained: 

khk%} (9) 
The transfer matrix [re

c] of the cracked element is written in the form 

[^c]=Mrcfc]= (10) 

where [4] are 3 x 3 submatrices. Equation (10) leads to the stiffness matrix of the crack element: 

kf (ii) 

4. PROBLEM DEFINITION 

The clamped-free beam of Fig.4 has a length of L = 3m , rectangular cross section 
BxH = 0.2mx0.2m and contains a crack of depth a at a distance I, from the clamped end. The 
material properties are £ = 2.07xlO"Nm-2, v = 0.3, and p = 7700kgm"3. The beam is discretized 
into 12 two-node finite elements. 
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y * k 

a _y / / / 
/ / / A 

L 

m 
Fig. 4 Model of the cracked clamped-free beam 

The equation of motion in matrix form is known to be 
{-a>i[M]+[K]){x}={0} (12) 

where eo is eigenfrequency, x is a displacement vector. The above analysis serves to identify 
the location and depth of a crack in a plane structure, just by measuring the eigenfrequency 
variations. 

Using the results of the previous section, one can construct crack identification in the format of 
an optimization problem. The objective function for the optimization to be minimized is defined as 
follows: 

Mm F(a, Z, ) = (/,- /,' )2 + (/2 - f{ )2 + (/j - // )2 

0.01 <a<0.1,0.1 <L, <2.9 
(13) 

where a is the depth of a crack; i, is the distance from the clamped end; /,/2,/3 are the first 
three eigenfrequencies which are functions of a and Z,; and /1*,/2*,/3* are the first three 
measured, or reference eigenfrequencies. 

The main target is to identify the parameters which are crack location and depth minimizing the 
difference between the frequencies of the parameter model and the measured frequencies. 

The method of optimization is the augmented lagrange multiplier method. This method includes 
the conditions for optimality into the optimization algorithm in order to improve its efficiency and 
reliability. The method of search direction is Broydon-Fletcher-Goldfarb-Shanno variable metric 
method and one dimensional search method is polynomial interpolation[l 1]. 

5. RESULTS 

A cracked clamped-free beam of Fig. 4 is adopted as an example problem, two cases are 
considered. (I) A crack of depth a of 0.01m exists at L, of 0.7m . The first three 
eigenfrequencies are obtained computationally based on the theory described in chapter 3: 
f' =U4A9rad/s, f2 =l\1.21rad I s, /3* = 2007 A9rad/s. (II) A crack of depth a of 0.03m exists 
at i, of 2.3m. The first three eigenfrequencies are obtained computationally; ft' =l\4.65rad/s, 

/2* = 7l3.53rad/s ,/3' =\911.09radls . 

Table 1 Final Analysis Result 

CASE I CASE II 

Reference 
value 

Result 
value 

Relative 
error(%) 

Reference 
value 

Result 
value 

Relative 
error(%) 

a(m) 0.01 0.0095 -5 0.03 0.0302 0.667 
L,(m) 0.7 0.7183 2.61 2.3 2.3109 0.474 

/i(rad/s) 114.49 114.52 0.026 114.65 114.65 0 
/2(rad/s) 717.27 717.26 -0.001 713.53 713.31 -0.029 
/,(rad/s) 2007.49 2007.50 0 1977.09 1977.10 0 

Final obj 
value - 0.0008 - 0.0278 - 
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The result of table 1 shows that the location and depth of a crack are estimated by the 
optimization technique within 5% error. Also, the corresponding eigenfrequencies are very close to 
the reference values within 0.03% error. 

6. CONCLUSIONS 

A methodology of optimization technique for the crack identification from the eigenfrequencies 
is proposed based on the fact that a crack has an important effect on the dynamic behavior of a 
structure. To estimate the crack parameters optimization technique and finite element method are 
combined into the proposed technique. The finite element method is for the approximation of the 
eigenfrequencies as the functions of the crack parameters and the optimization technique is for 
finding crack parameters which minimize the difference from the measured eigenfrequencies. 

The effectiveness of this technique is confirmed by example problem. The crack parameters of 
the clamped-free beam problem are estimated within small error. It can be concluded that good 
agreements are obtained between the estimated crack depth and location and the reference ones. 

The optimization technique can be generalized for general boundary condition and structure to 
estimate the crack location and depth provided that the reference data are properly prepared. 
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ABSTRACT 

Sliding crack model is employed to simulate the strength of rock material under dynamic triaxial 
compressive loads. Stress intensity factor of crack array considered is estimated by pseudo-traction 
method. A dynamic crack growth criterion is used in the analysis. The simulated strengths of a 
granite obtained by the sliding crack model agree with the experimental results. 

1. INTRODUCTION 

Strength of rock material under dynamic triaxial compressive loads is one of the important 
parameters in assessing stability of rock cavern under dynamic loads induced from blasting 
excavation or earthquake. Researches on this topic are mainly through experimental studies [1-2]. 
Those studies indicate that the compressive strength of rock material generally increases with 
increasing strain rate and confining pressure. 

After 1980s, with the utilisation of scanning electron microscope (SEM) equipment, useful 
works have been conducted to microscopically investigate failure process of brittle rock material 
under compression. These works indicated that the dominant failure mechanism of brittle rock 
materials is the growth and nucleation of the pre-existing microcracks under compression. 

Based on those works, various mathematical crack models, such as cylindrical pore model, 
dislocation pile-up model and sliding crack model, have been introduced in an effort to simulate the 
failure process and the macroscopic mechanical properties of rock materials under compression. 
The primary difference of these models is the formation of tensile cracks. For instance, for sliding 
crack model, the tensile crack is due to the sliding of pre-existing crack, while for the cylindrical 
pore model, tensile crack is due to stress concentration around pores. Among these models, sliding 
crack model is widely accepted 

In the present paper, the emphasis is to simulate the strength of rock material under dynamic 
triaxial compressive loads using sliding crack model. The simulated results for a granite are further 
compared to the experimental results. 

2. SLIDING CRACK MODEL 
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The sliding crack model, as shown in Figure 1, was first proposed by Brace and Bombolakis [3], 
as a mechanism to study non-elastic dilation of rock materials under compression (axial 
compressive stress CT, and lateral compressive stress <r2). It contains an initial crack, at length of 2c, 

oriented at an angle 9 with respect to a, direction, and a pair of tensile cracks. The tensile cracks 
are caused by the sliding of initial crack under compressive loads. 

In order to model the shear failure of rock material under triaxial compressive loads, an array of 
sliding cracks, as shown in Fig.l ,is presented in the present analysis. In Fig.l, the axis of the 
sliding crack array lies an angle a to the direction of axial stress. The spacing between two cracks is 
2w. 

Similar to the works by [5-7], Fig. 1 can be simplified and decomposed as crack configuration in 
Fig. 2(a) and (b). In Fig.2 (a), an array of tensile cracks, at length of 21, and crack spacing of 2w, 
respectively, are loaded at its centre to a pair of splitting forces F. The forces F represent the effect 
on the tensile crack of the initial crack's sliding. When cohesive stress is neglected, F can be 
estimated by: 

F = 2CT* and r*=j((T, -(j2)sm29-~p[a1 +CT2 -(C, -CT2)COS20] (1) 

where fi is the frictional coefficient of crack faces. 
In Fig.2 (b), an array of tensile cracks are subjected to axial stress (o-,) and confining pressure 

M 
-x 

 \ 

Fig. 1. Sliding crack model (a) (b) 
Fig.2. Decomposition of Fig.l. 

3. PSEUDO-TRACTION METHOD AND STRESS INTENSITY FACTOR 
DETERMINATION 

Pseudo-traction method is used to calculate the stress intensity factor of crack array in Fig 2(a) 
and 2(b). The method is first presented by Horn & Nemat-Nasser [7] to study crack interaction. 

Consider an elastic solid containing two cracks, as shown in Fig. 3(a). Each crack is loaded at its 
centre to a pair of normal forces Pl and P2, as well as shear forces Ql and Q2. By the pseudo- 
traction method, the original problem in Fig. 3(a) can be decomposed into two subproblems, as 
shown in Fig. 3(b). In each subproblem, an elastic body contains only one crack. The crack is 
loaded by P1 and Q (i - \,2), as well as unknown pseudo tractions api and tpi (i = \,2), which are 
induced from the near crack. 
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The pseudo tractions can be expanded into Taylor series as [7,8]: 

api-iTpi = Yfapi-irpi)(Xi/vf    (7 = 1.2; (2) 

where n is the term of Taylor series, erf and rf are n term components of pseudo tractions. 
The stress intensity factor of the crack array in Fig. 3(a) can then be calculated as: 

K{ = <7d' 
p> ■£7+5>4<*g±5>*°£.i 
!dJ 

<7 = u; (3) 

Considering crack array in Fig. 2(a), as pseudo tractions on each crack are symmetric, it is easy 
to obtain [7,8]: 

o£-i = *■£?-! = 0, (» = 1,2 N ;   k = 0,+l,+2 ±») (4) 

In addition, as a result of periodicity, the pseudo tractions in each crack are identical. Therefore, 
if we consider 2M + 1 cracks in Fig. 2(a), 2N term approximation of pseudo tractions are given by 
[7,8]: 

ii     I (       na \ I        m 

m=0 [\   k=\ 

N   [(    M 

l J"'     ) 

T'n = Z    2£s2„2„ k, + 2^D2„2m r2"„  + 2£F2„ \P+ 2^//2„ 
u=i    ; j v *=i  ;  i J-< 

(5) 

where, P = Fsin9 Q = FcosO. The definition of, A2„2m B2„lm, etc., can be referenced to [8]. 
According to Equation (3), the stress intensity factor of crack array in Fig. 2(a) is: 

Ts array 

4id P + Ylg^k (6) 

r 
y 

o1                    f + 

c 

V 
J V 

P'. a" 

J 

(a) (b) 
Fig.3. (a): A elastic body containing two cracks; (b): Two subproblems of Fig 3(a)[8] 
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Similarly, considering the crack array containing 2M+1 cracks in Fig. 2(b), 2iVterm of pseudo 
tractions are given by [7,8]: 

m=0 [V   k=\ 

H   [(    M 

M 

+ 2^ß2„o U r&=Eil 22X*» K+ 22X*» 

The mode I stress intensity factor of crack array in Fig. 2(b) is then given by: 

(7) 

Kry=Jri\<??+ Y?&*< (8) 

In the present paper, for the simplicity, we only consider 2 (# = l) term of pseudo traction, and 
neglect pseudo traction components containing terms of orders higher than (//w)2, the stress 
intensity factor of crack array in Fig. 1 can then be expressed as: 

V* (/ + /*) 

l-2f;.V + 2f;£0 +2^FBctg6 

1 - 2£ A„ 
p -■ 

1 - 2£ A. 
,Vff7" (9) 

where /* =0.27c, which ensure the validity of Equation (9) when the tensile crack length is very small 
[Hi- 

Further analysis based on sliding crack model indicated that when the angle a is about 20° -30°, 
the crack interaction coefficients reach the maximum value. This implies that the failure plane of 
rock material under triaxial compressive loads will be along this direction. These results agree with 
the experimental observation reported by Zhao et al [4], where they investigated that the granite 
rock mostly failed at an angle of 20° ~ 30° with respect to the direction of axial stress. Therefore, in 
the present analysis, we assume a = 20°, we further assume 9 = 45° as the work by Kemeny [5], the 
stress intensity factor of crack array in Fig. 1 is then given by: 

rrarray _ 

V*(/+/') 

i+a80 
l-0.5i €J 

2y*d (10) 

-"G 
4. SIMULATED RESULTS 

According to [6], crack growth criterion of crack array in Fig. 1 under dynamic compressive 
loads can be described as: 

vr-0.75v^(/ + /,) 

1 + 0.841- 

1-0.5 

P — ,yfrt 

V'-°-5V 1-0.5{1 
-=Kr (11) 
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where Kfc is the dynamic toughness for rock material, v is the crack growth velocity, and vr is the 
critical crack growth velocity, which is normally regarded as the Rayleigh Wave speed in the 
material. 

In Equation (11), note that v = dl/dt, the Equation can be integrated using four-order Runga- 
Kutta method. As a result, the simulated strength of rock material can be determined. 

Fig. 4 plots the change of simulated strength of a granite with strain rate ranging from 10"4 to 10° 
s"1, under confining pressures of 20,50 and 80 MPa. It is shown that the simulated strengths 
generally increase with increasing strain rate and the rising rate decrease with increasing confining 
pressure. The simulated results are consistent with the experimental results reported by Li et al 
[10]. 

The simulated strengths of granite increase with the increasing confining pressures, as shown in 
Fig. 5. The changing rates of strengths with confining pressure are almost identical at different 
strain rates. Again, the simulated results obtained from sliding crack model are consistent with 
experimental results. 

5. CONCLUSIONS 

Sliding crack model is available to simulated study the strength of rock material under dynamic 
triaixial compressive loads. The simulated results agree with the experimental results. The model 
also predicts the shear failure mode and orientation of rock material under triaxial compressive 
loads. It can be further concluded from crack growth criterion, Equation (11), that the crack growth 
velocity and the rate dependence of rock material result in the strength's increment of rock material 
with increasing strain rate. In addition, the impediment of confining pressure on the growth of 
sliding crack cause the increment of compressive strength with increasing confining pressure. 

M 0.8 
i 

s 

s 
m 0.8 

• Experimental results 
-Simulated results 

Normalized strain rate Normalized strain rate 

(a) Confining pressure:20 MPa (b) Confining pressure:50 MPa 

Normalized strain rate 

(c) Confining pressure:80 MPa 

Fig. 4. Change of strength with strain rate under different confining pressures (simulated and 
experimental results; strain rate is normalised by the minimum strain rate and strength is 
normalised by the strength at the minimum strain rate) 
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ABSTRACT 
In this study we focus on the mixed mode fracture toughness and the kink angle of an interface 

crack. We measure residual stress and perform mixed mode fracture tests for three types of interface 
crack. Each mixed mode fracture toughness including residual stress is successfully described by 
stress intensity factors K{ and Kn for each interface crack. The kink angle of each interface crack also 
can be expected by the stress intensity factors using the modified maximum hoop stress criterion. 

1. STRESS INTENSITY FACTORS AND CRACK KINKING OF AN INTERFACE CRACK 

1.1 Stress Intensity Factors of an Interface Crack 

The asymptotic solution of the stress distribution around an interface crack as shown in Fig. 1 

was proposed by Erdogan [1]. The stress along the x-axis is shown as 

Li,(K2+l)-li2(Ki+l) H,(K2-1)-H2(K,-1) „ 
H^KJ+IHHJOC.+I)' 

P
  m(K2+i) + (i2(K,+i) () 

8 = (l/2ji)ln(l- ß/1 + ß) (3) 

K, = 3 - 4v, (Plane strain) 

| K,. = (3 - V,) / (1 + V,)      (Plane stress) 
(4) 
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where a and ß are Dundurs's parameters [2], e is the bimaterial constant, and \lu [i2, Vi and v2 are 

shear moduli and Poisson's ratios for respective materials. ayy and a^ are stresses, K, and Ku are the 

stress intensity factors (SIF) for respective mode and i is the complex number (i2= -1). / is an arbitary 

characteristic number. Argument of the stress in Eq. (1) is shown as 

aig(ayy+iaxy)=y+e\n(j- 
V" 

(5) 

Y is argument of the complex stress intensity factor Kj +iKn which is defined as Fig. 2 and 

y = sign (K„) cos"' -^ (-n < j < ri), (6) 

sign(A://) = l(^/;>0),   =-l(K„<0), (7) 

where Kt is K, - <JK* + K2„ .J is easily transformed for another value of lk=lk' [3]. 

Y = Y+eln(4'/4) (8) 

It is obvious by Eq. (5) that a^a^ on x-axis corresponds to KJJ/K, at r= lk. In other words, KJ/KJ 

characterizes the ratio of shear stress and normal stress, o^/a^, at r= lk. It is difficult to decide the 

suitable length of lk. However, it is obvious that we should use a fixed value for lk, because a set of K, 

and Kn cannot express unique stress field around a crack tip for different lengths of lk. Rice [4] 

recommended to select the length of lk to be lum. 

1.2 Crack Kinking Angle 

He et al.[5,6] proposed the maximum energy release rate criterion for an interface crack between 

dissimilar materials. They analytically obtained the kinking angle based on this model for an interface 

crack between dissimilar materials whose Dundurs parameter ß in Eq. (2) is zero. The combination of 

materials whose ß is zero is limited to the combination of similar materials. Geubelle and KnaussW 

Ku 

Fig.l Coordinates system around an 

interface crack tip. 
Fig. 2 Definition of Y on the Kt-Kn 

field. 
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applied the maximum energy release rate criterion to an interface crack between dissimilar materials 

whose ß is not zero using the finite element method. They slightly extended the crack with different 

kinking angle, and obtained the energy release for each angle. The crack kinking angle expected by 

this theory depends on the crack extension length. 

On the other hand, Yuki and Xu [8] proposed the maximum hoop stress criterion. The distribution 

of hoop stress a6e around an interface crack as shown in Fig. 1 

^=^MMdB cos v-c sin v ] c= i> 2> 2V2nrcosh (en;) (9) 

\|/=eln(r//J (10) 

where cee, is hoop stress in the area of material j, the functions B and C are given as 

tf(e,e,y) = Wj 2cos (f + 7] - (cos 6 + 2esin e] cos [j-j) + r^cos (|e + y] (11) 

C(0,e,y) = Wj 2sin ff + yj + (cos 6 + 2esin e] sin (| - yj + -i-sin (|e + yj (12) 

They simplified Eq. (9) by assumming ^=0 because of the small value of e. 

JV + Kl 
Con; : 

2V27trcosh (ejt) 
ß(9,e,y) 

(13) 

(14) 

eln(« 

Master curve (r0= lk) 

Load Angle 

roexp(-) 

Fig. 4 Round shape mixed mode interface 

Fig. 3 Shift of the estimated kink angle with the crack specimen and kink angle. 

(t= 12mm for case 1,13mm for case 2 and 3). value of r0. 
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a6ej takes maximum value if dB 138 = 0. However, the value of *F in Eq. (10) cannot be ignored even 

if 8 is small, because the absolute value of ln(r/lk) increases with decreasing r. For example, if e= - 

0.033 and rllk= 0.001, cosY and sin^P are equal to 0.974 and 0.228 respectively. 

We modified maximum hoop stress criterion proposed by Yuuki and Xu [8]. An interface crack 

kinks out in the direction of maximum hoop stress at some fixed distance, r0, from a crack tip. The 

direction of maximum hoop stress can be obtained easily if r0= lk because *P takes zero at r= lk. 

According to this theory, the expected crack kinking angle (üam^ for r0= lk can be illustrated as 'master 

curve' in Fig. 3. The angle (ü^^ for another r0, r0= lk, can be obtained by shifting the master curve by 

Ay= -e \r\(lkllk) according to Eq. (8) as Fig. 3. 

2. MIXED MODE FRACTURE TESTS OF INTERFACE CRACKS 

Fracture tests were performed using round shapespecimens with mixed mode interface crack as 

shown in Fig. 4. Two combinations of materials, Aluminum - Epoxy resin A (Combination 1) and 

Aluminum - Epoxy resin B (Combination 2) were used for these specimens. Material properties of 

Aluminum, Epoxy resin A and Epoxy resin B are given in Table 1. A semicircular aluminum plate 

was set in a circular shape cast, then epoxy resin was pored into the cast. The cast was kept at 120*0 

for 16 hours to cure the resin. The splicing surface of an aluminum plate was roughened by a piece of 

emery paper beforehand and release agent was applied on a part of the surface for making an interface 

crack. 

Residual stress along a jointed interface is sometimes very great. We evaluated the residual 

stress by measuring the released strain, Ae,, of the end notched joint specimen at the delamination. The 

released strain, Ae,, was measured by a strain gauge attached to the surface of a specimen as shown in 

Fig. 5. The relative expansion ratio, Aßexp, between material 1 and 2 is expected by the beam theory. 

The SIF's of a round shape specimen caused by residual stress were calculated from Aßexp by the 

virtual crack extension method (VCEM) with the finite element method (FEM) which developed in 

the previous study [9]. They are indicated in Table 2 for Combination 1 and Combination 2. 

Mixed mode fracture tests were performed using the round shape specimens as shown in Fig. 4 

and a universal testing machine (Shimazu Autograph). The load angles in Fig. 4 were selected as 30 

deg., 60 deg., 90 deg., 120deg. and 150 deg. The rate of displacement was lmm/min for all cases. The 

fracture load was determined as maximum load because the fracture modes of all specimens were 

brittle. The actual SIF's at the fracture can be obtained from the fracture load and the relative expansion 

ratio, Aßexp, using the VCEM [9]. The crack kinking angle was measured as the angle of the tangent 

20  , Strain gauge 
r^ir h^.,y VHVIaWz* \, 

^ 
100    Material 1 

(mm) 
Fig. 5 End notched joint specimen for measuring residual stress. 
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Table 1    Material constants. 

Material Young's        Poisson's 
Modulus (GPa)     Ratio 

Aluminum 73.1 0.32 

Resin A 3.35 0.43 

Resin B 3.84 0.37 

Table 2  Measured released strain and stress intensity 
factors caused by residual stress (1= 10 |J,m). 

Case Aer        Aßexp K, Ku 

(|Astrain)     (%)      (MPa/m)  (MPaVm) 

Comb. 1       961       -0.105        0.214        -0.450 

Comb. 2       381      -0.0421       0.117 -0.176 
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of an extended crack at the initial crack tip in Fig. 4. The crack kinking angles measured on the both 

sides of a specimen were averaged. 

The measured crack kinking angles with the master curves and the shifted curves of expected 

crack kinking angles for the combination 1 and 2 are shown in Fig. 6 and Fig. 7 respectively. The 

master curves do not correspond well with the experimental data in both cases. However, each shifted 

curve fits the experimental data very well. The values of r0 at which the shifted curves fit the experimental 

data best are 1.4 X 10-6 um and 1.1 X 10-4 jxm respectively. These values of r0 for both combinations 

seem to be too small as real distances which characterize the crack kinking. We consider that the value 

of r0 is a kind of fitting parameter. The mixed mode fracture toughness for both combinations are 

shown in Fig. 8 and Fig. 9 respectively. The values of lk are taken as the same as the values of r0 for the 

shifted curves in Fig. 6 and Fig. 7 respectively. In these figures, Ku= 0 corresponds to the crack 

kinking angle being zero (the crack extended along the interface). The curves of the mixed mode 
fracture toughness are described by elliptical curves as 

(KjK^ + ^/K^^l (15) 

where KIC and Knc are constants for a joint system. 

3. CONCLUSION 

(1) The crack kinking angle of an interface crack between dissimilar materials is well described by 
the modified maximum hoop stress criterion. 

(2) The crack kinking angle fits well with the experimental data if the evaluation distance r0 is taken 
as an appropriate value. 

(3) The mixed mode fracture toughness of an interface crack can be described by a elliptical curve 

if the value of lk is taken as the value of r0 which describes the crack kinking angle well. 
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ABSTRACT 

The Global Crack-line Displacement Fitting Procedure [1] to extract SIFs of internal cracks is 
extended for edge crack problems in this work. In the procedure, COD data of the edge crack are 
fully used, the numerical calculation only involves the displacement fields, and the error of the 
obtained SIF can be estimated from the error information of COD data in themselves. Reliable 
and well consistent SIFs are obtained for two typical edge crack problems, the accuracy of SIFs is in 
the same order of accuracy of the COD data. 

1. INTRODUCTION 

Although 1% to 5% accuracy of stress intensity factor (SIF) obtained by currently most used 
numerical methods may not be sufficient for some problems such as numerical simulation of fatigue 
crack growth. More accurate, efficient and reliable technique is needed. Local displacement 
field procedure is based on the asymptotic analysis of the CODs near a crack tip, the accuracy and 
consistency are not good[2-4]. It is natural to think that if the SIFs are extracted from the total 
COD data, the accuracy will be much better. The examples of this kind of method are path 
independent /-integral method, energy release rate method and self-similar crack expansion method 
[5]. Cooper et al. [4] compared various methods on a set of about forty basic test problems by using 
finite element analysis. 

Recently, a new global crack-line displacement fitting procedure (GCDFP) to extract SIFs of 
internal cracks, was proposed by Li and Li [1]. In GCDFP, the total COD fields of an internal 
crack are expanded into an infinite series of Chebyshev functions of the second kind which have the 
correct asymptotic displacement behavior near both crack tips of the internal crack, and the SIFs can 
be expressed by the coefficients of the infinite series. The error of SIF is related to the errors of the 
coefficients of the series which can be obtained from the error distribution of the COD fields which 
should be known a priori for a meaningful COD data. By careful error analysis, the truncation 
number of the series can be determined by using the criterion of the minimum SIF error. The 
procedure has the following features. (1) Full COD data are used. (2) The numerical calculation 
only involves displacement fields.    (3) The post processing is simple.    (4) The procedure can be 
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easily applied to mixed mode crack problems with arbitrary crack shapes. And (5), the error of the 
calculated SIF can be estimated from the error information of COD data in themselves. Reliable, 
consistent and highly accurate SIFs are obtained for various internal crack problems. In this work, 
the GCDFP to extract internal crack SIFs is extended for edge crack problems. 

2. GCDFP FOR A STRAIGHT EDGE CRACK 
Let Av be the COD component in the y direction of a straight edge crack (0<x<a). In 

reference [1], the COD components of an internal crack have been expanded into an infinite series 
of Chebyshev functions of the second kind, which is not suitable for edge crack problems. 
According to the theory of linear elastic fracture mechanics, near the crack tip we have, 

Av(x) = HK,4x+0(xm\ H=8(l-v2)/(Ej2n),    (plain strain) (1) 

where K\ is the mode I SIF, E and v are the Young's modulus and Poisson's ratio, respectively. 

We express Av{x) as the following infinite series expansions: 

Av(z) = AV[x(z)] = YJamTm_l(z)JlTz=YjamPm(z)        z = 2x/a-I, (2) 
m=\ m=\ 

where Tm(z) = cosCmcos^z) is mth-order Chebyshev polynomial of the first kind. Note that each 
term at the right-hand side of Eq. (2) has the correct square root asymptotic behavior as x goes to 
zero.    Substituting Eq. (2) into Eq. (1) and letting x tends to zero, we obtain 

K,=h^d(-l)
m-lam, Ä = £/[4(l-v2)]V^. (3) 

The curve fitting procedure will be used to obtain the coefficients a„, in Eq. (2). In numerical 

calculation, the right-hand side of Eq. (2) must be truncated. Truncation criterion is the key point 
of this method. Suppose the infinite series in the right-hand side of Eq. (2) is truncated at m = M. 
A genuinely objective and meaningful fitting procedure should provide the criterion to determine 

the value of M, the accuracy of a„, and the consistency of the results. Suppose that we have N 

calculated values of COD fields: w„ = Av(z„). Any numerically calculated COD fields are 

certainly subject to calculation errors, let a„ be the standard deviation of w„. For a straight edge 

crack (0 < x < a), we will use the following approximate expression for a„ 

onKdljx~Ta, (4) 

where d can be chosen as the average COD error or the COD error at x = a.    Now, we fit w„(z) to 
M 

W(z;al,a2,---,aM) = YjamPm(z), 

where am m = 1,2, •••M, are the parameters that can be determined by minimizing the following 

quantity called   "chi-square" (e.g., refer to [6]) 
N 

X2  =J^[Wn-W(Z;ai>a2>--->aM)/(TnT 
n2 

The results are 
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The standard deviations of the parameters am are determined by the following relation: 

Sam=4ÖZ. (6) 
Note that Dmm are dependent on z„ , M, N, and a„ , but independent on w„.   The variance of the 
curve fitting can be expressed by 

crM=Jt[w„-W(zr,;al,a2,...,aM)f/(N-M). (7) 

Now let 

CT=-JZK-^"(^)]2/(^-I) («) 

denote the average standard deviation of the calculated COD fields, where wan(z„) is the true value 

of Av(z„).' If the value of ou is bigger than the value of a, the truncation number M should be 

increased to decrease the value of OM- It seems that the smaller the UM is, the better the effect of 
the curve fitting will be. But this is not true. Since Chebyshev polynomials are complete, OM 

may become very small as M increases for big enough N. When GM is much less than a, the 
unnecessary surplus terms only reflect the smoothing effect of the errors of the calculation data by 
the fitting procedure. The additional terms are not only unnecessary, but also will significantly 
increase the errors of Kj evaluated from Eq. (3). The determination of the truncation number M is 
the key point in the application of the GCDFP. For a given M, the conservative error estimates of 
the calculated SIF may be expressed as, 

SK, » A^UaJ + A Z(-D" (9) 

where Sam are defined by Eq. (6). It is found that the value of Sam varies very slowly with 

increasing m, but | am | decreases rapidly as m increases. As M increases the first term in the 

right-hand side of Eq. (9) will increase, but the second term in the right-hand side of Eq. (9) will 
decrease. Thus, the truncation number M may be determined by minimizing SK/ with respect to M. 

It is very important to note that the values of SKj are obtained directly from the error distribution of 
the COD fields.    This is just we wanted. 

In conclusion, the truncation number M should satisfies two conditions: <JM < crand SK/ is the 
minimum value with respect to M.    Similar discussion will be for mode II case. 

3. GCDFP FOR A CURVE EDGE CRACK 
Let s denote the arc length of a curve edge crack measured from the tip of the crack. For this 

mixed mode edge crack problem, COD components can not distinguish between modes I and II. In 
this case, instead of dealing with COD component, the amplitude square of the COD fields g(s) 

g(s) = A«2 0) + Av2 0) = H2 (K) + K\ )s + 0(s2), (10) 

is expanded into an infinite series of Chebyshev polynomial of the first kind multiplied by s: 

g{z) = g[s{z)] = firMTm(zXz + V) = firmQm(z), z = 2sla-\. (11) 
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The following analysis is similar to that in section 2, for simplicity, only main results will be 
presented. Let g(zn), «=1,2, •••, N, be the calculated values of g{z) aXz = z„, and let cr„ be the 

standard deviation of g(z„). Truncating the right-hand side of Eq. (11) at m = M and using curve- 
fitting procedure, we obtain 

= 2X i>(zja(z„)/o-; 4t=i/Eak)a(o/^ 

Letting z go to -1, we obtain from Eq. (10) and Eq. (11) 

K2 = K) +K2
U= hf^rJA-D = /£(-!)">. h = 2/(H2a). 

For a given M, the conservative error estimates ofK2 may be expressed as, 

SK2*hY\5ym\ + h Z(-D"/. 
In Eq. (14),  8y m, the standard deviations of the parameters y m , can be determined by 

The variance of the curve fitting can be expressed by 

(12) 

(13) 

(14) 

(15) 

<r„=,E{*(*„)-E rmQ^n)]}2l{N-M). (16) 
V n=l m=l 

Denote the average standard deviations of g{z„) by a which is known for a given COD fields. 
Thus, under the condition CTM< cr, the truncation number M may be determined by minimizing SK2 

in Eq. (14) with respect to M. For a given M, ym can be obtained from Eq. (12), then, K2 and the 

error estimate of SK2 can be obtained from Eqs. (13) and (14), respectively. It is very important to 
note that the values of SK2 are obtained directly from the error distribution of g{z). Notice that 

K, I Kn = lim[Aw„ (s) I Au, (s)], (17) 
s—>0 

where Au„ and Au, are the normal and tangential COD component, respectively. The value of 
right-hand side of Eq. (17) can be obtained from the COD values at crack tip element. X/and Ku 

can then be calculated from Eq. (13) (truncated at m = M) and Eq. (17). 

4. NUMERICAL EXPERIMENTS 
For all numerical    examples, v= 0.3, COD fields are obtained by t^ ^   fp 

BEM.    The crack line is discretized with N equal-sized elements. 
First, consider a problem of double edge cracks in an infinite long 

strip under tensile stress p with zero shear traction and zero normal 

displacement on the side boundaries as shown in Fig. 1.    Let AKj 2w 

denote the difference of calculated K; and K°", where Ka" is the 

analytical results of Kj which can be found in [7].    The percentage I I | 
errors of SK/K/ and AKJ/KJ as a function of element number N are 
shown in Fig. 2.    The truncation number M equals 2 for 7V=50 and 3       Fig'l' Double edge cracks 

for other element numbers.   Notice that the value of SKJ/KJ is a little larger than that of AK/Kh the 
reason is that SK/Ki is a conservative estimation of SIFs. Fig. 2 also shows that SK/Ki are uniformly 
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convergent as N increases, but the convergence is not consistent for AK/Kj. The inconsistency of 
AK/Kj takes place when the truncation number M increases from 2 to 3. The AK/Kj obtained from 
the comparison of the numerically estimated SIF with analytical result is not always reliable. 
Further more, in most practical problems, the analytical results are not available and the accuracy of 

the numerically extracted SIF results has to be estimated from the COD data. Since SK/Kj have 
been obtained from the errors of COD data only, it is of good reason to use it as the estimation of 
the calculating error. SK/Kj , the relative errors of SIFs, are 2.5% for iV=50 to 0.5% for 7V=250. 
Considering that the simplest constant elements are used in BEM, the results very satisfactory. We 
point out here, the SIF errors are in the same order of the errors of the corresponding COD data that 
are used to extract SIF. 
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Consider the case when total element number N = 250 on a crack, but only part data near the 
crack tip, Np ^N, are used in curve fitting. The relation between the calculated SIFs and Np is 
shown in Fig. 3. As anticipated, the more the COD data being used, the better the calculated SIF 
results are obtained. It is very interesting to notice that, although the meaning of the abscissa in 
Fig. 2 is totally different to that in Fig. 3, the shapes of the curves in the two figures are very similar. 

t \P 

a 
The purpose of the second example is to examine the GCDFP to 

extract SIF of a curve edge crack. Consider a circular edge crack of 

radius R and included angle 6 = 45° in a half plane subjected to a 
uniform tensile stress p with zero normal displacement and zero shear 
traction components on the surface of the half plane as shown in Fig. 4. 
First, the COD fields are obtained by using our newly developed BEM 
where the displacement and its tangential derivatives are continuous at 
points between elements, and special crack-tip element includes the 
second term of the near crack-tip COD field series expansion. With 
these measures, the accuracy of the calculated COD fields can be greatly improved. Then we use 
the GCDFP to calculate K2 as a function of truncation number M from Eq. (13). The error SK2 can 
also be calculated as a function of truncation number M in curve fitting for the calculated COD data 
from Eq. (14).    The final result of K2 is the one where SK2 is the minimum with respect to M.    Let 

R 

I       4 

Fig. 4. Arc edge crack. 
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AK = ^-(K™)2, G = Gan where G be the energy release rate. The analytical SIFs of this problem 

can be found in [8]. The percentage errors of SG/G = 8 K2/ K2 and AG/G =A K2/ K2 as a function 

of element number N are shown in Fig. 5. Since SG/G are conservative estimations of the relative 
error of G, the value of SG/G is a little larger than that of AG/G, and again SG/G are uniformly 

convergent as N increases. With K1 obtained and using Eq. (17), Ki and Kn of this problem can 

be calculated. The percentage errors of AK/Ki and AKU/Kn obtained by GCDFP as functions of 

element number N are shown in Fig. 6 . For comparison, the percentage errors of AK/Kj and 

AKi/Ku obtained by two point method, where two near crack tip COD data are used to extract SIFs, 
are also shown in Fig. 6. It is found that the errors are larger for larger N for two point method. 
The explanation is that as N increases, the average accuracy of the COD fields is better, but since 
the first two points are more close to the crack tip the accuracy of these two data are worse. The 

GCDFP does not have this kind of inconsistency. The errors of AK/K/ and AKI/KJ; by GCDFP are 
about 0.1% for 50 elements as shown in Figs. 6, which are very accurate results. 
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ABSTRACT 
In this study, to investigate and to predict the crack growth behavior under variable amplitude 

loading, crack growth tests are conducted on 7575-T6 aluminum alloy. The loading waveforms are 
generated by normal random number generator. All waveforms have same average and RMS(root 
mean square) value, but different standard deviation, which is to vary the maximum load in each 
wave. The modified Forman's equation is used as crack growth equation. Using the retardation 
coefficient D defined in the previous study, the load interaction effect is considered. The variability 
in crack growth process is described by the random variable Z that was obtained from crack growth 
tests under constant amplitude loading. From these, a statistical model is developed. The curves 
predicted by the proposed model well describe the crack growth behavior under variable amplitude 
loading and agree with experimental data. In addition, this model well predicts the variability in 
crack growth process under variable amplitude loading. 

1. INTRODUCTION 
Mechanical systems are usually subjected to variable amplitude loading. In this condition, load 

interaction or sequence effects significantly affect crack growth rates and fatigue lives. Thus, to 
predict fatigue lives more practically, a model for predicting crack growth under variable amplitude 
loading is needed. 

These models have been studied in the form of characteristic AT method [1, 2] or cycle-by-cycle 
method [3, 4, 5]. Characteristic K method ignores sequence effect and convert variable amplitude 
loading into equivalent constant amplitude loading using simple statistical parameter. Using root 
mean square (RMS) stress intensity, Barsom [1] predicted the average crack growth behavior of 
various bridge steels subjected to variable amplitude random sequence load fluctuations. Hudson 
[2] employed the Barsom's concept to predict the crack growth under flight simulation loading. 
This approach is very simple. However, when the loading history is highly uneven, the prediction is 
difficult because large peaks may delay crack growth and the sequence effects of applied cycles 
become important. 

Cycle-by-cycle methods have been proposed to consider sequence effect. Schijve [3] measured 
crack closure under flight-simulation loading and predicted crack growth based on a constant crack 
opening stress level. Johnson [4] presented a phenomenological load interaction model that 
accounted for crack growth retardation and acceleration by decreasing or increasing the effective 
stress ratio. Newman [5] developed an analytical crack closure model based on the Dugdale model 
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[6] that left plastically deformed material along the crack surfaces as the crack advances. These 
models produce better results than the above-mentioned characteristic K methods, but are difficult 
to apply and sensitive to stress state. 

By the way, it has been reported that crack growth rates have a considerable amount of scatter 
despite same loading condition. Bogdanoff and Kozin used a discrete state-discrete time Markov 
process for modeling the uncertainties in crack growth [7, 8]. Yang [9], Lin [10], and Ortiz [11, 12] 
employed the appropriate crack growth equation based on LEFM that had the scatter parameter to 
randomize crack growth process. These approaches were applied to crack growth under constant 
amplitude loading but scarcely variable amplitude loading. 

This paper presents a new approach for predicting crack growth behavior and fatigue lives under 
variable amplitude loading that can consider load sequence effect as well as the variability of crack 
growth rates. 

2. EXPERIMENTAL PROCEDURE 
The material used in this experiment was a high strength aluminum alloy 7075-T6. The type of 

specimen was compact tension (CT) with a width W of 50.8 mm and the thickness B was 9.8 mm. 
Specimens were machined in the L-T orientation. The loading waveforms are generated by normal 
random number generator proposed by Box and Müller [13]. Figure 1 shows the constructed 
waveforms. As shown in Table 1, all waveforms have 10,000 reversals, and same average and RMS 
value, but different standard deviation, which is to vary the maximum load in each wave. 

By applying the same waveform repeatedly, crack growth tests were performed until a preset 
crack was reached. During the tests, the crack length was monitored continuously by the image 
analyzer, and test data were automatically recorded in the PC as the crack increased by 0.2 mm. 
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Fig. 1.    Wave forms 

(c)RNC 

Table 1 The probabilistic properties of wave forms 
Wave Average (N) RMS(N) Standard deviation (N) Maximum load (N) 
RNA 1797 1865 500 3569 
RNB 1799 1843 400 3122 
RNC 1807 1824 245 2655 

3. RESULTS AND DISCUSSION 
3. 1. Crack growth behavior 

Figures 2 (a), (b) and (c) show a-Nr (a : crack length, Nr : number of reversals ) curves under 
RNA, RNB and RNC, respectively. In each Figure, crack growth curves have much variation 
despite the same loading condition because the variability due to the uncertainties in crack growth 
process also exists in variable amplitude loading condition. In addition, dot line and dashed line are 
the predictions by root mean square value and the Miner's rule, respectively. These lines do not 
describe the variability and also deviate from experimental data. The difference between 
experimental data and predictions is the largest in RNA and the smallest in RNC. This implies that 
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the maximum load in variable amplitude load produces a strong sequence effect as Dominguez [14] 
reported. Since the higher the overload, the longer the crack growth retardation remains in effect, 
crack grows slowly in RNA that the maximum load is the highest in three waveforms. Thus, in 
order to predict crack growth under variable amplitude loading practically, the prediction model is 
to consider the retardation behavior by overloads as well as the variability in crack growth process. 

3x10 

(a) RNA (b) RNB (c) RNC 
Fig. 2. a-Nr curves under variable amplitude loading 

3. 2. Crack growth retardation model 
Well-known retardation models were presented by Elber, Wheeler and Willenborg. These 

models have some difficulties in applying to crack growth under variable amplitude loading. In the 
case of Elber's model, measuring the opening stress under variable amplitude loading is very 
difficult and determining the opening stress level is not clear. The retardation parameter in the 
Wheeler's model must be newly determined by experiment if load spectrum is changed. The 
Willenborg's model can not describe the delayed retardation. 

In the previous study [15, 16], we proposed a retardation model that can predict the retardation 
behavior including the delayed retardation. This model is very simple and well describes the 
macroscopic mechanism of retardation. In this model, the retardation behavior is described by the 
coefficient  D as follows : 

D = \og(da I dN)ca I \og{da I dN\ retard (i) 

where (da/dN)ca is the crack growth rate under constant load and {da/dN)retard is that after an 

overload,  a is a crack length and N is the number of cycles and equals to N/2. 
Outside the overload affected zone, the retardation does not occur. Retardation coefficient  D is, 

thus, equal to 1 when  a < aol{l) or a > aold(j).  aol(j^ is the initial crack length at which an overload 

Polu) is applied.  aold{i) is the crack length at which crack growth rate reaches the pre-overload 

steady-state. Inside the overload affected zone, retardation coefficient D < 1. The crack growth rate 
linearly decreases after the overload and reaches its minimum after the crack has grown a distance 
by ao/mjn(/) • Then, crack growth rate increases up to the pre-overload steady-state value. According 

to the retardation behavior, the retardation coefficient D can be formulated as follows : 

£> = — (a-aol0)) + l (aol(i)^a-aolmm(i)) (2a) 

D ~ DolmmU) + 0-     A>/min(/))l * 
^ aold(i)     aolmm(i) ) 

K/min(/)^tf^fl
0y(;)) (2b) 
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aMU) is usually written as  aol{j) + yol(j).  yot{i) is the plastic zone size induced by an overload. 

Yoi(i)=^lß^){KoKl)laJ (3) 

where, KoHn is the stress intensity factor by the overload Pol(j), and ays is the yield strength. 

The thickness of specimen used in this experiment is 9.8 mm and plane strain state prevails, ß 
experimentally determined in the previous study equals to 2.5, because the surface of specimen 
significantly affects the retardation. 

Vardar and Yildirim [17] observed that the maximum retardation occurs at 0.24 x plastic zone 
size (o0/min(/) =aoiu) +0-24?'o/(/)) f°r 7075-T6 aluminum alloy. The lowest retardation coefficient 

D o/min(/) can be formulated as a function of the overload ratio. [15] 

ö0,mi„(,)= 1.0325 0.0029(%OI) 

%ai = ((p0/(,,-Jp(/))/p(1))xioo 
(4) 

(5) 

The retardation by an overload  PoW) continues until  ao/(;+1) + y0i(M) > aol + yol(i). 

Figures 3 (a), (b) and (c) show the change of retardation coefficient D in RNA, RNB and RNC, 
respectively. As shown in these Figures, the retardation coefficient D changes with the load 
fluctuation. The higher maximum load becomes, the larger crack growth retardes and the lower the 
retardation coefficient D becomes. The retardation coefficient D has the lowest value in RNA 
that the maximum load is the highest, and is closer to 1 in RNC that the maximum load is the lowest, 
because  Do/mjnl/) approximates tol as the maximum load is close to the mean load. 
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Fig. 3. The changes of retardation coefficient under variable amplitude loading 

3. 3. Crack growth prediction 
Generally, crack growth rates have been formulated from the logarithmic relationship between 

da IdN and AK. Since crack growth behavior exhibits the sigmoidal daldN - AK relationship 
and has much dispersion, we modified the Forman's crack growth equation as follows [16]: 

C(AK-K0Y da 
dN~    ' (1 - R)KC ■AK 

(6) 

where. C and m are the material constants. K0 is an initial stress intensity factor and crack 

growth does not occur below this value. Kc is the critical stress intensity factor at which the 
fracture occurs.   R is the stress ratio.  Z is the random variable describing the variablity of crack 
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growth rates and is calculated from the variance of logZ. logZ  is stationary and a normal 
random variable with zero mean and the variance of log Z depends on the thickness of specimen. 

a2togz=p-Bq (7) 

where,  p and q is the material constants. For aluminum alloy 7075-T6 p =0.0143 and q=- 

0.792. 
Applying the lognormal model to equation (6), the distribution of retardation cycles can be 

obtained. The y percentile of Z can be as follows : 

■ = l-o[(logZr-///logZ)/fflogZJ = l-0)[logZ,/(TlogZJ (8) 

where  cr]0„z is the standard deviation of logZ and /ilogZ is the mean of logZ.  O is the normal 

distribution function. Inverting equation (8),  Zr are given as follows : 

Z  =10 <W*   [l-?0 (9) 

Substituting equation (9) into equation (6) and using the definition of D, the distribution of 
retardation cycles can be obtained. 

N=I: 
J_  (l-R)Kc-AK^ 

KZr'c(AK-AK0)
m 

da (10) 

Obtaining Zr every 5%, a-Nr curves are simulated as shown in Figure 4. The correlation 
between the simulation and the experimental data (Fig. 2) is quite reasonable. Thus, it can be said 
that the variability in crack growth under variable amplitude loading can be predicted by the 
probabilistic characteristics of random variable Z obtained from crack growth test under constant 
amplitude load, and the retardation behavior can be well described by the coefficient  D. 
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(a) RNA (b) RNB (c) RNC 
Fig. 4. a-Nr curves simulated by the proposed statistical model 

By drawing a horizontal line through the particular crack size in Figure 4, the distribution of fatigue 
lives can be obtained as shown in Figure 5. The fatigue lives in this study are the reversals when 
crack reaches to 30 mm. The predicted lines have good agreement with the experimental data in all 
waveforms. Therefore, it can be concluded that the fatigue lives under variable amplitude loading 
are well predicted by the proposed model. 
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4. CONCLUSIONS 
To investigate the crack growth behavior under 

variable amplitude loading, crack growth tests were 
conducted on 7575-T6 aluminum alloy. Based on 
the experimental results, a statistical model was 
developed to predict crack growth behavior and 
fatigue life including the variability of crack growth. 
The curves predicted by the proposed model were 
compared with the experimental data. From these 
the following conclusions have been drawn. 
(1) Fatigue crack growth behavior under variable 
amplitude loading is dominiantly affected by the 
maximum load and have much scatter in a-Nr 

curves despite the same wave form. 
(2) Tensile overload forms a large plastic zone and 
affects the following small amplitude load, which 
can   be    well    formulated   by   the   retardation 

coefficient D that is obtained from the crack growth test under single tensile overload. 
(3) By using the probabilistic characteristics of random variable Z obtained from crack growth test 
under constant amplitude load, the variation of crack growth under variable amplitude loading can 
predicted. The predicted results show good agreements with experimental results. 
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ABSTRACT 

The continuous conditions of displacements and its tangential derivatives at regular inter-element 
points are automatically satisfied with single-node quadratic element (SNQE). Special crack-tip 
SNQE includes the second term of the asymptotic series expansion of the near crack-tip 
displacement fields. If an inter-element point is a corner point, the multi-valued tractions can be 
modeled appropriately. For a straight crack under tension, the relative crack opening displacement 
(COD) error at the center of the crack is only 0.01% for 20 SNQEs. Highly accurate results are 
also obtained for other numerical tests. 

1. INTRODUCTION 

More accurate and efficient technique is needed for solving crack problems such as numerical 
simulation of fatigue crack growth. The boundary integral equation itself is a statement of the 
exact solution to the problem posed, errors are due to discretization and numerical approximations. 
If the numerical integration procedure is made sufficiently sophisticated, then errors so introduced 
can be very small. Much attention has been paid to the smoothness requirements of shape 
functions. In general BEM, piecewise continuous Lagrangian shape functions are used, which 
enforce only displacement continuity between elements (C° continuity) with no consideration given 
to the tangential derivative continuity of displacement (C1 continuity). Various cubic shape 
functions with C1 continuity have been proposed [1-3], the accuracy can be improved, however, they 
are computationally expensive. 

A single-node quadratic element (SNQE) is proposed in this work. By using SNQE, the C1 

continuity conditions at regular inter-element points are automatically satisfied. The singular 
behaviors of displacement and traction fields near a crack-tip are carefully modeled by including the 
second term of the asymptotic series expansion of the near crack-tip displacement fields. 
Considering the fact that the continuity order of the displacement fields is higher than that of the 
traction fields by one, quadratic elements are used for displacement fields but linear element are 
used for traction fields. Since there is only one node in one SNQE, the programming is greatly 
simplified. The numerical tests are taken for problems of internal single straight cracks, curve 
cracks, and edge cracks.    Highly accurate results are obtained by using SNQEs.    In the test of a 
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single straight crack subjected to uniform tension in an infinite plane, the relative COD error at the 
center of the crack is only 0.01% for 20 SNQEs and 0.003% for 100 SNQEs, respectively. Highly 
accurate results are also obtained for other numerical tests. The consistency is very good for all 
tests. 

2. BOUNDARY INTEGRAL EQUATIONS FOR CRACK ANALYSIS 

Let S be the boundary of an elastic body V and ny- the outward normal components of S. The 
displacement and stress components, u,{g) and a^q), are continuous if q is an inner point of V. 
Note that in the limiting process when q tends to Q, where Q is a point on S, Uj{Q) is continuous, but 
°"(/(ß) (or displacement gradients) may be or they may not be continuous depending on the boundary 
conditions at Q. If the boundary is not locally smooth at point Q, the traction at Q will be multi- 
valued. In the following, Q is called regular if it is locally smooth and du,{Q)/dS are continuous, 
otherwise it is called irregular. The examples of irregular boundary points are crack-tips, crack 
kinks and corners.    The displacement boundary integral equations can be expressed by [4] 

cki(P)u,(P)+ iTk,(P,Q)u,(Q)]ds(Q) = [Uki(P,Q)t,{Q)ds{Q),      P eS, (1) 

where r, are traction components, Uki and Tki are displacement and traction fundamental solutions, 
respectively, J stands for the Cauchy principal-value integral, cki(P)=0.5Ski if P is regular. If COD 
is used as field variable, the following traction boundary integral equations should be used 

tiP) = jsFik{P,Q)^^tds{Q), (2) 

where Aw, are the COD components, Fik is the integral kernel with Cauchy singularity [4] 

3. SINGLE-NODE QUADRATIC ELEMENT FOR REGULAR BOUNDARY 

Suppose that both the geometry and boundary field variables are described by piecewise 
continuous shape functions, and collocation is always performed with the source point at the 
boundary element nodes. The conditions of the existence of the Cauchy principal-value integrals 
require that tk in Eq.l or dAui/ds in Eq.2 are continuous. With usual Lagrangian quadratic shape 
functions, the continuity requirements at inter-element points for w; are satisfied, but they are 
generally not satisfied for dui/ds (or dAui/ds). A single-node quadratic element (SNQE) is 
proposed in this section. An important advantage of SNQE is that C1 continuity conditions at 
regular inter-element points are automatically satisfied. Moreover, various kinds of physical 
conditions at irregular points such as crack-tips or corners, can be modeled properly. With the use 
of SNQE, the accuracy of numerical calculations can be highly improved. 

Let the surface S be divided into N elements, xf1, xf and xf2 be the coordinates at the 

beginning, middle and ending point of the fth element, respectively, and £be the natural coordinate, 
-1 =% £ ^ 1.    The geometry of the ßb. element is represented as 

x, (0 = j#£-l)x/" + (l-£2)xf +I^+l)xf2, (3) 

but the displacement fields of the ßh element are approximated by 

«, (Ö = *(„ (£)«," + *(0, (Qcf + *m (£)uf2, (4) 
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where  uf] and  uf2 are displacements at xf1, and xf2, respectively, while cf is introduced as an 

auxiliary quantity of the ßh. element.    Shape functions 0O (£) are of the following form: 

^(^0.25^-D2;      40)(£) = 0.5(l-£2);      ^2)(£) = 0.25(£ + l)2, (5) 

If the point between ßh and (/?-l)th element is regular, by using Eq.4 and the continuous conditions 

of«, and dujds we obtain ' 

u\ß-x)2=u?>=aßc?-'+bßc?, (6) 

aß=Jß(rWM® + Jf<rVi\>      bß = J ß~\-\) l[J ßA {\) + J ß (\)] (7) 

where f{£) is the Jacobian dsldE, of the /nth element.    Substitution of Eq.6 into Eq.4 yields 

«, (3 = /0) i&r + /<„> (öcf + /(2) (^)cf+1, (9) 

where the shape functions are given by 

/(„(£) = «%)(£, fmtä = bßtW(& + tmtä+°P*%)tä> /(2)(3=^+V(2)(£)    (10a,b,c) 

Since the displacement fields are expressed by parameters c,°, only one node is needed in an 

element, generally, the mid-point of an element is selected as the node. Since the node is an 
internal point of the element, the continuity requirements of the Cauchy principal-value integral and 
the smoothness of the geometry at the collocation point are satisfied. 

4. CORNER SNQE 

Consider a rectangle corner , C, as shown in Fig. 1.    The displacements w* at C are continuous, 
but the tractions tt at C are multi-valued.    It is reasonable to assume that the stresses are continuous 

at C, but   stress   symmetry   may be lost, i.e. an 
and a?; may not be equal.    Notice that |2      (m+1)    1» C 

*r=ff„(C),    t; = *l2(C), 
tr=a2l(C), C'=cr22(C). X2\ 

By using Hooke's law, the following relationships 

21 

2 

On) 
1 

between the normal traction components and the 
displacement components at C can be established: Fig. 1    Corner elements. 

uf = Wl
(m+1)1 = <+1 - pm+lt?+l + qm+1t?, (11) 

uf = ^m+1)1 = c2
m -pmt™ + qmt^x, (12) 

where 

pm=Jm(l)vl/El;   q
m=Jm(\)IEx;  p

m+l = Jm+1(-l)v,/£,;   qm+] = Jm+\-\)IEx,     (13a,b,c,d) 

where E{ = E/(l-v2),vl = vl(\-v),E is Young's modulus, vis Poisson's ratio of the elastic body. 
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{m) pM+1) 
5. CRACK SNQE 

Let the tip of a crack be located at the left end of mXh. 

element as shown in Fig. 2, thus A«™1 =0.    Special 

crack-tip element that correctly represents the asymptotic 

behavior to the second term of the series expansion of the 

COD fields can be expressed as 

AM/(£) = AC;"V^TT + a,.(£ + l)3 

The continuous conditions of Aut and d(Aui)/ds at the right end of the crack-tip element lead to 

Fig. 2   Crack-tip elements 

(14) 

AM," 
m2  _   A    (m+l)l  _    jm+\ ■■ Au, = Am+l Ac1" + Bm^ Acm+\ 

where   /T+1 = 2V2>'+,(-l)/[3/m+,(-l) + 4Jm(l)];   Bm+[ = 4Jm(l)/[3J"'+,(-l) + 4/m(l)]. 

in crack-tip element, we have 

Au, (<T) = [V?TT + (-±= Am+1 -i)(£ +l)3'2]Ac,m + -±= Bm+< (£ +1)3/2 AC,m+1, 

and in (m+l)th element (near crack-tip element), we have 

Au, (<f) = Am+,0{l)Ac? +[5m+V(1) +4>m +am+2</,(2)]Acr' +r+V(2)AC,m+2. 

(15) 

Thus, 

(16) 

(17) 

0.40- 

* Solid line: 20 SNQE elements 
° Solid line: 100 SNQE elements 
Dashed line: 500 constant elements 

6. NUMERICAL EXPERIMENTS 

The following numerical experiments will show the high accuracy by using SNQE for various 

crack problems. Eq.l will be used in examples 1 and 2, while Eq.2 will be used in example 3. 

For all examples, Poisson's ratio v= 0.3. 

Example 1. A straight crack of length 

2a on the x/-axis in an infinite plane 

under uniform tensile stress a acting on 

the crack line. The analytical COD 

solution      of      the      problem      is: 

AM2(x1) = [4(l-v2)/£]craA/l-x1
2/a2 . 

The distributions of percentage errors of 

CODs calculated by BEM with 500 

constant elements, 20 SNQEs and 100 

SNQEs are shown in Fig. 3. The 

percentage COD error at the mid-point 

of the crack is: 0.018% for 500 constant 

elements; 0.011% for 20 SNQEs and 

0.0026% for 100 SNQEs. The 

percentage    COD    error    at the node 

0.60- 
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Fig.3. Relative COD errors of a straight crack. 
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closest to the crack-tip for 100 SNQE (xi/a=0.98) is 0.52%, in contrast, it is 1.65% at the same place 
(xi/a=0.98) for 500 constant elements. The accuracy by using SNQE is very high. It is also noted 
that the errors are very smooth except for the two nodes nearest to the crack tips. 

Example 2.    A circular arc crack with radius R and included angle 2 6 in an infinite plane under 

a remote uniform uniaxial tension a.    The configuration is shown in Fig. 4. 

t 
a 

_t 

I        J \ 
a 

Fig. 4    A circular arc crack under tension 

>X; 

Y I I 
Fig. 5.    Double edge cracks under tension 

We have not found the analytical expressions of COD fields for this problem, but the analytical 
stress intensity factors of this problem can be found in [5]. The COD fields of the problem is 
calculated by BEM with 100 SNQEs, then the stress intensity factors (SIFs) are extracted through 
global crack-line displacement fitting procedure (GCDFP) developed by Li and Li [6]. All the 
COD data are used to extract SIFs in GCDFP and the errors of SIFs are in the same order of the 
average error of COD data. The numerical results of SIFs of the crack problem are shown in Table 
I for ^varying from 15° to 90°.    The highest error of all cases is only 0.1333%. 

Table I. Comparison of calculated SIFs using SNQE of arc cracks under remote tensile 
stress with analytical results. 

6 Ki Theory K\ %error Kn Theory K\\ %error 
15 0.478638 0.478826 0.0394 0.129422 0.129443 0.0162 
30 0.550022 0.550062 0.0072 0.329961 0.330401 0.1333 
45 0.457249 0.457370 0.0264 0.511221 0.511246 0.0048 
60 0.261771 0.261926 0.0594 0.616975 0.616526 0.0729 
75 0.030058 0.030045 0.0435 0.621038 0.621354 0.0520 
90 -0.176574 -0.176574 0.0114 0.529678 0.530330 0.1245 

Example 3. Double edge cracks in a rectangular plate under tension a. The crack length is a, 
the width and height of the plate are 2w and 2h, respectively, the configuration is shown in Fig.5. 
There are no analytical solutions available for this problem. The approximate closed form solution 
for h/w>3 was given by Nisitani [7] 

u2(Xl) = wf {1 + (0.407d-0.959)x + (0.450J-0.528)x2 -(0.857d-0.487)*3}1 

Where x = a-x\t d = a/w,  u^ is the displacement of W2 at the mouth of the edge crack: 

(18) 

wf / a = 2(1 - v)(1.458 - 0.308J + 0.985J2 - 1.869c/3 + 2.009J4), (19) 
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The accuracy of Eq.19 was claimed by Nisitani [7] to be +0.3% for a/w ^0.8. In numerical 
calculation, by taking the advantage of symmetry only one-fourth of the plate (h/w =4) is used. 
Eqs.l 1 and 12 is applied at the corners. There are 60 equally sized SNQE elements on the bottom 
boundary OA. The distribution of COD (= 2«2) of the edge crack for a/w = 0.5 is shown in Fig. 6. 
It is noted that our numerical results are a little bit different from the results from Eq.18 (the 
maximum relative difference is about 1%), but the agreement at the mouth of the edge crack is 

much better. COD (= 2 w2
M) at the mouth of the edge crack as a function of a/w is shown in Fig. 7. 

The relative errors of COD at crack mouth for all a/w =S0.8 are less than 0.3% compared with the 
results from Eq.19. 

jo   0.60- £ 1.00- 
ü Solid line : Calcuted Results 3 
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s 

Solid line: Calculated results/ 
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"O 
LU a/w= =0.5 ^ Q 

0.80- / 
<o cs / 

■%   0.40- u / 
o 
Q to 0.60- / 
M— T3 
o W / 
O _u / 
O S 0.40- jf 

O   0.20- 3 y 
O "o Q / 

o 'S 0.20- / "5 
J3i Q . / 

O 
to   o 00- t_) 
5    '   0. 

i     ' 

30     0.10 
i 

0.20 
i 

0.30 
i 

0.40 
I 

0.50 
u-uu        '     I     '     I     '     I   ■■'—\—'—l 

0.00     0.20     0.40     0.60     0.80     1.C 
X1 

/w a/w 

Fig. 6. Distribution of COD on the edge 
crack for a/w = 0.5 

Fig. 7. Edge crack mouth COD as a 
function of a/w. 
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ABSTRACT 

Interaction of multiple axial pre-cracks in a pressurized fuselage was investigated using a 
small-scale model of an idealized fuselage. The strain between multiple cracks under rapidly crack 
propagation was measured. The recorded crack velocities justified the use of a successive finite 
element analysis with large shell deformation. The experimental results of a rupturing model 
fuselage represented the variations in the mixed mode stress intensity factors Ki and Kn and the 
remote stress components CTOX with crack extension. The crack kinking location, kinking angle and 
the off-axis crack trajectory are predicted by numerical analysis and the validity of the calculated 
results is discussed in comparison with the experimental data. 

1. INTRODUCTION 

The tear strap as stiffening plate on aircraft space shuttle fuselage structure has important 
significance to stop the fatigue crack progress loaded by high-pressure in long time. When the 
crack growth of a crack tip reaches nearly the tear strap, crack flapping and kinking will occur. 
The elucidation of this phenomenon in the fuselage structure is important to establish the design 
criterion considering curvature condition of the crack tip [1-6]. However, to decide an optimum 
fuselage structure, we have sufficiently to open the behavior on crack growth and curvature in 
having the multi-cracks for the fuselage structure, and analyze design conditions influenced that 
stress intensity factor Kj, Kn and crack curvature standard, progress direction of each crack. The 
multi-crack progress of the crack and curvature of the crack by tear strap and the interference 
between cracks also should be estimated. In this study, the main approach is to consider crack 
growth and curvature in pressurized fuselage structure with the axial multi-crack by an 
experimental technology and a numerical analysis method. 
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2. BASIC THEORY OF CRACK KINKING 
The crack kinking criterion predicts a positive 9C for a negative Kn or a negative 0C for a 

positive Kn. Without Kn, however, the Erdogan-Sih [7] criterion predicts a self-similar crack 
propagation or 0C=O and fails to explain the physically observed crack instability where crack 
kinking takes place in a pure K: field. The static elastic crack-kinking criterion, incorporates the 
second order term in the stress field of the crack tip, or its dynamic counterpart predicts such crack 
kinking and these agrees well with the available experimental data. In the following, a brief account 

of a mode II extension of this crack kinking theory is given. The mixed mode, elastic crack tip 
stress field near a crack tip under mode   I + II  loading is given by 

K, (1 + sin 2 —) + -K„ sin 0 - 2K„ tan — 

K,cosI—--K„sm0   + —^(1 -cos 20) 

Tr„ = —?L=cos —[K, sin 0 + K„ (3 cos 0 -1)]- ^sin 20 
2-j2itr        2 2 

<■ r$ 

+ —^(1 + cos 26») 

(1) 

where, aox is the second order term and is commonly referred to as the remote stress component. 
The maximum circumferential stress criterion is then used to derive a mixed mode crack 

extension criterion by assuming that fracture will occur when the maximum circumferential stress is 
equal to the equivalent circumferential stress of a mode I crack. Thus, the mixed mode crack- 
kinking criterion is given by 

K1C =K,cos3—- 3KJJ cos2 —sin — + -—-cr0x (1 - cos 20 c) (2) 

Equation (2) which incorporates the second order term into the Erdogan-Sih criterion can be 
satisfied by a proper combination of non-vanishing KISKn,CTox and 0C, or K^K,,. and 0C=O. The 
latter provide a self-similar crack extension criterion that will be used here. Otherwise, an off-axis 
crack extension always occurs when Eq. (2) is satisfied. The crack-kinking angle can be obtained by 
maximizing the crack tip circumferential stress and results in the following transcendental equation: 

K, 

. 0C -sin — 
 2 

(3COS&-1) 

-      ft 2cos— 
2 

16V27I- 
A cos ft (3) 

(4) 

where, A is related to the critical distance rc, from the crack tip and is proportional to the 
nonsingular stress 0OX For the stress field of a pure mode I at a crack tip, Ramulu[8] et al. have 
Eq.(3) shown that rc is a material dependent parameter which must be determined experimentally. 
Thus, dose not like the crack-kinking criterion represented by Erdogan-Sih [7]. 

K, sin 9C + KUQ cos Bc -1) = 0 (5) 
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The crack kinking angle computed by Eq. (3) incorporates the second order term and represents a 
mixed-mode extension of the crack kinking criterion of Ramulu[8] et al and Streit[9] et al. 

The crack kinking angle 0C, increase with increasing crox. Where a negative crox tends to stabilize 
the crack path. After kinking under mixed mode loading, i.e. Kl and KD crack tip loading, the 
crack could propagate under a pure mode I loading due to the lack of a constraining stringer. By 
setting 0=0 and K„=0 in Eq.(3), the critical distance rc where the maximum stress deviate from the 
position of symmetry, can be derived as eq. (6) and eq. (7) 

'"o 128^- 
'II. <rr (6) 

6r = cos 

/1+1024«r   aox.}2 
9      ' Ki 

S\2w   (J0x   2 
9       K, 

(7) 

Equation (1) shows that the maximum oee in the two parameter crack stress representation does 
not have to be at 0=0 when r0> rc However, the kinking criterion was triggered only when r0<rc. 

The crack curving angle, 0C can be obtained by setting Kn=0 in Eq.(3). The development of a 
flap and the constraints due to the presence of a tear strap and a frame most likely will reduce the 
dominant K , during the crack curving process and will result in crack arrest. On the other hand, 
Kj and the possible Kn could be elevated by the presence of MSD. The effect of MSD obviously 
is to promote self-similar crack extension, as seen in the NTSB report (1989), and can be 
incorporated into this analysis by artificially increasing Kt by a magnification factor which 
represents the interaction effect between the axial crack and the small crack emanating from an 
adjacent fastener hole. 

3.   EXPERIMENTAL METHOD AND TEST MODEL 
The test specimen consisted of a pressurized thin 2024-T3 aluminum cylinder of diameter 

D=360mm, length L=914mm, thickness t=0.3mm and two riveted and bonded lap or butt joints. 
This assembly represents the diameter-to-length ratio of a typical passenger plane. And, two sub 
cracks were made for the main crack and the right and left in stringer vicinity of this test-piece. 
The crack conducted the sealing by crack board from the back surface. Strain gauges with 8 points 
were bonded together along the progress direction of the crack. A High-speed camera 
(FASTCAM ultra UV) is used to present the nonlinear behavior of the crack growth and the 
progress vicinity of the crack by the photographs. 

SEC 8-B Unlt:mm 

i  Tear Strap -  

Pre-Crack   4^ 
87    6         1 la 3 

/'r 
f 

. -Stringer r—y 

11 I 
1111 

Fig.l Small-scale fuselage specimen. 

Strain Gages 

Fig.2 Setup of strain gages. 
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4.   APPROACH OF SIMULATION 
To understand the propagating behavior or axial multi-cracks turning propagating along tear 

strap under high-pressure with axial pre-cracks in a fuselage were investigated using a small-scale 
model. The strain behavior of multiple crack tips under rapidly crack propagation at high pressure 
was measured by strain gages. The crack velocities calculated that use of a finite element method 
for analyzing large deformation and elasto-dynamic behavior of the shell. The simulation results 
from the crack of the fuselage were calculated the variation stress intensity factors K1 

mixed mode and the remote stress component oox, with cracks extension. 
Kn in the 
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Fig.3    Loading variation in fuselage. 
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Fig.4   Model of the fuselage. 

In order to understand the propagation behavior of multi-cracks along the tear strap and a 
numerical analysis based on the elasto-dynamic theory considered with large deformation of a shell 
structure is carried out, and is developed by authors [10]. The crack kinking location, kinking 
angles and the off-axis crack trajectories were predicted by the numerical analysis, and the validity 
of the calculated results is compared with the experimental results. It was good agreement between 
the predicted and measured crack kinking angles and the subsequent self-similar crack extension 
were demonstrated. 

5.   RESULTS OF NUMERICAL SIMULATION AND EXPERIMENTS 
The measured strains on the strain gage No.l, No.2, No.6 and No.7 where near the crack tip are 

shown in Fig. 5. Also, shown is the strains obtained by the finite element analysis. As seen from 
Fig.5 (a)-(d), this low crack velocity justified the use of the static stress field in the crack tip to 
extract the variation stress intensity factors K„ K„ in the mixed mode and the remote stress 
components a0x with crack extension. The calculated strain at the crack tips based on FE analysis 
also is in good agreement with the experimental data. Table 1 shown the crack kinking angles on 
some measured points and compared with the experimental data to verify the simulated results by a 
FE analysis. These results show that the proposed crack kinking criterion is a good prediction. 

Table 1    Crack kinking angles 
Gage No. 1 2 3 6 7 8 
Kinking   angle   [deg] 
(Computed) 

16.7 29.4 32.6 19.3 17.9 29.6 

Kinking   angle   [deg] 
(Measured) 

19.0 37.5 35.0 14.5 18.5 28 
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Fig. 5 Strain responses on the strain gages 

Table 2    Computed results of K, and K„ 
Gage No. 1 3 4 5 6 
K, [MpaVST] 95.0 126.1 155.0 157.0 92.6 
K„ [Mpa -i/m" ] -14.7 -68.9 25.2 -22.3 -16.8 

Fig. 6 Deformation of fuselage with variation of loading. 

Table 2 denotes predictor the mixed mode stress intensity factors, K, and K„ based on the FE 
analysis. Because the stress intensity factors K, in the mixed mode of the main crack tip is larger 
than the sub-crack, the presented results show the mechanical behavior of crack kinking under a 
high strain rate. The main crack was propagated towardly to the sub-crack. Figure 6 shows the 
evolution of cracks kinking based on the FE analysis. The angles of multi-crack tips described by 
the mode of deformation also can be verified by the experimental data. The fig. 7 shown the crack 
growth behavior which taken from a high-speed camera. From these photographs, we can know 
that progress of crack growth is to begin from the main crack, and the results are good agreement 
with the numerical analysis shown in Fig.5. When the main crack connected with sub-crack of the 
left side, the crack growth of the longer crack will begins on changed direction of crack kinking to 
right side of the fuselage. From these results, we verified that the simulation method proposed by 
authors[10] is effectively. 
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Tear Strap 

0.9msec 1.6msec 2.0msec 

2.8msec 3.2msec 3.8msec 4.0msec 
Fig. 7 High Speed Photographs of a rupturing small-scale fuselage 

6. CONCLUSION 
In this research, we obtain the some useful comments and conclusions as followings: 

(1) the proposed simulation method is effective, in order to axially analyze crack arrest function 
oftear strap in the pressurization fuselage with the multi-crack. 

(2) in the numerical analysis model, which utilizes the large deformation theory and elasto- 
dynamic finite element method, was effectively used to describe the mechanical behavior of 
crack kinking in the presence of multi-cracks and arrest at a tear strap in the pressurized 
fuselage. 
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ABSTRACT 

A center-cracked plate with a patch bonded on one side is treated with a crack-bridging model: 
assuming continuous distribution of springs acting between crack surfaces. Adopting weight 
function method, the stress intensity factor for the patched crack within infinite plate is successfully 
obtained by numerical calculation. When the crack length a is very small, the reduction in stress 
intensity factor was mainly due to the stress reduction from er„ to a0 which was calculated in the 
case of uncracked plate. As the crack length a increases, the restraint on the relative displacement of 
the crack faces for a given value Ob became increased. The constant relative displacement (or crack 
surface displacement) did explain the reason for the constant stress intensity factors being 
independent to the crack length. 

1. INTRODUCTION 

The use of adhesive bonding as a joining method in aircraft structure is an accepted means of 
attaining high structural efficiency and improved fatigue life. Especially, the development of high- 
strength fibers and adhesives has made it possible to repair cracked metallic plates by bonding 
reinforcing patches to the plate over the crack. However, in order to evaluate the remaining service 
life of those structure, it is necessary to find damage tolerant criteria and to establish an allowable 
design stress for limiting the amount of slow fatigue crack growth. The linear elastic fracture 
mechanics approach has been successfully used to predict crack growth in the reinforced metallic 
plates[l,2]. Rose[3] showed that for a center-cracked plate bonded to an uncracked reinforcing 
plate, the stress intensity factor did not increase infinitely with increasing crack length, as it would 
if there was no reinforcement. He also explained that the reason for this asymptotic behavior was 
due to the crack-bridging mechanism of the reinforcing patches, such that the applied load could be 
fully transmitted across the crack with only a finite relative displacement between the crack faces. 
The reinforcement mechanisms, i.e. crack-bridging mechanism, for cracks in solids or structures 
can be modeled by a continuous distribution of springs acting between the crack faces [4,5]. These 
springs may be linear or nonlinear and they may be distributed across the whole or only part of the 
crack faces. Meanwhile, it is not easy to obtain the stress intensity factor for the through-thickness 
cracks with or without reinforcing patches, especially in a finite body. However, the weight function 
method proposed by Bueckner [6] and Rice [7] has proved to be a very useful and versatile method 
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of calculating stress intensity factors for cracks subjected to non-uniform stress fields such as 
residual stress or thermal loading. In this study, the stress intensity factor for a center crack with a 
patch bonded on one side in an infinite plate is calculated by using a weight function. 

2. BASIC PROBLEM FORMULATION 

The problem being considered is an infinite center-cracked plate, with crack length 2a under a 
remote uniform tensile stress an repaired by a bonded reinforcement as shown in Fig. 1(a) and (b). 
The problem is to determine the stress intensity factor Kr in the repaired plate, as a function of crack 
length. Subscripts, P, R, A will be used to identify parameters pertaining to the plate, the reinforcing 
patch or the adhesive layer, respectively. Thus EP, ER will denote the Young's modulus of the plate 
and the reinforcement, GA the shear modulus of the adhesive, and tP, tR, tA the respective thickness. 
Here are some assumptions; (i) The plate and the reinforcement are both isotropic and have the 
same Poisson ratio \{=vp=vR) and all deformations are linearly elastic, (ii) There is no out-of-plane 
bending due to the one-sided reinforcement and no residual thermal stress induced by bonding, (iii) 
The reinforced plate ignores any variation across the thickness. For the cross-section configuration 
shown in Fig. 1(b), the redistribution of stress in uncracked plate can be calculated explicitly using 
the one-dimensional theory of bonded joints. Rose[3] obtained the stress, cr«, expressed as 
cr0 =a„/(} + S), where S = ERtR /E'PtP represents the stiffness ratio between the plate and the 
reinforcement. Here E' = E/\\-v2J is the Young's modulus for plane strain condition, E' = E 
for plane stress condition. 

(a) (b) 

Reinforcement 

Plate 
s 

Adhesive layer 

in 
Figure 1. Repair configuration: (a) Patched crack with reinforcement, (b) Cross-section along A-A 

Then it is assumed that distributed linear spring act between the crack faces as shown in Fig.2. The 
boundary conditions are described by 

as   x2 + y2 —> oo, 

a   = kE'ruy(x),   at   \x\<a,   y = 0, 

(la) 

(lb) 

where k is the spring constant. Under plane stress condition, the appropriate value of k can be 

determined from the stress-displacement relation for the overlap shear joint as shown in Fig.3. 

Using the ID theory of joints, Rose[3] obtained the displacement as 
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uP = oJptAß (2) 

And he also defined the spring constant as \ITZA and calculated using Eq.lb as 

k=  *   _   ^o   _     GA 

TTA    EPUP     EPtPtAß 

And ß is denoted as 

ß = . 
1 1 

- + - 
•ytptp ERtRj 

G> r,+ ' 

t f t 

\ \ \ 

tPtAEp \     S 

"t 

i"> 

*.\ 

(3) 

(4) 

Figure 2. Distributed springs model for 

a patched crack 

Figure 3. Cross-section for overlap shear 

joints 

3. CALCULATION OF THE STRESS INTENSITY FACTOR AND THE CRACK SURFACE 

OPENING DISPLACEMENTS USING WEIGHT FUNCTION 

The weight function m(x, a) is defined as 

m (x,a)-- 
EP' du{])(x,a) 

K{])      da 
(5) 

where U(i){x,a) is the crack surface displacement, K(i) is the known stress intensity factor for a 
loading system (7). Thus, the stress intensity factor and the crack surface displacement for arbitrary 
stress </2\x) is expressed as 

/v(2) = ra^2'(x)m(x,a)dx (6) 
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W(2) (x, a) = —r f   [cr{x)m{xt a)dx m(x, a)da (7) 

The crack surface displacement uo(x) under a remote applied stress ao(x) and the crack surface 
displacement us(x) due to stresses us(x) exerted on distributed springs between the crack surface can 
be calculated by using the weight function. Thus the resultant crack surface displacement uy(x) at x 
is expressed as 

uAx) = uo(x)-us(
x) (8a) 

f   la0(x)m(x,a)dx m(x,a)da  \ \\as(x)m{x,a)dx m(x,a)da. (8b) 

On the other hand, the crack surface displacement at x, due to a uniform stress OJ acting on a 
segment 2w of the crack surface located at Xj as shown in Fig.4 can be expressed as 

u(xl,Xj)= —r r    j '   tjj m(x,a)dx m(xj,a)da (9) 

The influence function is defined as g(x,, xj) = w(x,, xj)/oj using Eq.9. Thus, the crack surface 
displacement at x, for uniform stresses acting on n segments corresponding to distributed spring is 
simply expressed as 

n 

(10) 
J=l 

where OJ is given as  E'Pkuy(xj) defined in Eq.lb. By substituting Eq.10 into Eq.8a, the unknown 

crack surface displacement uy(x\) located at x, is finally obtained as 

«y{xi) = «o(xi)-XCTjg\xi■ xj) = "o(*,-)-X E'Fkuy(xJ^(X/' XJ )• (11) 

Expressing the influence function g(x„ xj) as g,y, the numerical solution for the linear system of 
Eq.ll can be obtained from the Gauss-Seidel iterative method as proposed by Newman[8]. Thus, 
the recurrence form is written as 

«>(*,■) = 

ua{xl)--'YJE'Fku'y{x])gij - ^E'pku'-^x^gij 
J=i J=/+I 

,+1 
(12) 

where the superscript / is the current iteration number. This process is repeated until the changes in 
UyfXj) are less than the preset tolerance. Using the crack surface displacement obtained from Eq.ll, 
the stress intensity factor Kr(a) for the reinforcement crack is calculated as 
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Kr(a) = fcr0 (x)m(x, a)dx - ^T ['   EPkuy(x, )m(x,a)dx. 

The weight function m(x,a) for a center crack in an infinite plate[7] is given as 

(13) 

Va2-x2 ' 
(14) 

Figure 4. Model for the crack surface displacement at x, due to a uniform stress q; acting on a 
segment 2w of the crack surface located at Xj 

4. RESULTS AND DISCUSSION 

The width of segment in Eq.9, 2w=0.1mm is used to calculate the stress intensity factor Kr. The 
dimensions and material properties of the cracked plate, reinforcement and the adhesive layer are 
summarized in Table 1. 

Table 1. Physical dimensions and material properties of a typical repair 

Layer Young's 
Modulus (GPa) 

Poisson's 
ratio 

Thickness 
(mm) 

Plate 
Reinforcement 

Adhesive 

70 
200 
0.7* 

0.33 
0.33 
0.33 

3.0 
1.0 
0.2 

* Adhesive's shear modulus GA 

For a center crack with a patch bonded on one side in an infinite plate as shown in Fig. 1(a), 

Rose[3] obtained the upper bound Kc. = a0 4nA and the analytical approximate solution 

Kr = a0TjnnA/(a + A)  using physical parameter A defined in Eq.3. Figure 5 shows the 

comparison between the numerical solution obtained from Eq.13 and the analytical solution by 

Rose[3], and indicates that two solutions are almost same. Upper bound Kc, and K0 = <r0 -Jna for a 

center crack subjected to the reduced remote stress a0 are also shown. When the crack length a is 

very small, the reduction in stress intensity factor Kr is mainly due to the stress reduction from  cr„ 
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to <j0. As the crack length a increases, the stress intensity factor Kr approaches the constant value 

Kc. This indicates the increase of the restraint on the relative displacement of the crack faces for a 

given value oo. Figure 6 represents the crack surface displacement uy(x) obtained from Eq. 11 and 

the crack surface displacement for a center crack subjected to remote stress a0 [7]. The crack 

surface opening displacement along the crack surface is constant and finite due to the large stress 

values exerted on the distributed spring elements, and explains that the constraint on the crack 

surface displacement become increase. Thus, the reason for the constant stress intensity factor being 

independent on crack length can also be explained. 
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Figure 5. Variation Kr with crack length. 
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Figure 6. Crack surface displacement uy(x) 
with distance from crack mouth. 

5. CONCLUSION 

For a reinforced center crack subjected to remote uniform stress in an infinite plate, the stress 
intensity factor was calculated by weight function method, and compared with the analytical 
approximate solution. The agreement of two solutions showed that the weight function method 
could be effectively used to obtain the stress intensity factor for the reinforced cracks subjected to 
non-uniform stress field such as residual stress or thermal loading. 
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ABSTRACT 

This paper summarizes the recent results obtained by Chau and Wong [1] on the interaction 
of a two-dimensional crack parallel to the free surface of a half-plane subject to the action of an 
internal center of dilatation. The method of solution follows the principle of superposition. The 
problem is first decomposed into two auxiliary problems: (I) a half-plane containing a center of 
dilatation; and (II) a finite crack in half-plane subjected to traction that cancel those induced by 
the Auxiliary Problem I. The final solution is obtained as the summation of those of the two 
Auxiliary Problems. Numerical results suggest that as long as the crack is not too close to the 
free surface of the half-plane, the present solution is accurate enough for practical applications. 
If the overburden stress due to gravity and the friction on crack surface are neglected, both mode 
I and II stress intensity factors are induced at the crack tips. 

1.   INTRODUCTION 

Heavy oil and bitumen are major energy resources in Canada, and have become a major 
focus for the oil and gas industry. The challenge in developing this resource is the difficulty 
in recovering these highly viscous substances. Steam stimulation is one of the viable thermal 
recovery methods to extract bitumen from the oil sand ores buried in deep overburden. In this 
steam-based recovery method, large volumes of steam at high temperatures and pressures 
(300°C and 10 MPa) are injected into the oil sand formation at depths of 450-500 m through 
wells in rows of 100 m in spacing (Butler [2]; Boone et al. [3]). 

Steam injection produces stress and thermal dilatation of oil sand. Overlain the oil sand 
formation are low-permeability clay shales forming an impermeable barrier to migration of 
fluid. Natural horizontal fissures or fractures are commonly found in these shale formations 
(Wong [4]). These fractures have been formed or subject to large shearing process during 
glaciation. Therefore, there is no tensile strength or small residual strength remained along 
these fractures. One of the geomechanics-related problems is if these pre-existing fractures 
would propagate under steam injection. Interception of these fractures with subsurface well 
casing could lead to casing impairment or rupture. 
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Half-plane 

Modeling of 
steam injection 

Fig. 1    A sketch for the steam injection into an elastic half-plane is modeled by a center of 
dilatation located at the point (h{ ,h2). The depth and size of the crack are d and 2a. 

The main objective of the present paper is to summarize a simple analytical model to analyze 
and investigate the problem, which is proposed recently by Chau and Wong [1]. The essence of 
this model is that steam injection to the oil sand formation can be modelled by introducing a 
center of dilatation in a two-dimensional homogenous isotropic elastic half-plane. More 
specifically, we will consider the stress intensity factor induced at the tips of a pre-existing 
horizontal crack, which is parallel to the free surface of the half-plane, by a center of dilatation 
within the half-plane. Since the steam is capped within the oil sand formation that is far away 
from the horizontal crack, thermal stress is only induced locally and will not affect the pre- 
existing horizontal crack far above. Therefore, to simplify our analysis here, the thermal effect 
induced by the heat source will only be incorporated into the strength of the center of dilatation. 

Crack problems in half-planes or half-spaces have received considerable interest because 
of its possible application in earthquake mechanics (e.g. Rudnicki and Wu [5]; Jeyakumaran 
and Keer [6]). However, no solution exists for crack problems in half-planes or half-spaces 
under the action of a center of dilatation. The solutions for the interactions between a plane 
or 3-D crack under the action of a center of dilatation only exist for an infinite domain (e.g. 
Weertman and Hack [7-8]; Kachanov and Karapetian [9]; Karapetian and Kachanov [10]; 
Gross and Wagner [11]). 

Therefore, the main objective of the present paper is to summarize our recent solution 
(Chau and Wong [1]) for the interaction of center of dilatation with 2-D cracks in half-planes. 
The counterpart solution for 3-D cracks in half-space will be presented in our later publication. 

In particular, the problem of a crack parallel to the surface of half-plane under a center of 
dilatation is first decomposed into two Auxiliary Problems: (I) a half-plane consisting of a 
center of dilatation; and (II) half-plane with a crack parallel to the free surface and tractions are 
applied on the crack surface to cancel out the stresses induced on the position of the crack in the 
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Auxiliary Problem I. The solution of the first problem has been given by Rani et al. [12], while 
that for the second problem has not been solved. To simplify the problem mathematically, we 
employ the fundamental solution in an infinite plane, expressed in terms of the Westergaard 
stress function (e.g. Tada et al. [13]). Mathematically, the present solution is not exact since 
the fundamental solution on the crack surface that we propose to use does not satisfy the 
traction free condition on the surface of the half-plane. However, as long as the horizontal 
crack shown in Fig. 1 is not too close to the surface of the half-plane, the present solution 
should provide a reasonably good approximation for the problem. 

2. MATHEMATICAL FORMULATION 

The strategy in solving the problem is that the original problem can be decomposed into 
two auxiliary problems (I) and (II). The first Auxiliary Problem (I) is the solution of the 
center of dilatation due to an internal center of dilatation, and the second Auxiliary Problem 
(II) is an internal crack with surface tractions which cancel those created by the center of 
dilatation on the line of the crack surface (z=d and -a < y < a in Fig. 2). 

2.1 Center of Dilatation in Half-plane 

The center of dilatation in a half-plane can be obtained by superimposing two orthogonal 
force dipoles at a point. Consider a Cartesian coordinate with the origin on the surface of a half- 
plane as shown in Fig. 2. The appropriate form of the Airy stress function for a center of 
dilatation located at (hx, h2) as shown in Fig. 2 in a linear elastic half-plane can be expressed as 
(Rani et al. [12]): 

K 
In 

\R\, 

2z(z + h2) 
Ri (1) 

where 
R2

x={y-Kf+(z-h2f,     Rl=(y-hxf+{z + h2)\     a = l/[2(l-v)] (2) 

and v is the Poisson's ratio of the half-plane, and c0 is the strength of the center of dilatation 
(in unit of force). For elastic materials without body force, the Airy stress function cp satisfies 
the biharmonic equation.   The corresponding stresses can be found as (Chau and Wong [1]): 

cA     1       3   , 2{z-h2f    6(z + h2){3z + h2)    \6z{z + h2)\ 
CT"-(l-o07r*T*2

2   *.4       R2       R2   r 

^=(1_^_4^_^ + I^^} (4) 
X [ R\ K2 K2 J 

tcA 1       1     2{z-h2f    2(z + h2)(5z-h2) , l6z(z + h2Y 

«■-"-»ilg-^ip-    «■   '+^r^    (5) 

Therefore, the solution for the Auxiliary Problem I is known. 
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2.2 Fundamental Solution for Point Forces on Finite Crack 

As mentioned in the Introduction that the fundamental or point force solution on cracks 
parallel to the surface of a half-plane is not available in the literature. Therefore, the 
fundamental solution for point force in an infinite plane will be employed in the present 
analysis. In particular, for the normal and tangential pairs of point forces (P and Q) on the crack 
face, the Westergaard stress function can be given by Tada et al. [13]. The corresponding stress 
intensity factor at crack tip +a and -a are given by (Tada et al. [13]): 

K,\±a 
= ^{oliaib (6) 

where the upper sign is for the crack tip at £=+a while the lower one for the crack tip at %=-a. 
The stress intensity factors for tensile and shear modes are denoted by K, and Ku, 

respectively. Using the principle of superposition, we can replace b, P, Q by £, <j2,(£,d)d% 
and o-^(£,<tf)d£, respectively, and integrate the point forces from -a to +a. The stresses 

°"22(^>^) and o>(£,c0 are the corresponding normal and shear stresses induced on the line of 
the horizontal crack and given in (3-5). More specifically, the stress intensity factors due to the 
center of dilatation can be approximated using the following integration over the crack face: 

Although the square root term in the integrand of (7) approaches infinity at the tip +a for mode I 
and at the tip -a for mode II, it is straightforward to verify that the integration exists and 
converges. Thus, the integration can be done by following a standard procedure using an 
algorithm of Simpson's rule with error control (e.g. Press et al. [14]) except at the crack tips. In 
addition, for the mode I cracking, stress intensity factor can only be induced by tensile stress. 
Thus, we should set compressive normal stress, which is required to cancel out the effect due to 
the center of dilatation on the crack face, to zero in our integration if both frictional and 
overburden effects are neglected. 

The final stress field in the half-plane can now be obtained by adding the solutions of the two 
auxiliary problems. However, the only singularity at the crack tips is due to the Auxiliary 
Problem (II). To increase the computational efficiency of integrating (11), Chau and Wong [1] 
also proposed an analytical treatment for the integratin at the crack tips. The details will be not 
be reported here and is referred to Chau and Wong [1]. 

3. NUMERICAL RESULTS AND DISCUSSION 

Figure 2 plots the normalized mode I stress intensity factors KI(aü4ä)dX crack tips +a 

against the normalized horizontal distance hx/a of the center of dilatation from the z-axis for 

various values of h2la with d/a=3, where a0 =(1 - ot)c0 /(71a2) is the normalized strength of 
the center of dilatation (in unit of stress). Numerical results by Chau and Wong [1] showed 
when the center of dilatation is close to the crack surface, the present solution is accurate. When 



Key Engineering Materials Vols. 183-187 113 

the center of dilatation is far above the crack (e.g. h2la=\), the center of dilatation, as expected, 
will not induce tensile cracking. 

More expensive numerical results can be found in Chau and Wong [1] and due to page limit 
they will not be given here. In general, Chau and Wong [1] found that as long as the crack is 
not too close to the free surface of the half-plane (say more than 1.5 times of the crack length), 
the present solution is accurate enough for practical applications. If the overburden stress and 
the friction on crack surface are neglected, both mode I and II stress intensity factors (K, and 
K„) are induced at the crack tips. The maximum of K, occurs when the center of dilatation is 
located behind the crack tips while the maximum of K„ occurs when the center of dilatation is 
located in front of the crack tips. The tensile cracking is likely to be prohibited by the 
overburden stress (except for extremely strong center of dilatation), while shear cracking 
remains possible even including the effects of both overburden and friction on the crack surface. 
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Fig. 2 The normalized mode I stress intensity factors at crack tip +a against the normalized 
distance \/a for various values of h2la w 
friction on crack surface have been ignored 
distance \/a for various values of h2la with d/a=3. The effects of overburden and 

4. CONCLUSION 

We have summarized an approximate solution proposed recently by Chau and Wong [1] for 
the stress intensity factor at the crack tips of a finite crack of length 2a which is located at a 
depth of d below and is parallel to the free surface of the half-plane, under the action of an 
internal center of dilatation. The problem is decomposed into two Auxiliary Problems: (I) a 
half-plane containing a center of dilatation; and (II) a finite crack in half-plane subjected to" 
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traction that cancel those created by the Auxiliary Problem I. The present solutions should 
provide a simple method to assess the critical strength of the center of dilatation such that 
further cracking can be avoided. More recently, the solution for a penny-shaped in an elastic 
halfspace under the action of 3-D center of dilatation had been obtained. The results were found 
comparable to those given by Chau and Wong [1] for the 2-D case. 
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ABSTRACT 

In this study, stress intensity factors were investigated and determined by caustics method and 
photoelastic experiment to clarify the behavior of a crack tip under various biaxiality ratios on the 
polycarbonate plate with isotropy and anisotropy used as structural components. As result, It was 
confirmed that only "Ki" affected without receiving the effect by biaxiality ratio, isotropy and 
anisotropy in case of the crack angle 9 =0° under the biaxial loading. It was confirmed that an 
affects on only K r in the isotropic polycarbonate plate with crack angle 9 =45° under the biaxial 
load (1:1). However, it is proven that simultaneously affected the mode-1 and mode-Hin the 
biaxiality ratio is more than 1:1. Furthermore, The stress intensity factor value Kn was extremely to 
rise from over biaxiality ratios of 3.0 by extrusion direction and biaxiality ratio in case of 
polycarbonate plate with the anisotropy. 

1. INTRODUCTION 

The high polymer material makes high-strengthen and high-elasticity to be features and it is used 
with enlargement and lightening of machinery and structure as structural members such as aircraft, 
ship, automobile and so on. However, the complicated fracture event has been produced by 
performance improvement of the machinery and cruel service condition. The stress states of the 
components are few that are under the uniaxial stress, but it was usually under biaxial or multiaxial 
stress. Therefore, authors developed a static and dynamic biaxial loading device to clarify the 
fracture problem in a complicated load and under biaxial stress. [1] (Fig.l) 

In this study, stress intensity factor was investigated and determined by caustics method and 
photoelastic experiment to clarify the behavior of a crack tip under various biaxiality ratios on the 
polycarbonate plate with isotropy and anisotropy used as structural components. 
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2. TEST PIECE AND EXPERIMENTAL METHODS 

2.1. Test piece 
In this study, the test pieces used two kinds of the polycarbonate plate with isotropy (molding) 

and anisotropy (extrusion molding), and the dimension is shown in Fig.2. Test pieces were 6 mm 
thickness, length and width 300mm, the fillet s radius 50mm, and using the vertical machining 
center, the cruciform test piece was produced by drilling and end milling. 
The crack was processed to the 28mm length using the long end mill of the 0.8mm diameter in 
addition, 1mm was processed by pushing in razor edge of the 0.08mm thickness in both sides of the 
crack-tip, and it brought it close to the natural crack. The extrusion direction was set to be Y 
direction in the polycarbonate plate with the anisotropy and the cracks oriented 0° and 45° to the 
direction. 
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Fig. 1 A photograph of biaxial loading device Fig. 2 Dimension of cruciform specimen. 
(unit:mm) 

2.2. Experimental Method 
In this study, used experiment equipments are the biaxial loading device that authors developed 

(Fig.l) with photoelasticity and caustics equipment. In experiment, tension velocity was constant at 
0.1mm/s, and load of Y axis (Py) was made to be fixed at 490N in case of isotropy, and only the 
load of the X-axis (Px) was changed to four stages to 490N~1961N(1:1~1:4) and the extrusion 
direction was made to be the Y direction in case of anisotropy, and the biaxiality ratio(defined as 
ß =Px/Py) and load of X-axis was taken under the equal condition to the polycarbonate with 
isotropy and only the load of Y axes was changed to four stages to 1:1~1:4, experiment was 
carried out. The photoelasticity isochromatic fringe pattern and caustic images of crack tip 
vicinity under each biaxiality ratio were continuously observed and photographs taken. 

3. DETERMINATIONS OF STRESS INTENSITY FACTOR 

3.1. Photoelasticity Method 
In the determination of stress intensity factor Kr and Kn value, a photoelasticity isochromatic 

fringe pattern and image of caustics in each load point were continuously taken by a camera, input 
to the computer, and the necessary value was measured. For the calculation of stress intensity 
factor K j and Kn value from the isochromatic fringe loop, distance R,„ and angle 8 m to the most 
apo-center of the each isochromatic fringe loop around the crack tip as shown in Fig. 3 which were 
measured, and the case of mode-1 was obtained by Irwin's method[2] of eq.l and K„ of mixed- 
mode were obtained by Smith's method [3] of eq.2a, eq.2b and eq.2c. 
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Ki=n^n (l + (^_)2ro.sx(l + 2tan(30my2)) 

at sin 0„ 3 tan 6„ 3 tan 0„ 
(1) 

Ki=- 
n(2xrm) 1/2 

t\sh 2 „.„2. atYsin0m+2Acos0mr + AA sinL 0, 
1/2 

(2a) 

Kn 

A = 

An(2wm) 1/2 

at^sin0m +2Acos0m)   +A  sin  0m) t{s, 
1/2 

Kv_=2 

Ki     3 
n—3i cot20±Jcor 0m +- 

(2b) 

(2c) 

where n is the number of the fringe, t is the thickness of specimen, a is the photoelasticity 
sensitivity constant, r and 0 ,„ are, respectively, the distance and angle in polar coordinates at point 
M, shown schematically in Fig. 3. In the calculation of the stress intensity factors, 73.5°< 0 <134° 

range with small error was measured, and it calculated respectively K l,  Kn value. [4] 

y ♦ 
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-*0 
Fig. 3 Geometry of isochromatic fringe roop     Fig. 4 Schematic of caustics experiment apparatus 

at the crack tip 

3.2 CAUSTICS METHOD 
In case of caustics method, experiment was carried out using caustics equipment shown in Fig. 4. 

The light source was He-Ne Laser (He-Ne Laser LHG-3223), and the specimen under the biaxial 
tension load was made to penetrate parallel light beam by collimator (Auto Collimator, Nikon-6B), 
and toke photographed of the caustic image from the screen rear. The fundamental shape of 
caustic curves in mode-1 and mode- n are shown in Fig.5. In the calculation of stress intensity 
factor K, and Kn in a parallel light beam, in case of mode-1 was obtained by eq 3 [5,6] and case 
of mixed mode was obtained by eq 4 and eq 5 [7-8], 

Crack 

Dinar 

3T 

Mode -1 Mode - II 

Fig. 5 Schematic of caustic curve of Mode I and Mode  II 
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Kl=  l6n iX(^sti)s/2 

Z0t\C(, 

Z0t\C0\       ö $ +n< 

(3) 

(4) 

Z0tC0       5 Vi+7 
(5) 

where, Z0 is a distance of test piece and screen, t is the specimen thickness, Dmin is a smallest 

diameter of the crack tip caustic on the screen, C0 is an optical constant, 5 and u are material 
constants. 

4. EXPERIMENTAL RESULTS AND DISCUSSION 

The effect under the biaxial stress of the polycarbonate with optically isotropic and anisotropic on 
the crack tip was investigated. Examples of the isochromatic fringe pattern and caustic image under 
each biaxiality ratio( 0) are shown in Fig. 6. 

(a) Px :Py = 4:1 (Isotropy) (b) Px :Py = 4:1 (Anisotropy) 

Fig. 6 The isochromatic fringe patterns and the caustic images under biaxiality ratios in the 
polycarbonate with optically isotropy and anisotropy. (0 =0°) 

It is proven from Fig. 6(a), (b) that is an isochromatic fringe pattern under biaxiality ratios (0=1 
~4) of polycarbonate plate with optically isotropy and anisotropy are the left-right symmetries for 
the crack direction and those are almost arising perpendicularly. The caustic image becomes 
almost a perfect circle. It is proven from these facts, there is only effect of K, in the crack angle 
zero (9 =0°) without also receiving either an effect biaxiality ratio, optically isotropy and anisotropy. 
It is proven from Fig. 7(a), (b) and Fig. 8(a), (b) the isochromatic fringe patterns and caustic images 
are having affects on only K, in the isotropy polycarbonate plate with crack angle 45° under the 
biaxiality ratio 0=1. However, the isochromatic fringe loop becomes asymmetric and tilted form, 
as the biaxiality ratio increases from 0=1, and the caustic image becomes a volute that collapsed 
from the perfect circle. That is to say, it is proven that simultaneously, opening type stress intensity 
factor Kj and in-plane shear type stress intensity factor K„ affected. The isochromatic fringe 
patterns under biaxiality ratio 0 =1 of the anisotropy polycarbonate plate shows almost the 
tendency in mode-1 (Kj). However, a slight collapses on the caustic image from the perfect circle 
shows the tendency in mixed mode. These facts, it seems to occur for anisotropic properties 
according to the extrusion direction. It became tilted form in which the photoelasticity fringe loop 
was similar to isotropy that asymmetric with the increase the load ratio and the caustic image 
became a shape of volute. 
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(a)Px:Py=l:l (b)   Px:Py = 3:l 

Fig.7 The isochromatic fringe patterns and the caustic images under biaxiality ratios 
in the polycarbonate with optically isotropy. ( 9 =45°) 

(a)Px:Py = 4:l (b)'Px:Py=l:4 

Fig.8 The isochromatic fringe patterns and the caustic images under biaxiality ratios 
in the polycarbonate with optically anisotropy. (0 =45°) 

4.1. The relationship between stress intensity factors Kr, K„ and load ratios. 
The relationship between stress intensity factors and biaxiality ratios were calculated by 

photoelasticity approach and caustics method from the experimental result and the values are shown 
in Fig. 9 and Fig. 10. Fig. 9 shows the relationship between a biaxiality ratio and stress intensity 
factor K t with crack oriented zero deg in the polycarbonate plate with isotropy and anisotropy. It 
was proven that the stress intensity factor K, of photoelasticity approach and caustics methods are 
almost agreeing from these facts and the effect by isotropy and anisotropy could be not recognized. 
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Fig. 9 Comparison of stress intensity factors by photoelasticity approach and caustics method 

However, It is proven from Fig. 10(a), (b) and (c) that the biaxiality ratio also increased the 
stress intensity factor (Kj, Kn) at over all range with the increase in case of the crack oriented 45 
degrees.   Especially, it was proven that an amount of change of the Kn value remarkably increased 
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than the K , value. And, it was confirmed that the effect according to the extrusion direction was 
most received, when the biaxiality ratio consists more than (3=3 and 1/J3=3 for the relationship 
between stress intensity factors (K,, Kn) by the extrusion direction and biaxiality ratio of 
polycarbonate plate with the anisotropy, it was proven from figure 10(b) and (c). Designing a 
considering extrusion direction and biaxiality ratio is important, when the anisotropic material is 
used as machinery component to prove from these facts. 
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Fig. 10 Relationship between a biaxiality ratio and stress intensity factor 

5. CONCLUSIONS 
In this research, we obtain the knowledge as followings that stress intensity factor K], Kn was 

comparison and investigation in the polycarbonate plate with isotropy and anisotropy under biaxial 

stress by photoelastic experiment and caustics method. 

1. It was confirmed that only K, affected without receiving the effect by biaxiality ratio( j3), 

isotropy and anisotropy in case of the crack angle   0 =0° under the biaxial loading. 

2. It was confirmed that an affects on only K, in the isotropic polycarbonate plate with crack angle 

0 =45° under the biaxiality ratio  /3 =1. However, it is proven that simultaneously affected the 

mode-1 and mode- II in the biaxiality ratio is more than ß =1. 
3. The stress intensity factor value Kn was extremely to rise from over biaxiality ratios ß =3 and 

1/ ß =3 by extrusion direction and biaxiality ratio in case of polycarbonate plate with the 
anisotropy. 
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ABSTRACT 

In this paper, experiments and micromechanics analysis are carried out to understand the 
deformation and fracture behavior of a polycarbonate (PC) under different triaxial stress fields. 
Effect of triaxial stress constraint on the deformation and fracture behavior of the PC is 
experimentally investigated. The other purpose of this paper is to discuss the extent to which a 
micromechanics criterion proposed by the first author can serve as a fracture criterion for ductile 
polymers. A new ductile fracture parameter is emphasized, which can be employed to evaluate the 
fracture ductility of polymers. Stress state independence of the parameter for the PC has been 
experimentally verified. 

1. INTRODUCTION 

It is well-known that traditional structural metallic materials are being replaced with polymers in a 
number of critical engineering applications. However, the research into the fracture of polymers is in 
its infancy compared with the fracture of metals, and much of the necessary theoretical framework is 
not yet fully developed for polymers [1]. /integral has had success with many ductile polymers, in 
which the fracture resistance is measured in terms of the critical value of J denoted J\Q [1,2]. 
Although conventional./ integral test can provide a measure of fracture toughness of polymers, it is 
important to recognize the limitations of such an approach which involves additional problems [1,3]. 
For example, J may be inadequate. Measurement of /]c needs rather specialized equipment and 
techniques. The standards for measuring J\c and J-R curves in polymers are not yet developed. The 
size requirements make the application of J integral to measure the toughness of thin polymer films 
impossible. The validity of utilizing a blunting line to determine the critical value of J integral is 
questioned for some ductile polymers, etc. So, how to evaluate the fracture property of polymers is 
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still an open problem and the research of alternative method is urgently required. 
As an alternative approach to predicting fracture, damage mechanics are being widely researched 

and appear promising. Many idealized models involving continuum damage mechanics [4-9] and 
micromechanics [10-12] have been proposed to assess the behavior of ductile fracture. In what 
follows, experiments and micromechanical analysis will be carried out to understand the effect of 
triaxial stress constraint on the deformation and fracture behavior of a polycarbonate (PC). Then, the 
extent to which a micromechanics criterion for ductile fracture proposed by Wang and Kuang [12] 
can serve as a criterion for the fracture of ductile polymers will be discussed. 

2. EXPERIMENTAL 

2.1. Material and Testing 
The material considered here is a ductile thermoplastic PC with a molecular weight of 22000. 

Intensity of triaxial stress constraint is measured by means of stress triaxiality denoted by 0m/aeqwith 
am and creq being hydrostatic and von Mises equivalent stresses, respectively. In order to vary the 
stress triaxiality experimentally, tests were performed on the circumferentially blunt-notched bars 
with six kinds of profile notch radius R ranged from 0.8, 1.2, 2.0, 4.0, 8.0 mm to infinite, as shown in 
Fig.l. The initial diameter, Z)0=5mm, of the minimum cross-section remains unchanged for all the 
bars. Thus, the maximum value of am/aeq can be calculated as [11] 

^ = i + lnl + -^ 
<yeq    3     I    4R 

(1) 

Thus, the stress state is defined by the specimen geometry. 

*5 

R=0. 8 mm 
1.2 mm 
2.0 mi 
4.0 mm 
8.0 mm 

oo 

Fig.l. Geometry and dimensions of the notched tensile bars. 

The bars were carefully manufactured from 12 mm-thick plates of the PC. A MTS-810 machine 
was used for the tensile tests at room temperature, approximately 20°C. Two sensors with the 
requisite sensitivity were used in the experiments. One was used to monitor the continuous variations 
in the minimum diameter of the notch, another 2 5-mm extensometer was mounted across the notch 
to control the axial displacement rate and to measure the axial strain. The crosshead speed is 
lmm/min. Stress and strain responses were obtained from the tensile tests of smooth and notched 
bars, where the average axial stress is the load divided by the original minimum cross-section area, 
and the axial strain is calculated from the 25-mm extensometer. Thus, the Young's modulus, E, and 
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yield stress, <ry, can be calculated from the smooth bar tests. For notched bar tests, the initial slops of 
the stress-strain curves and the corresponding yield stresses are defined as pseudo-Young's modulus, 
E', and pseudo-yield stress, ay', respectively. The fracture strain sc under different stress states were 
calculated from the variations in the minimum diameter of the notch [11] 

ff„ = 2 In (2) 

where Dc is the critical value of the minimum notch diameter. Most of the data represent average 
values of three test specimens. 

100 

R=0.8 mm 
R=2.0 mm 
R=4.0 mm 
Smooth bar 

0.1 0.2 

Strain 
0.3 0.4 

Fig.2. Stress - strain covers for the PC in different triaxial stress fields. 

2.2. Experimental Results 
Figure 2 shows the average axial stress and strain responses of the PC obtained from a series of 

tensile tests of smooth and notched bars. It is seen that deformation of the PC behaves very 
differently in different triaxial stress fields. In the case of smooth bar with low stress triaxiality 
(am/aeq =1/3), the unmodified PC exhibited an initial yield at maximum stress, then accompanied by 
the formation of a neck, and finally followed by a long propagation process of the neck. This leads to 
a significant strain softening and a constant stress deformation. At middle level of stress triaxiality 
(ajc^ =0.605 and 0.819 or R=4mm and 2mm), the PC yields at a maximum stress first, then 
accompanied by a sharp strain softening, and finally followed by a strain hardening process. In the 
case of higher triaxial stress constraint (am/aeq =1.274 or R=0.8mm), deformation behavior of the PC 
is similar to a brittle material. Effect of stress triaxiality on Young's and pseudo-Young's modulus 
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and initial yield and pseudo-yield stresses of the PC are shown in Figures 3 and 4, respectively. It is 
seen that rigidity of the PC increases with the increase of stress triaxiality. It indicates that triaxial 
stress constraint has important effect on the deformation behavior of the PC. Figure 5 shows the 
effect of triaxial stress constraint on the critical fracture strain ec of the PC. It is clear that the value of 
8C decreases with the increase of stress triaxiality. Apparently, tensile stress triaxiality results in the 
brittle fracture of the PC. 
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Fig.3. Effect of stress triaxiality on 
Young's modulus. 
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Fig. 5. Effect of stress triaxiality on 
the fracture strain of the PC. 
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3. A MICROMECHANICS CRITERION FOR DUCTILE FRACTURE 

Based on the well-known Rice-Tracey void growth model [10], 

dR 
R 

= 0.283 exp dsp 
(3) 
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a micromechanics parameter for ductile fracture was proposed, see [11,12] for more details, 

rK=ec„exp (4) 

where R is the size of voids, sc
eq is the critical value of equivalent plastic strain eeq at fracture. The 

normalized critical void growth ratio R/R0 can be expressed as 

-^ = exp(0.283Fgc), (5) 

with R0 being the initial void radius. Thus, the criterion for ductile fracture initiation can be 
expressed as 

V =V Y g        ' gc ' 
(6) 

where 

V = exp (7) 

Equations (4) and (5) are the macroscopic and microscopic forms of the critical void growth 
parameters, respectively. Unfortunately, experiments of metallic materials have shown that Vgc is not 
always a material constant, but alters with stress state, and the values of RJR0 calculated from eq.(5) 
are found to be approximately one-half of those obtained from the tests for metals. See [12] for more 
details. The reason may be attributed to the single void model used to derive eqs (4) and (5), which 
neglects the interaction of the neighboring voids in the real situation. Considering this, a modified 
micromechanics parameter was proposed [12], namely 

^v*c=<exp (8) 

where a is a constant to reflect the interaction of the neighboring voids. Extensive experiments of 
metallic materials have shown that Mvgc is a material constant independent of stress state, see [12] for 
more details. Thus, eq.(5) can be modified as 

Rn 
= exp(0.283MvJ. (9) 

In what follows, the stress state independence of Mvgc for the PC will be verified according to the 
experimental results of fracture strain as shown in Fig.5, from which one can easily determine the 
value of Mvgc. Variation of Mvgc with stress triaxiality is shown in Fig.6. It is readily seen that Mvgc is a 
material constant independent of stress state. So, it is reasonable to use Mvgc as a critical parameter of 
fracture for the PC, and the criterion for ductile fracture initiation of the PC can be expressed as 
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Mvg=Mvgc, (10) 

where 

M   = exp 
f        \ 

a — 
V    a«i J 

(11) 

4. CONCLUSION 

Triaxial stress constraint has important effect on the deformation and fracture behavior of the 
Polycarbonate (PC). It was shown that fracture strain of the PC decreases with the increase of stress 
triaxiality. In the case of higher tensile stress triaxiality, the PC behaves like a brittle material, but it 
is really a very ductile material in the case of low stress triaxiality. In the other words, tensile stress 
triaxiality results in the brittle fracture of the PC. 

The micromechanics criterion for ductile fracture proposed by Wang and Kuang [12] can 
sever as a fracture criterion for ductile polymer. Experimental results for the PC indicates 
that the characterizing parameter Mvgc is a material constant independent of stress state. We 
hope Mvgc can provide a new parameter for evaluating the fracture ductility of polymers. 
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ABSTRACT 

In this paper, large crack growth behavior for different thickness specimens of 7175-T74 
forging aluminum alloy was experimentally studied under constant amplitude, several selected 
sequences and Mini-TWIST flight simulation spectrum loads. Thickness and load history effects on 
fatigue crack growth were investigated and summarized. Moreover, using some SEM results of 
fracture surfaces explained possible-microscopic-mechanisms of the specimen thickness and load 
history effects found in this investigation. 

1. INTRODUCTION 

For many metallic materials, retardation/acceleration behavior of fatigue crack growth have 
received much attention under simple selected loading sequences in order to study experimentally 
and model the behavior that may occur under various complex variable amplitude loads [1]. 
However, there is no similar study on load interaction for 7175-T74 forging aluminum alloy at 
present. On the other hand, although thickness effect in the process of crack growth has been more 
and more studied, so far, the study has still been concentrated on constant amplitude, single 
overload and flight simulation spectrum loads for a few materials [1'2l More study is obviously 
helpful for understanding of the thickness effect on fatigue crack growth. In the present paper, large 
crack growth behavior for different thickness specimens of 7175-T74 forging aluminum alloy under 
constant amplitude and various variable amplitude loads was experimentally studied in order to 
investigate the thickness and load interaction effects of crack growth for this material. SEM 
analyses of fracture surfaces for some specimens were also carried out to identify the possible 
mechanisms being responsible for the observed effects. 

2. EXPERIMENT 

The material for this investigation was 7175-T74 forging aluminum alloy. All specimens for 
tensile and crack growth tests were cut from hand forging with length 620mm, width 160mm and 
thickness 67mm. M(T) specimens for crack growth tests were machined along L-T direction and 
with length 300mm and width 75mm and two kinds of thickness about 3mm and 10mm. The 
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specimens for static tensile tests were machined along L direction. The mechanical properties and 
the chemical composition of the material are given in Table 1 and 2, respectively. 

Table 1. Mechanical properties of the material used in this investigation 
Elastic Modulus       Yield Strength       Tensile Strength       Elongation       Reduction of area 

GPa MPa MPa 65 (%) (%) 

JO 502 556 12.3 34.6 

Table 2. Chemical composition of the material in this investigation (%) 
Zn Mg Cu Cr Fe Si Mn Ti Al 

5.57 2.45        1.53 0.24 0.13 0.12 <0.05     <0.05 Balanced 

Fatigue crack growth tests under constant amplitude loading were performed at two cyclic 
stress ratios R=0 and -1 for two thickness specimens. Six kinds of simple load sequences were 
selected in crack propagation tests: (1). Periodic overload (OL) blocks: 5 OL cycles after every 50 
baseline loads (BLs) with stress ratio R=0; (2). Periodic OL blocks: 5 OL cycles after every 100 
BLs with R=0; (3). Periodic OL-underload (UL) blocks: 5 OL-UL cycles after every 50 BLs with 
R=-l; (4). Periodic OL-UL blocks: 5 OL-UL cycles after every 100 BLs with R=-l; (5). Periodic 
single OL-UL: a single OL-UL cycle after every 39 BLs with R=0 and -1; (6). Periodic single UL- 
OL: a single UL-OL cycle after every 39 BLs with R=0 and -1. For the first four sequences, all OL 
and/or UL ratios are 1.5. For the other sequences, the OL and UL ratios are 1.8. For BL with R=0 
and -1, the BL stress levels are 62.5MPa and 35MPa, respectively. Besides the selected load 
sequences above, Mini-TWIST flight simulation spectrum was also used in crack growth tests for 
different thickness specimens. For Mini-TWIST spectrum tests, the mean stress level of flight 
spectrum 50 MPa was selected. 

Crack growth tests were conducted under constant stress controlling condition on MTS testing 
machines. Crack lengths in tests were measured by travelling microscopes with magnification 20 
(x20). For simple selected sequence tests, before the sequences were applied, all specimens were 
pre-cracked under constant amplitude loading and initial crack lengths were about 10mm. 

3.  RESULTS AND DISCUSSION 

3.1. Thickness effect under constant amplitude loading 
Under constant amplitude loading, there are some studies'3'41 in which an obvious thickness 

effect in crack growth tests for different thickness specimens was not found. There are also some 
other studies in which different thickness effects were found. For example, Jack et al[5) found crack 
growth rates decrease with specimen thickness increasing, however, Broek et al [6] found crack 
growth rates increase with specimen thickness increasing. In this investigation, it is found that crack 
propagation rates of two different thickness specimens under R=-l and 0 and the same stress 
intensity factor ranges were almost the same. An obvious thickness effect does not exist for 7175- 
T74 alloy. It is important to explain these different results for understanding the crack growth 
behavior better. Some researchers owed the different thickness effects to different plastic zone sizes 
ahead of crack tip or different crack closure level of different thickness specimens. Also, there are 
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some researchers who tried to explain the thickness effects by considering the relationships between 
the transition from flat-to-slant crack growth and stress intensity ranges. In fact, all these factors, the 
plastic zone sizes, crack closure level and the transition from flat-to-slant crack growth, are 
connected with constraint behavior near the region ahead of crack tip. Recently, the constraint 
behavior of center crack plate has been analyzed by Newman'71 and Wang, et al [8l According to 
their fitting equations for calculating the constraint factor ahead of crack tip, values of the constraint 
factor for two thickness specimens in crack growth process were computed. It is found that the 
difference between the corresponding constraint factors of the two thickness specimens is within 
6% when crack half-length, a, is not greater than 25mm, and within 20% while as30mm. The 
obtained constraint factors and Newman's crack opening stress equations [91 were used to calculate 
the crack opening stresses, then, effective-stress-intensity-factor ranges. It was found that the 
difference between the corresponding effective-stress-intensity-factor ranges of two thickness 
specimens is less than 1% while as25mm, and also within 9% while as30mm. These results can be 
used to explain why the obvious thickness effect on crack growth was not found in the present tests. 

3.2. Thickness effect under various variable amplitude loading 
The results of some materials under a single OL or periodic single OL have shown that the 

retardation effect weakens with the specimen thickness increasing'21. In this investigation, from the 
test results under periodic OL blocks with different BL cycles, the same conclusion is also obtained. 
However, contrary results were got under periodic single UL-OL at BL R=0 and -1. Figure 1 
showed a-N curves of crack propagation under periodic single UL-OL with different BL stress 
ratios. It can be found that the retardation increases with the specimen thickness increasing. The 
trend is more obvious at BL R=-l than BL R=0. The fact that thickness effect is more obvious at 
BL R=-l than at BL R=0 was also found under periodic single OL-UL sequence. In order to 
compare and study the thickness effects under periodic OL-UL blocks with different BL cycles (OL 
and UL ratios are 1.5) and under periodic single OL-UL (OL and UL ratios are 1.8), the a-N curves 
for different thickness specimens under these load cases are shown together in Fig.2. 
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Different thickness effects can be found from the figure. Under periodic OL-UL blocks with BL 
interval of 50 cycles, the retardation increases with specimen thickness increasing. However, when 
enlarging the number of BL cycles and all other parameters being kept constant, the thickness effect 
disappears. Under periodic single OL-UL with OL and UL ratios 1.8, the retardation weakens 
with specimen thickness increasing on the contrary. The trends above may be relevant to change of 
crack growth mechanism under BL after high OL and UL ratios were applied (See SEM 
fractographs shown in the later section). From the present and previous results, it can be found that 
the thickness effect on crack growth is dependent on not only selected load sequence but also BL 
interval and stress ratio in the load sequence, and OL and /or UL ratios. 

The a-N curves of crack growth for two thickness specimens under Mini-TWIST spectrum 
loading are given in Fig.3. It can be found from the figure, the thickness effect does not exist while 
crack length is not bigger than 10mm. After crack length exceeds 10mm, the thinner specimen 
appeared a marked crack growth retardation arid thickness effect becomes obvious. Many results 
showed that the effect of a given change in a flight-simulation load spectrum on fatigue crack 
growth is strongly related to that spectrum type and often depends on the design load level, material 
and spectrum geometry. It has been found that in general, the sensitivity to a given spectrum 
variation is different in the crack initiation stage (i.e. during crack growth up to some tenths of a 
millimeter in size) and in the crack propagation stage'10'. Obviously, It is found from Fig.3 that the 
sensitivity to the thickness effect under Mini-TWIST spectrum loading is also different in the two 
different stages of crack growth. 
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Fig.3    The a-N curves of crack growth for two   Fig.4 Fractograph showing delayed crack growth 
thickness specimens under Mini-TWIST    retardation for thick specimen under periodic 
spectrum loading OL-UL blocks with the interval of 50 BL cycles 

SEM analyses of fracture surface were carried out in the present investigation in order to get 
better understanding of the experimental results above. In Fig.4, the fractograph of thick specimen 
under periodic OL-UL blocks with the interval of 50 BL cycles is given here. Form the figure, some 
wider fatigue striations can be found immediately after the OL block (with very wide striations). 
The widths of the striations become smaller and uniformer after about 5 to 6 cycles away from the 
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OL. These showed an obvious delayed crack propagation mechanism of post-OL. Fractographs of 
fracture surfaces of thick and thin specimens under periodic single OL-UL with BL R=-l are shown 
in Fig.5(a, b), respectively. We can know from the figures that fatigue striations for BL cycles after 
OL-UL are obviously wider in thick specimen than in thin specimen. This may be the microscopic 
reason that the crack growth in Fig.2 is found to be faster in thick specimen than in thin specimen 
for this loading sequence. 

26w : :;X5vsaaejvs:s3«s!;-8B8:t sm75,: 

■t    * 
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Äf 

(a)   for the thick specimen (b) for the thin specimen 
Fig.5 (a,b) Fractographs of fracture surfaces of thick and thin specimens under periodic single OL- 

UL with BL R=-l (Arrows present the direction of crack propagation) 

3.3. Load history effect and thickness influence of load history effect 
Crack propagation rates for different load sequences under the same specimen thickness and 

BL stress ratios were compared with each other. It can be found that under periodic OL block 
loadings for two thickness specimens and all other parameters being kept constant, the longer the 
interval of BL, the more severe retardation is produced. This result is same as those from other 
studies under single periodic OL or periodic OL blocks!1"121. The difference of the retardation 
between periodic OL block loadings with different interval of BL cycles was found to be more 
obvious for thinner specimen. For periodic OL-UL block loadings, an increase in the amount of 
retardation was found if the OL-UL loadings were applied less frequently. Moreover, for thin 
specimen the marked increase in the amount of the retardation appeared while for thick specimen 
the increase is not as obvious as one for the thin specimen. For the simple load histories containing 
combinations of single OL and UL cycle, an UL applied immediately after an OL reduced the post- 
OL retardation more significantly than an UL that immediately precedes an OL. Most available test 
results under the simple load histories containing combinations of OL and UL cycles'21 got the same 
conclusion as one above. Contrary to the thickness effect in periodic OL or OL-UL with different 
intervals of BL cycles, the difference between the amount of retardation for periodic single OL-UL 
and periodic single UL-OL was found to be more obvious for thick specimen when BL stress ratio 
is equal to -1. And the difference is almost same between two thickness specimens when BL stress 
ratio is 0. The results above showed that not only an obvious load history effect on fatigue crack 
growth for 7174 forging aluminum alloy exists, but also the effect is markedly influenced by 
specimen thickness. 
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4. CONCLUSIONS 

For 7175-T74 forging aluminum alloy, large fatigue crack propagation behavior was studied 
experimentally for two different thickness specimens under constant amplitude, several selected 
simple sequences and Mini-TWIST flight simulation spectrum loadings. The following results were 
obtained. 

(1). Under constant amplitude loading, no thickness effect on crack growth was found. The 
reason has been explained by crack closure analyses. 

(2). Under selected simple sequence loadings, the thickness effects on crack growth are 
dependent on not only selected load sequence but also BL interval and stress ratio in the 
load sequence, and the OL and /or UL ratios. 

(3). The sensitivity to thickness effect under Mini-TWIST spectrum loading is different in the 
two different stages of crack growth. In the present investigation, when crack length is less 
than 10mm the thickness effect is not found. However, an obvious thickness effect can be 
found when crack length exceeds 10mm. 

(4). Not only an obvious load history effect on fatigue crack growth for the material exists, but 
also it is markedly influenced by specimen thickness. 

(5). SEM analyses of fracture surfaces for different thickness specimens under different loading 
conditions are very interesting, which can provide some explanations from microscopic 
mechanisms for some load history and thickness effects on crack growth. 
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ABSTRACT 
This paper addresses the accuracy of the experimental J estimation equation based on the load- 
CMOD curve for SE(B) specimens, proposed by Kirk and Dodds. Systematic investigations, based 
on 2-D FE analysis with realistic stress strain data for various materials, show that the estimation 
equation by Kirk and Dodds is not sensitive to the material but shows a large error for very deep 
cracks such as a/W=0.1. Based on slip line field analysis, a slight modification to the J estimation 
equation by Kirk and Dodds is given, then provides consistent results for all possible crack lengths. 

1. INTRODUCTION 

Testing shallow cracked single edge cracked bend (SE(B)) specimens, Fig. la, is important for 
investigating the constraint effect on fracture toughness [lj. Investigating several possibilities of J 
integral estimation for shallow cracked SE(B) specimens [2], Kirk and Dodds [2] have concluded 
that the use of the load-crack mouth opening displacement (CMOD) records provides the most 
reliable experimental J estimation. Consequently, they proposed the J estimation equation for SE(B) 
specimens with a wide range of the crack length:    . 

K(l-V)        CMOD._}±  (1) 

E lp BN-(W-a) 

In eqn. (1), K is the elastic stress intensity factor; £ and vis Young's modulus and Poisson's ratio; 
jjcaoD denotes tije plastic component of the area under the load-CMOD curve (Fig. lb); BN 

denotes the net section thickness of the specimen; rjp
CM0D is a plastic 77 factor based on the load- 

CMOD records, given by: 

»7^0D= 3.785-3.101-x +2.018-x2   for 0.05 < x = a/W < 0.7 (2) 

Although such J estimation equation was developed based on extensive finite element (FE) analysis, 
the use of idealised stress strain curves, such as Ramberg-Osgood materials, could raise some 
questions on the accuracy of the proposed the plastic T] factor solution. Noting that the plastic 7 
factor solutions are dependent on the range of deformation levels taken from the FE analysis, Wang 
et dl. [3,4] indeed proposed an expression slightly different from eqn. (2), simply by taking different 
deformation levels to extract the plastic 77 factor solutions. It suggests that the use of idealised 
stress strain curves needs care on choosing a meaningful range of the deformation. 

This paper addresses the accuracy of the J estimation equation, eqn. (1), based on 2-D FE analysis. 
Using several actual material stress strain data, it will be shown that the rjp

CM0D solution, eqn. (2), 
provides acceptable results, except for very deep cracks such as a/W-Q.l. Accordingly, based on 
slip line field analysis, a modification to eqn. (2) is given, which then provides consistent results for 
all crack lengths. 
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2. FINITE ELEMENT (FE) ANALYSIS 

Elastic-plastic FE analyses were performed for plane strain SE(B) specimens, depicted in Fig. la, 
using the general purpose ABAQUS FE code [5]. Materials were modelled as isotropic elastic- 
plastic materials which obey J2 flow theory, and a small geometry change continuum FE model was 
employed. Various crack lengths were considered, ranging a/W=0.l to 0.7. Figure 2 depicts a 
typical FE mesh employed in the present investigation. The number of elements and nodes in a 
typical FE mesh ranges from -500 elements/1600 nodes for deep cracks to -700 elements/2200 
nodes for shallow cracks. Reduced integration 8 node elements were used to avoid problems 
associated with incompressibility. 

To investigate accuracy of the J estimation equation, eqn. (1), stress strain curves of several 
different real materials were chosen, covering a wide range of yield stresses, ay, and ultimate tensile 
strengths, <ru (and thus a wide range of hardening capacity). The materials chosen in this work are 
summarised in Table 1 and the tensile curves are shown in Fig. 3. The J integral can be easily 
extracted from the FE results (in ABAQUS using domain integral approach), as a function of load. 
Moreover, the FE results provide other relevant information, such as load-line displacement, 
CMOD. 

3. RESULTS 

Based on information extracted from the FE analysis, the J integral can be estimated according to 
the recommended estimation equation, eqn. (1), using K estimated from [7]. The percentage error in 
J, E(%), is defined as 

E(%)=(jest -JFE)/jFExl00 , (3) 
where the superscripts "est" and "FE" denote the estimate and the FE value of J, respectively. 

The resulting values of E(%) for various values of a/W are shown in Fig. 4, as a function of 
normalised load, P/PL. Note that PL denotes the plastic limit load of the SE(B) specimen, which 
was determined in the present work from separate FE analysis based on elastic, perfectly plastic 
material. For a given material, the results are presented from P=0.5PL to P=Pma=0.5(oy+ <7I])IGYPL. 

Such realistic range of P would eliminate any artificial error at unrealistically high deformation 
levels. The results in Fig. 4 show that the TJP

CMOD
 solution by Kirk and Dodds, eqn. (2), shows a 

rather strange behaviour for a deep crack such as a/W=Q.l. This will be fully discussed in the next 
section. Excluding the results for a/W=0.7, eqn. (2) is generally accurate, although the error 
increases slightly as a/W decreases. In particular, for a/W=0A, the error increases as P approaches 
to PL, and then decreases when P>PL. Such tendency is possibly due to a simple linear addition of 
linear elastic and fully plastic components of J, eqn. (1), and thus neglecting a non-linear 
contribution in contained yielding, which can be significant for shallow cracks. However, for all 
crack lengths considered, the J estimation equation, eqns. (1) with (2), is not sensitive to the strain 
hardening. 

4. MODIFICATION TO THE J ESTIMATION EQUATION 

It was shown in the previous section that the TJP
CMOD

 solution by Kirk and Dodds gave a significant 
error for a/W=0.7. This can pose a problem when such equation is to be adopted in testing 
standards, since it does not provide toughness values compatible to existing ones, obtained from 
load-load line displacement records. Figure 5 shows the corresponding error E(%) in ./for a/W=0.5 
and 0.7, according to the current testing standard [7] based on FE load-load line displacement 
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records, which shows that the current J estimation equation based on the load-load line 
displacement record provides satisfactory results for deep cracks. 

At this point, it would be worth comparing eqn. (2) with the solution from the slip line field (SLF) 
analysis. The r]p

CM0D solution can be estimated from the SLF analysis, as follows. Firstly, the SLF 
analysis provides the limit load solution, Pi, which in turn gives the plastic 7] factor based on 
experimental load-load line displacement curve, ijp

ViL [8]: 
VLL       (W-a)  dP, 
y PL       da 

The SLF analysis also provides the rotation factor, rp, from which the rjp
CM0D solutions can be 

obtained 
VLL 

tiMUU=r-——<—r^\ (5) 
CMOD _ ^P  
p [a/W + rp(\-a/W)\ 

Note that the PL and rp solutions for SE(B) specimens were given by Wu et al. [8,9]. 

Figure 6 compares the resulting SLF solutions with eqn. (1). The figure also includes the 
expression proposed by Wang et al. [3] for comparison. The difference between the SLF solution 
and eqn. (2) for shallow cracks (a/W<03) can be explained as follows. The assumption of the rigid- 
plastic material being a basis of the SLF analysis is appropriate only when the plastic strain 
(deformation) dominates. Since much more plastic deformation is needed for shallow cracked bend 
specimens, due to plasticity spreading to the back surface, the results from the SLF analysis for 
shallow cracked SE(B) specimens is likely to be valid only when "unrealistically" large plastic 
deformation is applied. Such explanation can be indirectly supported by Sumpter [10], who showed 
that the rp solutions from the SLF analysis showed the larger discrepancy for the shallower cracks, 
compared to experimental data. Due to the inaccuracy of the rp solution, the resulting rjp 

solution will not be accurate for shallow cracked bend specimens, see eqn. (5). 

In this context, the SLF solution should be accurate for deeply cracked specimens, whereas Fig. 6 
still indicates some difference between the SLF solution and eqn. (2), even for deep cracks 
(a/W>0.5). Assuming that eqn. (2) is accurate for shallow cracks and that the SLF solution is 
accurate for deep cracks, the r/p

CM0D solution by Kirk and Dodds can be slightly modified, by fitting 
eqn. (1) and the SLF solution: 

^CMOD =3.724-2.244^j + 0.408.^j2 (6) 

As shown in Fig. 6, the proposed equation, eqn. (6), differs from that by Kirk and Dodds, eqn. (2), 
only at 0.5<a/W<0.7, but is almost identical elsewhere. Figure 7 shows the resulting error in J for 
two different crack lengths, a/W=0.l and 0.7. As expected, eqn. (6) does not change the result for 
a/W=0.l, but gives significantly improved results for a/W=0.7. 

5. CONCLUSION 

This paper addresses the accuracy of the experimental J estimation equation based on the load- 
CMOD curve for SENB specimens, proposed by Kirk and Dodds [2], Systematic investigations, 
based on 2-D FE analysis with realistic stress strain data of various materials, show that the solution 
by Kirk and Dodds is not sensitive to the material but shows a large error for very deep cracks such 
as a/W=0J. Based on slip line field analysis, the J estimation equation by Kirk and Dodds is 
slightly modified, and the resulting J estimation equation then provides consistent results for all 
crack lengths: 
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Table 1. Tensile properties of the materials used in the present study: materials with a yield strain. 

High strength (HS) 450 EMZ steel (450) Carbon steel (CS) 
ay(MPa) 800 540 285 
av (MPa) 840 656 410 

S=4W 

. CMOD        ~f*) 

CMOD 

Fig. 1. Relevant dimensions of the SE(B) specimen, and (b) the definition of UP
CM0D. 
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Fig. 2. FE mesh used in the present work, for 
a/W=0.3. 
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Fig. 3. Tensile properties of the materials used 
in the present analysis. 
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Fig. 4(a-d). The percentage error E(%) in J, 
according to Kirk and Dodds [2], 
eqn. (1). 
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Fig. 4(a-d). cont'd. 
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Fig. 7(a-b). The resulting percentage error 
E(%) in J, according to the 
proposed rjp
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ABSTRACT 

The two-dimensional problem of the electromagnetic thermoelastic medium containing an 
elliptical cavity subjected to a remote uniform heat flow is considered. Using the extended Stroh 
formalism, and the technique of conformal mapping, the explicit and closed-form expressions for 
the coupled fields are obtained both inside and outside the cavity. The exact electromagnetic 
boundary conditions on the cavity surface are adopted in this analysis. When the elliptic cavity 
degenerates into a slit crack, the corresponding solution and the intensity factors are given explicitly. 
The effect of the heat flow direction and the dielectric constant and magnetic permeability of air 
inside the crack on the thermal magnetoelectroelastic fields is discussed. 

1. INTRODUCTION 

The inclusion or cavity problems of materials exhibiting partial or full coupling between 
multiple fields such as thermoelasticiy, piezoelectricity or magnetoelectroelasticity, etc., have been 
a topic of interest to many researchers because of their practical importance in understanding and 
optimizing the coupled properties of these materials. A considerable amount of work on inclusion 
or cavity problems in thermoelastic materials and piezoelectric media with or without thermal 
effects can be found in the literature. Detailed literature survey may be found in the recent papers by 
Chao and Shen [1] for thermoelesticity and by Meguid and Zhong [2] for piezoelectricity, 
respectively. In contrast, relatively little work has been done for the inclusion or cavity problems of 
media possessing simultaneously piezoelectric, piezoelectric and magnetoelectric effects, namely, 
magnetoelectroelastic solids. A wide class of materials [3] and the newly emerging composite 
materials that are made from the piezoelectric media and piezomagnetic media [4-7] do have these 
mixed properties. Recently, Huang and Kuo [6], Li and Dunn [7], investigated the inclusion 
problems and the effective behaviors of magnetoelectroelastic composite materials. To the best of 
our knowledge, the cavity or crack problems of magnetoelectroelastic solids with thermal effects 
were not considered before. 

Based on the extended Stroh formalism in anisotropic thermoelasticity [8], a simple and 
compact version of general solutions in the anisotropic electromagnetic thermoelasticity is first 
presented. Applying this newly derived solution and the method of conformal mapping, the 
temperature field and the thermal magnetoelectroelastic fields in the whole region disturbed by an 
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elliptical cavity are obtained. The solution for the crack problem is obtained by setting the minor 
axis of the ellipse approach to zero. The intensity factors are also given in an explicit form. 

2. BASIC EQUATIONS FOR ELECTROMAGNETIC THERMOELASTICITY 

In a fixed rectangular coordinate system x, (i=l,2,3), the basic equations of the linear 
magnetoelectroelastic solids with thermal effects can be written in a shorthand notation as 

hi=-kvTj> \<=-*Ä=0 (1) 

Zu = EUKI
U

K,I ~nuT> 2i/,i - EUKI
U

K,U 
_nyr,. - 0 (2) 

in which 

uk   K = 1,2,3 *~ijkt J, K = 1,2,3 

uK=- (p   K = A e», AT = 4,7 = 1,2,3 

. 0   K = 5 Im AT = 5,7 = 1,2,3 

\atjJ = 1,2,3 eikl J = 4, AT = 1,2,3 

Zu A D, J = 4        , F     - ■ -e„ J = 4,AT = 4 

Bi J = 5 -«,/ j = 4,K = S 

pi, J = 1,2,3 Qtki J = 5,K = 1,2,3 

nu = P, J = * 
mj J = 5 -Ma 

J = 5,K = 4 

J = 5,K = 5 

(3) 

In Eqs.(l)-(3), a comma denotes partial differentiation and the repeated indices mean summation. kip 

T and ht are the heat conduction coefficients, temperature change, and heat flux, respectively; w„ q> 
and (f> are the elastic displacements, electric potential and magnetic potential, respectively;. <7ip Dt 

and Bj are the stress, electrical displacement and magnetic induction, respectively; Ctjk„ eu, qu and 
a,, are the elastic, piezoelectric, piezomagnetic and magnetoelectric constants, respectively; su and 
//,, are th dielectric permittivities and the magnetic permeabilities, respectively; Xip pt and mt are the 
thermal stress constants, pyroelectric coefficients and pyromagnetic coefficients, respectively. 

For two-dimensional problems, all the field variables are independent of x3. Following the 
solution procedure proposed by Hwu for thermoelasticity [8] and by Lu, et al. [9] for 
thermopiezoelectricity[9], the solutions to Eqs.(l)2 and (2)2 are, respectively, 

r = 2Rfi{g'(Z|)}, u = K,^}T=2Re{Af(0+cg(z,)} (4) 

where A = [a„ a2, a3, a4, a5], f(zj = diag[/(z,),Xz2),Xz3),y(z4),y(z5)], z,= x,+^2, za= XX+HJC2\ g(z,) 
and _/(za) are arbitrary functions to be determined, respectively; Re stand for the real part; the 
superscript T denotes the transpose; the prime ( ' ) denotes the derivative with respect to the 
associated arguments. z„ z„, A and c are constants determined by 

\k12tf + (kn + k2l )M, + *,, = 0, [Q + (R + RT K + Tfil ]■„ = 0 

[[Q + (R + RT
 )ß, + Ttf ]c = A, + n, A2 

where A, are 5 X1 vectors, and Q, R and T are 5 X 5 matrices defined by 
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A, -\Xn,Xi2,Al3,p,,mi}    (i-1,2),   QJK = EUK],RM = EUK2,TJK = E2M2 (6) 

Substituting Eq.(4) into Eqs.(l)[ and (2)„ the heat flux components A„ the stresses, electric 
displacement and magnetic induction Z, can be written as 

h, = -2Re{(*n +M,ka)g\z,)} (/ = 1,2), Z, ={CT,y,D1)Jß1}
T =-4>_2,Z2 ={a2,,Z)2,JB2}

T =0,        (7) 

where <J> is the generalized stress vector given as 

<D = 2Re{Bf(zJ+dg(z,)} (8) 

with 

B = RTA + TAr = -(QA + RAT)r-1,d = (RT+>u,T)c-A1=-(Q + //,R>/^+A;!///, (9) 

in which T = diag[/i„ /^, /<,, //4, //5,]. 

Using Eq.(7), the resultant heat flow <9, the resultant force and the resultant normal components 

of the electric displacement and the magnetic induction Z along any curve can be expressed by 

0 = JA, dx2 -h2 dx, = -2k, Im{g'(2,)},Z = ^,SD,SH}r = Jz, dx2 -Z2 dx, = -3> (10) 

where Im denotes imaginary part and k, = -yjkuk22 - k\2 . 

3. UNIFORM HEAT FLOW DISTURBED BY AN ELLIPTICAL CAVITY 

^ /^e 

wm 

^ 

3.1 Statement of the Problem 
Consider an infinite anisotropic 

electromagnetic thermoelastic medium 
containing an elliptical cavity subjected to a 
uniform heat flow h0 directed at an angle 9 
with respect to the positive x^axis, as shown 
in Fig. 1. The regions occupied by the material 
and the cavity are referred to as Q and Qc, 
respectively. In addition, the cavity is assumed 
to be free of forces, charge and electric current 
along its surface, but to be filled with the 
homogeneous gas (air or vacuum) of 
permittvity (/) and permeability (//), where 
superscript c refers to the quantities in the 
cavity. 

Unlike elastic fields, the electric fields and the magnetic fields can permeate vacuum and can 
exist inside the cavity of a magnetoelectroelastic material. The electric potential and the magnetic 
potential in the cavity satisfy the Laplace equation 

* 

Fig. 1. An elliptical cavity in an infinite solid. 

VV =0,  VVc=0    inQc: (11) 

and the constitutive relations are 
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Ac = e'Ef =sc^, B< = fi'Hf = -n'^-, i = 1,2    in Qc, (12) 

The general solutions to Eq.(ll) are 

cp< = 2Re{/,<(z)}, f = 2Re{/2
c(z)} (13) 

With Eqs.(12) and (13), The sums of the normal components of the electric displacement and 

magnetic induction along an arc may be expressed, respectively, as, 

SI = -2ec Im{/,c(z)}, S\ = -2M
C Im{//(z)}. (14) 

For convenience of the latter derivation, we define 

V< = {<p',f}T = 2Re{f°{z% S< = fc,Sl}T = -2IT Im{f'(*)} (16) 

where fc(z) = {/,c(z),/2
c(z)}T and IT =dmg[ec,M

c]. 

According to the above description, the boundary conditions of the present problem are 

0=0, gTu = xPc, O =-gSc along the cavity boundary L (17) 

ß,=Ä0cos#, h2=h0sin&, Su =0    at infinity (18) 

where 

g = 
oooi oT 
0   0   0   0   1 

(19) 

3.2 Solution of the Problem 
Introducing the following mapping functions 

za(Ca) = Rla(a+R2«C;\ Rla={a-ipab)/2, R2a=(a + ipab)/2 («=1-5,0 (20) 

z(£)=R(£ + mCx), R = (a + b)/2, m = (a-b)/(a + b) (21) 

the general expressions for the fields outside and inside the elliptical cavity can now be written in 
the mapped plane as following 

T = 2Re{g'h(£l) + g'p(Cl)\, <9 =-2*. Imfo(£) + *;(£)}    inQ (22) 

u = 2Re{Af(4-a) + c^(c)},«>=2Re{Bf(C) + dgp(c)}       inß (23) 

xPc=2Re{fc(^)}, Sc=-2irim{fc(^)}    inQc (24) 

where gh{Q represents the function associated with the unperturbed temperature field which related 

to the solution of the homogeneous media, while gp(Q denotes the function corresponding to 

perturbed temperature field of the material due to the presence of the cavity, f (Q is the function 

corresponding to the fields inside the cavity. It should be note that since the complex function 

cgh (£",) and dgh (£",) associated with the solutions of the homogeneous problem due to a remote 
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uniform heat flow will not produce stress, electric field and magnetic field, these complex functions 

can be subtracted from Eq.(23) without difficulty. 

Applying the boundary conditions (17) and (18) and after the tedious manipulation, the 
functions in Eqs.(23) and (24) are obtained as follows 

//- \    1     (n2ri    7,2 /--2 \              cos 0 + 77, sin t9 ,   , gn(C,) = -gMC2 + RlC 2),  g0 = ^ k22h0 (25) 

gPiS,) = a,p ln£ + a2pC,alp = Rlt(g0Ru -g0R2l),alp= R2l(g0Ry -g0R2l)/2 (26) 

f(0=«lnC,»n + «C2»q, « = 1-5    inQ (27) 

fc{Z) = {e+m2C2)e    inQc (28) 

In the above equations, the overbar stands for the conjugate of a complex number. 5x1 vectors n 
and q, 2x1 vector e, respectively, are 

n = 4B-,L[lm(aIpc)- zM Im(a,„d)] (29) 

q = B-I[/gir(e-m2e)-a2pd] (30) 

e = (m4W-VW-Iv)"'(w2Y-VW-1Y) (31) 

with 

W = I + gTMgIT, V = I-gTMgn% Y = fl2pg
T(c + /Md) (32) 

in which I is the 2 X 2 unit matrix, while L and M are 

L = -2;BBT, M = ;AB-' (33) 

where L is the real and nonsingular matrix, and M is called the impedance matrix and is 
nonsingular [3]. With the functions given in Eqs.(25)-(28), one can calculate the stresses and the 
electromagnetic fields without difficulty. In addition, substituting Eq.(28) with Eq.(21) into Eq.(13) 
and Using Eq.(12), we find that the electromagnetic fields in the cavity are always linear functions 
of the coordinates. 

4. UNIFORM HEAT FLOW DISTURBED BY A SLIT CRACK 

When the minor semi-axis b of the ellipse approaches zero, the elliptic cavity reduces to a slit 

crack of length la. The solutions for the crack problem may be studied accordingly. Since R]t= R2, = 

R = a/2 and m = 1 when b = 0, Eqs.(29) and (30) can be simplified as 

II = 2a2B-1L[zMRe{d}-Re{c}]lm{g0} (34) 

q = /a2B-' [d + 2 Im{Md} - Re{c}]lm{g0}/ 4 (35) 

Eq.(27) together with Eqs.(34) and (35) indicates that f(4) is independent of IT. This means the 
coupled fields in the cracked material are not related to IT. Noting form Eq.(25)2 that Im{g0}= 0 



144 Fracture and Strength of Solids 

when the uniform heat is flowing parallel to thermally insulated crack (0= 0), we immediately find 
that the electromagnetic elastic fields are not induced under steady-state condition in terms of 
Eqs.(7)2>3, (26) and (27) together with Eqs.(34)-(35). 

Differentiating the functions f(£J and gp{Q with respect to za and z„ respectively, and then 
considering that x2 = 0, xx> a, the stresse, electric displacement and magnetic induction near the tips 
of the crack along the xx axis are obtained by 

S2 = Re{n - 2C2q + apl (l - C)}     } (36) 

where C, = \x{ +^x* -a2J/a. From Eq.(36), it can be seen that the stresses, electric displacement 

and magnetic induction exhibit the traditional square root singularity. The amplitudes of the singular 

fields can be characterized by the intensity factors K={ Ku, Kb Km, KD, KB}
T, where Kn, Kx and Km 

are the traditional stress intensity factors, while KD and KB are the electric displacement factor and 

the magnetic induction factor, respectively. 
With the usual definition, the intensity factors are given by 

K = lim -/fcrfo-fllEj = 2 J- Re{n - 2q} (37) 

Eq.(37) with Eqs.(34) and (35) shows that the intensity factors are dependent on the material 
properties. 

5.   CONCLUSIONS 

The following main conclusions can be drawn: 

(1) The electromagnetic fields inside the cavity vary linearly with the coordinates. 

(2) In a slit crack case, the coupled fields in the materials are independent of the dielectric constant 

and magnetic permeability of air inside the crack. 

(3) A thermally insulated crack doesn't disturb the uniform heat flow parallel to it. This means that 

the stresses, electric fields and magnetic fields are not induced in the materials. 

(4) The intensity factors are related to the material properties. 
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ABSTRACT 

In this study, a method was proposed for evaluating the stress intensity factor using the 
isochromatics multiplied and extracted from original isochromatic images which obtained from a 
white light photoelastic experiment. This method utilizes R, G and B isochromatics, which are 
captured using a color CCD camera and an image processor in dark- and light-field circular 
polariscopes. First, for each color, the dark-field intensities are subtracted from the light-field ones 
so that each point of the resultant image has a positive, zero or negative value. Then, the 
isochromatics are obtained as a series of points at which the value is zero, which are extracted using 
an image processing. The fringe orders are assigned to the extracted isochromatics using calibration 
curves. The stress intensity factor is determined using the Irwin method. This method is applied to 
an epoxy resin plate with a crack formed at one side under 3-point bending. The result shows that 
the stress intensity factor is accurately evaluated using the R, G and B isochromatics near the crack 
tip. 

1. INTRODUCTION 

The stress intensity factor, K, which expresses the intensity of stress field near the crack tip, is 
used to investigate initiation and propagation of cracks in many materials. In order to evaluate K, 
the isochromatic fringes obtained from a photoelastic experiment are often used. When the stress 
intensity factor is determined, many isochromatics must be used to improve the accuracy of the 
determination. Few isochromatics appear in a model which is made of low-sensitive photoelastic 
material. In such case, the isochromatics must be multiplied and extracted. 

There are three techniques for extracting linear isochromatics from an isochromatic image 
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captured using a monochromatic CCD camera: (a) a thinning technique by which the centers of 
binarized fringes are obtained[l]; (b) a technique for detecting the minimum light intensity 
points[2],[3], and (c) a technique in which the dark-field light intensity is subtracted from the light- 
field one[4],[5]. To multiply isochromatics, subtraction of the dark-field light intensity from the 
light-field one[4]-[8] and the n multiple-angle relations of the sine and cosine functions[5],[7],[8] 
have been used. Using these techniques, the multiplication and extraction of isochromatics have 
been markedly improved. 

All the above mentioned techniques have been used for one or two monochrome isochromatic 
images, which are captured separately. Instead of these techniques, a multiplication and extraction 
technique for a one color isochromatic image, which is captured using a color CCD camera and has 
information at multiple wavelengths, is considered[9]. 

In this study, a method was proposed for evaluating the stress intensity factor using the 
isochromatics multiplied and extracted from original isochromatic images which obtained from a 
white light photoelastic experiment, and was applied to an epoxy resin plate with a crack formed at 
one side under 3-point bending. 

2. FRINGE MULTIPLICATION AND EXTRACTION METHOD 

2.1 White Light Potoelasticity 
The light intensities, IAi and Iu (z'=R, G, B), emerging from the RGB filters of a color CCD 

camera in the dark- and light-field circular polariscopes using a white light when the error of the 
quarter-wave plates,   e is taken into account become[ 10] 

h,i =7 r— I '2 Fi(X)Ioa) sin2 nNx(l - cos2 2(|>sin2 z)dk + IBi (1) 
ki2-kn

Jhi 

h,i = T — f, " %/oa) ps2 nNx(1 - cos2 2<|>sin2 e) + cos2 2<t>sin2 e\tk + IB, (2) 

where I0 ( A), which is a function of wavelength, A, is the amplitude of the light emitted from the 
polarizer, IBj (?=R, G, B) are the background light intensities on the R, G and B images, <p is the 
direction of the principal stress, a,, to a selected reference, Nx (=A/A where A is the 
retardation) is the fringe order at wavelength A, Ft (X) (z'=R, G, B) are the spectral responses of 
the RGB filters of the camera, e = (?z72){( A 01A )-l} where A 0 is the matching wavelength of 
the quarter-wave plates and A is the generic wavelength, and A ü and A a (/'=R, G, B) are the 
lower and upper limits of the spectrum as acquired by the filter /'. 

2.2 Multiplication and Extraction Method 
The subtraction of the light intensities in the dark-field isochromatics image from those in the 

light-field one, and the extraction of the points with zero values using an image processing 
technique was used for multiplying and extracting isochromatics [5],[9],[11], 

As shown in Fig. 1, subtraction of Idi (shown by Eq. 1) from Iu (by Eq.2) yields 
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4,=//,-^, 

 f '2-f/(x/ow[(2cos2'tAr>- —1>(1 — cos2 2t|) sin2 e) + cos2 2<}i sin2 s JGK\. 
K/2 — A,] «Xyi (3) 

where z=R, G, B. 
Equation 3 indicates that the values of Nx at which Isl=0 (;=R, G, B) are not 1/4, 3/4, 5/4, 

though those at which Isj =0 when a single wavelength,  A, is used are 1/4, 3/4, 5/4, • • • [5]. Here 
the apparent fringe orders of A^ =(2m-l)/4(z'=R, G, B, m=l,2,3/ • •) are assigned to the points at 
whichIsi=0 (z'=R, G, B) temporarily. 

2.3 Fringe Order Assignment Method 
A method for assigning the correct fringe orders to the extracted R, G and B isochromatics to 

which the apparent fringe orders were assigned as shown in section 2.2 using calibration curves was 
as follows[ll]. 

First, the light intensities, 4,and IUQ=R, G, B), in the dark- and light-field isochromatic images 
obtained using the RGB filters of a color CCD camera shown in Fig.2 were calculated using Eqs.l 
and 2. The value of Io(X) required to calculate IAi and Iu(z-R, G, B) was taken as 1, and Ft(X) (z'=R, G, 
B) as the relative spectral responses, T, of the RGB filters, respectively. The values of AR1 =530 
and AR2 =700nm, AG1 =440 and A G2 =620nm, and AB1 =400 and AB2 =5 50nm were obtained 
from Fig.2 as An and Ai2(J=R, G, B). Furthermore, <zS=0° was used because, if e =£0, the 
effect of (fi on the light intensities is minimal at <z>=45° and maximal at 0=0° and 90° , 
although if E =0, the effect does not occur at any <z>, as known from Eqs. 1 and 2. The values of Nif 

(z'=R, G, B) were obtained from NZ=NXG • a J a XG, where NXG is the fringe order at wavelength 
AG =540nm, ax is the photoelastic sensitivity at wavelength A, and aXG is the photoelastic 
sensitivity at wavelength A G =540nm. The value of ax was obtained from a ^=0.152-0.000149 
A(A in nm), which was determined on the basis of aR =0.061mm/N, aG=0.071mm/N and aB 

=0.08mm/N measured using the color CCD camera. 
Second, the light intensities, 7dand /,, in the dark- and light-field isochromatic images obtained 

at a single wavelength of Aa =540nm were calculated from 7d=sin2 xNXG and 7, =cos2 nNXG. 
Third, the points at which Isl =0 (z-R, G, B) with the apparent fringe orders were extracted. Lastly, 

i-1 I. i-|d. i 

Position 

(a) (b) 
Fig.l Subtraction of light intensities in dark field image from those in light field one. 
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the calibration curves were made comparing the positions of isochromatics having the apparent 
fringe orders with those having the correct fringe orders obtained at a single wavelength of A a 

=540nm in the range of A^G =0 to 3. 
Figure 3 shows the calibration curve for the R filter in the color CCD camera. Using the 

calibration curve, the apparent fringe orders, NRf=\IA, 3/4, 5/4, • • • of isochromatics extracted 
using the R filter were converted to Nia obtained using A a =540nm. The calibration curves for the 
G and B filters were expressed by Nxa= -0.064 NG} + l.07A7NGf- 0.007 and Nza = -0.00002Ay 
+ 0.8784ATB/- 0.0024. 

G R 

B / 
\    / 

/ 1 \ 
*» V. 

Wavelength. A   [nm] 

Fig.2 Relative spectral responses of R G and 
B filters of color CCD camera. 

Fig. 3 Calibration curve for assigning fringe 
orders to isochromatics multiplied and 
extracted using red filter in CCD camera. 

3. STRESS INTENSITY FACTOR EVALUATION METHOD 

The stress intensity factor, K,, for mode I loading was evaluated by the Irwin method using the 
equation[12] 

K 
WxV^" 

"**'    aJsin6_ 
1 + '     2     V 

3tane„ 
1 + 

2tan(36CT/2) 

3tan6„ 
(4) 

where rm is the radius to the furthest point, M, on the fringe loop, and 6m is the angle of fringe tilt 

4. APPLICATION 

The proposed method was used to evaluate the stress intensity factor, K,, for a crack formed at 
one side in an epoxy resin plate under 3-point bending as shown in Fig.4. Figure 5 shows a 
polariscope system for multiplying and extracted isochromatics. Video signals output from a color 
CCD camera were converted into R G and B signals using a component transcoder. The R G and B 
signals in the dark and light fields were separately input into a monochromatic image processing 
device, digitized and stored as a 256 X 256 pixel array in a floppy disk. After R G and B images 
were taken in each field,   the two images for each color   were   used   to multiply and extract the 
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Crack 

WrP 
Color CCD camera 

P =78. 4N, S =200mm 
W =50mm, a =7rara 
L  =220mm, b =1.1 ram 
t =6mm, c =1mm 

3 j^ 
l<- 

Fig.4 Beam with crack in one side 
subjected to 3-point bending. 

Analyzer 

1/4Aplate 

Polar ize 

Fig.5 Experimental setup. 

(b) Green (b) Green 

(c)Blue (c)Blue 
Fig. 6 Isochromatics in the     Fig. 7 Isochromatics in the 
dark field light field 

(a) Red 

(c) Blue 
Fig. 8 Extracted isochromatics 
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isochromatics using a personal computer. The fringe orders were assigned to the extracted 
isochromatics using calibration curves. 

The values of ZR =610nm, A. a =540nm and /?B=480nm was selected as typical wavelengths 
for the R, G and B filters shown in Fig.2, at which the filters had the maximum relative spectral 
responses. The values of aR =0.061 mm/N, aG=0.071mm/N and aB =0.08mm/N were obtained 
using the R G and B filters in the polariscope. 

Figures 6 and 7 show the R, G and B images in the dark and light fields, respectively. Figure 8 
shows the isochromatics extracted from the R, G and B images shown in Figs.6 and 7. The 
multiplied isochromatics shown in Fig. 8 were used to evaluate the stress intensity factor, KI(expj, 
using Eq.4. 

Table 1 shows the comparison between the stress intensity factor, KI(exp), evaluated by the 
proposed method using the calibration curves and KI(!hy) obtained by the theory[13]. The 
isochromatics with fringe orders 0.25, 0.75 and 1.25 on each color image were used to evaluate 
Ki(ap)- The average of the error ofKI(exp) was about 3%. The error of K1(exp) evaluated without using 
the calibration curves was about 7%. Hence the proposed method was effective to evaluate the 
stress intensity factor accurately. 

Table 1. Comparison between KI(exp) evaluated by the proposed method and KI(thy) 
obtained by the theory. 
Image Klfml (NW2) Kmhvl (N/mm3/2) Error (%) Average error (%) 

R 
G 
B 

9.74 
9.85 
9.99 

9.55 
2 

3.1 
4.6 

3.2 

5. CONCLUSIONS 

A method was proposed for evaluating the stress intensity factor using the isochromatics 
multiplied and extracted from original isochromatic images which obtained from a white light 
photoelastic experiment. The method was applied to an epoxy resin plate with a crack formed at one 
side under 3-point bending, and its effectiveness was discussed. The results showed that the stress 
intensity factor was accurately evaluated using the R, G and B isochromatics near the crack tip. 
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ABSTRACT 

In this paper, a brief review of the singular line mapping technique in finite element method of 
lines (FEMOL) for plate and shell crack/notch problems is given. By using the singular line 
mapping technique, the solution property is changed, the computation is speeded up and the 
accuracy is improved. The displacement and its derivative can be obtained accurately after an 
accurate singular line mapping, and the lowest stress intensity factor can be solved from the 
derivative. Some numerical examples are given to show the general excellent performance. 

1. INTRODUCTION 

Stress analysis in practical engineering applications inevitably encounters stress singularities 
caused by sudden changes in geometry, e.g. around re-entrant corners (notches) or, more severely, 
around crack tips. Their presence causes great difficulty to the numerical solutions that have to be 
invoked when analytical solutions are not available. A numerical recipe for accurate and efficient 
computation of stress singularity factors (SIFs) usually consists of two major ingredients, namely a 
powerful numerical method for general stress analysis and a novel approach to obtaining the desired 
SIFs which may include special treatment of various singularities. The underlying numerical 
method employed in this paper is the FEMOL [1-4], which is a newly developed, general-purpose, 
semi-analytical method. In this method, a partial differential equation defined on an arbitrary 
domain is semi-discretized, by finite element techniques via energy theorems or variational 
principles, into a system of ordinary differential equations (ODEs) defined on straight or curved 
mesh lines.At present, the resulting ODE system is solved directly and efficiently by state-of-the-art 
ODE solver, e.g. COLSYS [5,6] is exclusively adopted in the present paper. Such solvers have 
built-in self-adaptivity features such that the accuracy of the ODE solutions satisfies the user 
pre-specified error tolerances. With the solver used, FEMOL has been proved to be a distinguished 
numerical method with efficient adaptivity in the mesh line directions automatically built in, so that 
its inherent semi-analytical characteristics are well preserved. Its power and versatility have been 
demonstrated by a series of theoretical analysis and computational applications to various linear and 
nonlinear problems. A general-purposed computer code FEMOL92 [7] that is capable of static and 
vibrative analysis of various linear elastic structures has been developed. For a more detailed and 
systematic description of FEMOL, see Ref. [4]. FEMOL could be directly applied to notch/crack 
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problems [3,4]. The success in establishing 'triangular' elements (Yuan [8]) by degenerating an 
element end-side to a point allows the use of the optimum radial line meshes, i.e. mesh lines 
emanate from crack tips. With no special treatment, except for judicious use of radial line meshes 
with sufficiently high polynomial degree p used in the element displacement shape functions, 
FEMOL is able to produce remarkably accurate solutions even when very few elements are used [4]. 
Most of numerical methods, directly or indirectly, make use of the available eigen-solutions when 
applied to the SIF computation for crack/notch problems so that singularity can be treated in a more 
efficient, accurate and reliable way. Recently, Xu and Yuan [9] presented an effective 
implementation of the imbedding method for accurate and reliable computation of complete real or 
complex eigen-solutions in two dimensional notch/crack singularities with multiple materials, 
arbitrary opening angles and various surface conditions. The resulting algorithm is robust and may 
be employed by any numerical methods that make use of singular solutions. 

In order to take full advantage of the power of FEMOL and the usefulness of the local singular 
solutions, the singular mapping technique [10] is utilized in this paper to remove the singularity 
from the FEMOL solving to the mapping. This nonlinear mapping not only can map an interval to a 
standard one, but also can change the behavior of the solution function. Combined with the self- 
adaptivity features, the computation is speeded up and the accuracy is improved, especially, the 
tolerances can be imposed on the derivatives as the displacement for the singular solutions. The 
displacement and its derivative can be obtained accurately after an accurate singular line mapping, 
and from the derivative we can solve the lowest stress intensity factor. Recently, Xu and Yuan [11] 
use this technique in anti-plane and in-plane problems to solve the SIFs. In the present paper, a brief 
review of the singular line mapping technique in finite element method of lines (FEMOL) for plate 
and shell crack/notch problems is given. By using the singular line mapping technique, both the 
displacement and its derivative can be obtained accurately after an accurate singular line mapping, 
and from derivative the lowest stress intensity factor can be solved. Some numerical examples are 
given to show the general excellent performance. 

2. SINGULAR MAPPING TECHNIQUE OF FEMOL 

Figure 1 shows a two dimensional singular problem with N different materials around 
notch/crack tip. The body forces are assumed to be negligible. For convenience sake we omit the 
different material domain subscript j shown in the Fig. 1 (a). In the polar coordinates shown in Fig. 
1 (a), for the Reissner plate and shell, the general displacement components can be written as the 
following double series form 

(i) 
«;=I2v+vi(*) 

i      n do w=Y2s^"cM 
Wo 

= 12/ 
i     n 

"bi(0)' 
(1) 

part (i) is omitted for the Reisser plate. It shows that the singularity may appear when n = 0 and in 
the first two or three terms of i. Here we only take into account of the main part of n = 0, the 
Reissner plate and Reissner shell could be divided into two basic parts of anti-plane part and in- 
plane part. The well-known Williams' displacement  w0(r,&) and potential function <p0(r,e) are 

(i)    wB{r,0)=     X«/7;(0),        (ii)    *,(r,0)=     Ya^F,{0) (2) 

where both  /,(<?) and  Ft (&) are certain normalization eigen-functions corresponding to the eigen- 
value  X,, and the well known explicit forms are 
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(a) Original problem    (b) FEMOL mesh with radial lines 

Fig. 1 N-material notch problem 

f,{0)=A,cosAi0 + B,s\nAi0,   F» = A,sm(A,+ ))0 + Blcos(Ai+ \)0 + C,sm(A,-])0 + D^{A - \)0 (3) 

where   {A,,B)  and   A,   in  /(<?)  are real constants,   {A,,B,.,C„A}and   4-   in   FA9)  are complex 

constants. (u,0,,«00,) and (y/rOI,Woo,) can be derived from the stress potential function 

"rorVro, =r 
X(\-VäIX\+ä,)F,(0)+FX0) 

AE 
u90i i¥eQi ~ r 

A (l + A, - (l - A, )Aiv + 2/1,2 ]F,'(0)+ F,j0) 
(4) 

A(\-A)E 

the corresponding stress components of both anti-plane and plane problem are 

Mr0l R0, }= r^aM {alN M*) + (*,+ \)F,(0)] 
■MOOl{NOOl}=^"a,u{alNlA,(Al+\)F,(0)]      ,    ; = 0,1,2,3,- (5) 

Mm {V^o, }= r*'-'aM {alN \-X,F, (ö)] 

Qrai=GA^-'aif,{0) 

Qmi=Gr*'-<aj;{0) 

when r->■(), the stresses will tend to infinity because there are singular terms /'"', the same 
singularity will exist in the derivative when implement FEMOL. When the following variable 
substitution is taken, the singularity that in the derivative and the strain or stresses will be removed 

p = r^ (6) 

where  Ax is the first eigne-value. The corresponding expansions can be rewritten as 

(iv- (i   H^-VA^\ + A)FI{0)+FX0) 

i-n i t i A iiL 

Voo{«oo} =      X     «.«fcv}p' 
(] + A, -(\-A^v + 2AJ]F;{0)+ Fj{0) 

(7) 

solving derivative of variable r is replaced by solving the derivative term of variable p, and the 
singularity is removed. To achieve this ideal situation in FEMOL, we judiciously choose a radial 
line mesh as shown in Fig. lb. For the n-th line, the mapping and the inverse mapping relations are 

1 + 2 r = L„ 
7 + 1H 

After singular line mapping, the Williams expansions in formula (7) will be changed as 

¥ro Ko} =     2L     a<« la«v iV7 + 1)   " — f^- — 

(8) 

»,,=   YßX<i+\Yf,(e\ 
A.E 

VOTKO}=   Z ,{5 
M   ,v (' + 4 -{\-A)AIV + 2A])F;(0)+FX0) (9) 

AX\-A)E 

where    A, = A, /A, ,a, = a,l'; /2A 
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3. COMPUTATION FOR THE LOWEST SIF 

For both the anti-plane and the in-plane parts, to seek the SIFs is tantamount to find the 
corresponding coefficients a, of the Williams expansions in (2), especially the lowest coefficient 
or,. From the formula (9) we know that, if the coefficients of a, are known, the coefficients a, are 
obtained too 

a0=a0,   a, =2ä,/lJ (10) 

From FEMOL solutions, the displacement terms and the derivative can be easily calculated, 
then we can get the lowest one or two coefficients by using the following way 

(i)    ä a,,, = hm 
dr\} I8U    or   *^*±h&^   ,.0)1 

(ü) 

50 = lim w0{rj,e)lfM    ff, = Hm ^Ml Jf (fl) 

^^^A< - *> 
dn 

(11) 

"7—1 dl)' I     2J J 

where, without losing the generality, we use  d°/d()0 to indicate the displacement and 

S\0 
_4Z>0cos(g)-(l-vK(g)     s   _-4g0sin(g)-(l-v)F0'(g) 

_(l-vA,Xl + Al)F,(g)+Flfg) _ (l + A, - (1 - A, K v + 2A?)F/(g)+ iflfl) 

It is well known that the coefficients of the r*'~] -stress singularity are related to the stress 
intensity factors, From the relationship between the coefficients and the stresses, the SIFs are 
generally defined as 

\Ku = limt/2^-' max(AU(r,fl))) 

Km « KrrU^r'* maxg(l -<T2)ßroM) 

< »-Hmf VW-"1 max[-^Mflo(r,0) (12) 

where superscript s indicates the membrane stress part, b indicates bending part. 

07?ftTffffl?f%   i 

{- iz 

I 
        ^jM"  2W 
- 2°     ►       d. 

%mmmß » 

I   I    V    5 

2a 

(a) Original problem        .,   „„,,_. mal" an Fig. 3 A pressurized cylindrical shell K the FEMOL meshes r  .iU    .      .;  ,.    . 
with a longitudinal crack 

Fig. 2    Reissner plate with a center 
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4. NUMERICAL EXAMPLES 

To assess the performance of the proposed method, some numerical examples are given in this 
section. The following notations are used 

L, —j-th line on which the SIFs are calculated 
L„ —the line length 
p —polynomial degree used for element displacements 
TOL —tolerance specified for ODE solutions. 
In the following examples, all FEMOL tolerances are taken as roi=0.01%. 

Example 1 Reissner plate with a center crack 

In this example, as Fig. 2(a) shows, we consider a Reissner plate problem with a center crack. 
A quarter body was taken in computing by using the symmetry as Fig. 2(b) shows. The necessary 
constants are M0 = 1.0, £ = 1.07 and i/ = 0.3, the length of crack is la and the thickness of the 
plate is h, 2L = 2W = 4a, with a = \. Table 1 gives the derivative ^0„; of the vertices and the 
lowest SIF  K{ along the line 3 corresponding to the different thickness. 

Table 1    Computed results of derivative and lowest coefficient «,, and SIF Kx 

3 4 5        Ref. [12] (K,) 
(h/a) 

0.5 

1.0 or. 

0.400878e-4 

59.389364 

37.216765 

0.374249e-4 

55.444255 

34.744366 

0.369290e-4 

.54.709682 

34.284209 

34.18575 

0.501775e-5 

7.433703 

9.316766 

0.512247e-5 

7.588846 

9.511198 

0.513005e-5 

7.600080 

9.525287 

9.56300 

Example 2 A pressurized cylindrical shell with a longitudinal crack 

Crack face 

TlR 

(a) A quarter domain    (b) FEMOL meshes 

(b) Fig. 4 A finite length problem Fig. 5  M{X„,K) (a/L = 0.03) 

In this example, as Fig. 3 shows, we consider a pressurized cylindrical shell with a longitudinal 
crack. In most references, the SIF  K, [l4] and the bulging factor M are defined as 

K, = K", + K] = (K„„„ + Kj^L^Ta,       M = Kmm + Khm 

the necessary constants are  Xa = ^12(l-v2)a/V^,   tc^DJCa1 ,E = 2 xlO6,   v = 0.3,   a = \,   p = 2. 

Consider a finite problem as a/L = 0.03, a quarter body is taken in computing by using the 
symmetry as Fig. 4(a) shows, the FEMOL meshes as Fig. 4(b) shows. Table 2 gives the computed 
results of bulging factor and the compare with Ref. [13] and Ref. [14]. Fig. 5 gives the compared 
curves according to the Table 2. 
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Table 2 Computed results of the bulging factor (a/L = 0.03) 

^"~"\  *" 0 0.001 0.1 
A*^\ Ref. [13] M(X„,K) Ref. [14] M{Xa,K) 

1.088197 

Ref. [14] 
0.2 1.0137 1.012392 1.04 1.13 
0.4 1.0483 1.096604 1.09 1.177397 1.19 
0.6 1.0985 1.214868 1.14 1.192948 1.26 
1.0 1.2329 1.426322 1.27 1.434653 1.34 
1.2 1.3122 1.533991 1.28 1.453101 1.39 
1.6 1.4866 1.739218 1.47 1.811987 1.52 
2.0 1.6743 1.974668 1.78 2.043780 1.93 
3.0 2.1636 2.406444 2.34 2.400734 
4.0 2.6469 2.766640 3.01 2.674663 
5.0 3.1096 3.127763 3.86 
6.0 3.5459 3.366533 4.49 
7.0 3.9685 3.829041 
8.0 4.3667 4.121953 

5. CONCLUDING REMARKS 

To sum up and end up this paper, the following conclusions can be drawn: 
(1) Generality: The present algorithm is a general approach and is applicable to any two 

dimensional singular problems, if only the lowest eigen-value  A, is given. 
(2) Accuracy: Ref. [4] gives some rules and tips to the ODE solving (COLSYS) that one is 'Do 

not impose tolerances on derivatives for singular solutions'. These rules have been broken 
down by the singular mapping technique. The tolerances can be confined on the derivatives and 
the accuracy is fully controlled by the user with a desired error tolerance specified to the solver. 
This guarantees that the solutions of singular problem are in the desired accuracy. 

(3) Efficiency: By using the technique, FEMOL elements can be constructed with the desired 
singular behavior built-in. The computation is speeded up and the accuracy is improved. 

(4) Strongpoint: In FEMOL, the present singular line mapping is not limited to the crack case. It 
is applied to notches with any opening angles. The accurate derivatives around the vertices can 
be computed. 

(5) Lowest SIF: SIF can be easily solved from the accurate derivatives along the different lines. 
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ABSTRACT 

In this paper, we consider the collective evolution of voids in front of crack tip, which always 
means high stress/strain gradient existed there. We use the equilibrium equation of void number 
density to describe the evolution behavior of voids during the process of crack growth. With the 
assumption and computation, we are able to solve the equilibrium equation and obtain 
corresponding results, which present similar tendency with experimental measurements. 

1. INTRODUCTION 

The nucleation, growth and coalescence of voids are the major characteristics of the failure 
process of ductile materials. The study on this field has received rich achievements. Since Gurson 
published his paper on stress field near a single void in a matrix, many scientists have been 
focusing on the behavior of single void or limited number of voids. In recent years, the damages as 
a whole were paid more and more attention during the process of failure of material. Bai et al m 

proposed an equilibrium equation of damage number density to describe a mean-field damage. 
Hong et alpl applied this method to describe the property of collective evolution of short cracks 
during fatigue damage and of overall crack number density. From the experiments on two weld 
materials, Hong and Zheng[3] found isolated voids did not coalesce with crack tip and the 
coalescence of limited voids might not be the critical stage of crack growth. Also the void area 
fraction increases with increasing value of COD. As the COD reaches its critical value or beyond, 
the overall void damages tend to a steady distribution. This phenomenon suggests that we could 
analyze the collective evolution of voids with equilibrium equation of void number density. 

2. EQUILIBRIUM EQUATION OF VOID NUMBER DENSITY 

In this paper, we consider the static growth of ductile crack. Here we attempt to use the 
equilibrium equation of damage density. Based on the evolution process of voids, we may develop 
an equation to express the collective evolution of voids1 \ 

f7™* &Lda + Af p"" Rn da] = NK r
max nnda (1) 

*TQ     d% 8r{K )       gj3o 
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where n is void number density, a is local stress, £ is COD which also means generalized time 
of crack growth, r represents the radius of voids and R is void growth rate which depends on the 
dimension of the void and the stress state there. Two characteristic stresses a0 and crmax are 
local stresses near crack tip when it starts to growth and when it grows steadily. nN is nucleation 
rate of voids and Ns is dimensionless coefficient. 

The equation above implies that the total number of voids of given size depends on the 
nucleation and the growth of voids before the applied load reaches the critical value of growth. 

3. THEORETICAL ANALYSIS AND SIMULATION 

Based on the equilibrium equation, we can get more simple expressions according to the 
following assumptions. Because the voids are near the crack tip, the stress/strain field there should 
be under careful consideration for the high stress/strain gradient existed. Though the equation itself 
does not show materials parameters, the high gradient of stress can be included in the local stress 
a  in the equation. 

First we discuss the condition when the growth process is near the steady state, which means the 
stress distribution does not depend on time. It can be a small time interval during whole crack 
growth process that the variation of stress with time can be neglected. From Eq. (1) we have 

dn    d(Rn) 
dt       dr 

+ ^TZ = 7VN (2) 

The stress is not explicit in the equation. But it is in fact one of independent variables of n. So 
the stress gradient is included. Then we use HRR field as stress field[5]. It gives 

l 

cr(x) = crw In -u ' 
<3> 

where x is the distance to the crack tip, x0 is the dimension of plastic zone of crack tip, m is 
strain-hardening exponent of material, and <rw is related to the stress field. From Eq.3 we notice 
the singularity of stress exists at the point of x=0. 

The nucleation rate of voids depends on both the void size and local stress state. So we choose 
the nucleation formula as[6] 

«« =NP exp 
CT-CTn 

'1      J 
(4) 

where a0, cr, and rmax are material constants, N is average void nucleation rate and P(...) 
is a probability distribution function expressing the positive relation between nucleation rates 
and the dimensions of voids. 

The void growth rate should also be given. Here we use the rate based on Gurson Model171. 
Such that 

•    /~. \M m 
M j" J2 „^„2  ,    .2s   Mm *=^y«H      r(r'+rfV"» (5) 
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where i0 is a material constant and d is the distance between two voids. From above we can 
get the analytic solution due to the first assumption. 

Then we assume that the stress distribution does depend on time. Similar to Eq. (2) Let 

da_ 

dt 
= 1 

We have 
dn    8{Rri)    d(Zn)    „ 
— + ——- + ——- = N.n^ 
dt       dr da 8 h 

(6) 

(7) 

We still chose HRR stress field. In order to eliminate the singularity of stress field at the crack 
tip we design a kind of stress gradient. Here we use Weibull distribution as stress distribution near 
the crack tip. The general expression of Weibull distribution is 

„s-\ Weibull{s, x) = sx     exp(-x )    for x > 0   and s > 0 (8) 

Then the stress field can be 

ff(x,0 = o-w(01n| — 
x j 

m-\ 

da(x,t) .dWeibull(s,x) 
~crw(0- 

dx dx 

X > x. 

X <X 

(9) 

where x\ is a point near the crack tip. The formula for void nucleation rate is the same as the first 
assumption. Thus the analytic solution can also be made. Here we assume stress near crack tip is 
positive related to COD which is described by t according to strip yield model'-8-'. 
<rw(7) = Kayt/t0, in which t0 is characteristic time, AT is a constant, crY is yield stress when t 
reaches t0  and COD reaches critical value.. 

4. RESULTS AND DISCUSSION 

The analytical solutions to the first and second assumption are as the following 

1   f t   f r 

n(r,x,t) = —      «N^g dr 
R J A        & (10) 

n(r,x,t) ■■ 

i let   (8R    dl\' 
i 1 - exp       - — + — \dt 
[ [J 0   {dr    da) 

NgnN 

dR dZ 
— + — 
dr    da 

(11) 
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And each order moment can be then solved from above. The zero-th order moment: 

nn(x,t)= I  max n(r,x,t)dr (12) 

The second order moment: 

f(x,t)= [maxn(r,x,t)r2dr (13) 

Void area fraction 

ff(x,t) = - f(x,t) 

J""max n(r,x,t)d2 Ar 

(14) 

We consider the condition are shown of N =10000, £iC=120MPa Vm   and crY =450MPa. So 
we can get the numerical results which in Figs. 1-4. 

From the results of the first assumption (Figs. 1 and 2) we can see that when the crack growth 
process is near the steady state, the number of voids and void area fraction are decreasing to steady 
state away from the crack tip. Also the distribution of void area fraction is converging to a steady 
distribution. Such distribution does not vary as time increases. It means that the collective 
evolution of voids reaches a saturation state. 
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Fig. 1 Relation between number of voids and distance to crack tip. 
(t represents time) 
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Fig. 2 Relation between void area fraction and distance to crack tip. 
(t represents time) 

The results of the second assumption (Figs. 3 and 4) also show the similar tendency. Though 
stress field varies with time, saturate tendency of collective evolution of voids still exists. It should 
be a critical value for further growth of crack tip. 

Comparing two groups of results with the experimental measurements of Hong et al[ ] on two 
materials(Fig. 5), we can observe a similar tendency. Near the crack tip the number of voids and 
void area fraction increase. As time goes by, the void fraction distribution increases and tends to a 
steady one. The critical stage does exist. 
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Fig. 3 Relation between number of voids, distance to crack tip x and time. 
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Fig. 4 Relation between void area fraction, distance to crack tip x and time. 
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Fig.5.   Void area fraction away from crack tip for Material A (a) and B (b). 
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ABSTRACT 

In the present paper, it is shown that the zero series eigenfiinctions of Reissner plate 
cracks/notches fracture problems are analogous to the eigenfiinctions of anti-plane and in-plane. 
The singularity in the double series expression of plate problems only arises in zero series parts. In 
view of the relationship with eigen-values of anti-plane and in-plane problem, the solution of 
eigen-values for Reissner plates consists of two parts: anti-plane problem and in-plane problem. As 
a result the corresponding eigen-values or the corresponding eigen-value solving programs with 
respect to the anti-plane and in-plane problems can be employed and many aggressive SIF 
computed methods of plane problems can be employed in the plate. Based on those, the 
approximate relationship of SIFs between the plate and the plane fracture problems is figured out, 
and the effect relationship of the plate thickness on SIF is given. 

1. INTRODUCTION 

Stress analysis in practical engineering applications inevitably encounters stress singularities 
caused by sudden changes in geometry, e.g. around re-entrant corners (notches) or, more severely, 
around crack tips. The complete eigenvalue solution and the stress intensity factor (SIF) calculation 
play an important role in the linear elasticity fracture mechanics (LEFM). Most of numerical 
methods, directly or indirectly, make use of the available eigen-solutions when applied to the SIF 
computation for cracks/notches problems so that singularity can be treated in a more efficient, 
accurate and reliable way. Recently, Xu and Yuan [1] presented an effective implementation of the 
imbedding method for accurate and reliable computation of complete real or complex 
eigen-solutions in two dimensional notch/crack singularities with multiple materials, arbitrary 
opening angles and various surface conditions. This algorithm is robust and may be employed by 
any numerical methods that make use of singular solutions. The singularity causes great difficulty 
to the numerical solutions that have to be invoked when analytical solutions are not available. A 
numerical recipe for accurate and efficient computation of stress singularity factors (SIFs) usually 
consists of two major ingredients, namely a powerful numerical method for the general stress 
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analysis and a novel approach to obtaining the desired SIFs which may include special treatment of 
various singularities. The underlying numerical method employed in this paper is the finite element 
method of lines (FEMOL) [2-5], which is a newly developed, general-purpose, semi-analytical 
method. In this method, a partial differential equation defined on an arbitrary domain is semi- 
discretized, by finite element techniques via energy theorems or variational principles, into a system 
of ordinary differential equations (ODEs) defined on straight or curved mesh lines. Recently, Xu 
and Yuan [6] exploited the orthogonal relationship between eigen-functions for anti-plane and in- 
plane notch problems, and a set of contour integral extraction methods (so called orthogonal 
integral extraction method) for SIF calculation is developed, which appears to be most powerful and 
efficient. Xu [7] extended the orthogonal integral extraction method to the general two-dimensional 
fracture problems. In the present paper, It is shown that the zero series eigenfunctions of Reissner 
plate cracks/notches fracture problems are analogous to the eigenfunctions of anti-plane and in- 
plane. The singularity in the double series expression of plate problems only arises in zero series 
parts. In view of the relationship with eigen-values of anti-plane and in-plane problem, the solution 
of eigen-values for Reissner plates consists of two parts: anti-plane problem and in-plane problems. 
As a result, the corresponding eigenvalues or the corresponding eigenvalue solving programs with 
respect to the anti-plane and in-plane problems can be employed and many aggressive SIF 
computed methods of plane problems can be employed in the plate problems. Based on those, the 
approximate relationship of SIFs between the plate and the plane fracture problems is figured out, 
and the effect relationship of the plate thickness on SIF is given. Two examples are given to show 
the two approximate relationships. 

2. PRELIMINARY CONSIDERATION 

Fig. 1 N-material notch problem 

Figure 1 shows a two dimensional singular problem with TV different materials around 
notch/crack tip. The body forces are assumed to be negligible. For convenience sake we omit the 
different material domain subscript j shown in the Fig. 1. In the polar coordinates shown in Fig. 1, 
for the Reissner plate, the general displacement components can be written as the following double 
series form 

''=X2V'+"4(0), (1) 

It can be showed that the singularity maybe appear when n = 0 and in the first two or three 
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terms of /. Here we only take account of the main part of n = 0, the Reissner plate could be 
divided into two basic parts of anti-plane part and in-plane part. So the well-known Williams' 
displacement w0(r,6) and potential function ij>o{r,0) are 

(i)   wo(r,0)=    5>,rV,(*)l       00    AM)=    X«/'+'^) (2) 
(=0.1.2,3  (=0,1.2.3  

where both f,(&)andF,(0)are certain normalization eigen-functions that corresponding to the eigen- 

value  A}, and the well known explicit form is 

fl(0)=AicosA,0 + Bis'mAl0 .„ 
Fl{0)=A,sm(Al+\)0 + Bicos(Al+\)0 + Cism(A-\)0 + Dicos{A-\)0 

where {4,5,} and A, in f\e) are real constants, {A^B^C^D,} and A, in F,(o) are complex 

constants. The corresponding displacement (y/r0ry/00i) f°
r plane Part can be derived from the stress 

potential function 

, (1 -vA,Xl + A,)Fi{0)+ F,{0) _  * {\ + Al-(\-Al)A,v + 2Ai
2)Ft'(0)+FX0) 

w-= r  JE ¥m = r WOE 
(4) 

The corresponding stress components of both anti-plane and plane problems are 

MrOl=^-'aM[Fi{0)+{A,+ \)F,(0)] 

<Meo,=r^aIM[A,(A,+ 1)F,(ö)]       ,   « = 0,1,2,3,- (5) 
QrO,=GA,r^aif,(0) 

Qm^Gr"--,aj;(0) 

When r -> 0, the stress in formula (5) will tend to infinity because there are singular terms rx'~x in 
the expansions. Compared the anti-plane part and the in-plane part of Reissner plate problem shown 
in equations (2-5) with real anti-plane and in-plane problems161, the following assimilated 
relationships can be deduced 

w0~w,    Q^-T^,   ß„0~r& 

VrO~«r>       Veo~«9 (6) 

if ,0 ~a„,    Mm~ a„,    M,go ~ are 

where {w, r^, rft} and {ur, ue, arr, am, ar6} are the displacements and stresses corresponding to the 
anti-plane and in-plane problems, respectively. 

3. GENERAL DEFINITION OF SINGULARITY INTENSITY FACTORS (SIFs) 

For two dimensional fracture problems, the general singularity intensity factors defined as 

, \     [xi=lim(VW-',max(cr()o(7-,0))) 

y r-»0x e ' 

For Reissner plate fracture problems, substitute the shears and moments into Eq. (7), the SIFs 
are generally defined as 
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K„ 2*r"max(|(l-^0M))l   ■ (8) 

where £ = 2z/A , we take the maximum value as C, = 1, A is the corresponding eigenvalue. 

4. TWO RELATIONSHIPS OF SINGULARITY INTENSITY FACTORS (SIFs) 

Firstly, we consider the different between zero order stresses \M0,Q0\ and the real stresses 
{M,Q}; secondly, compare the equivalent between the Reissner plate and the plane problems; we 
consider the same equivalent boundary conditions between the Reissner plate and the plane 
problems. We have the following approximate relationship with respect to SIFs between the 
Reissner plate and the plane fracture problems 

*, III plate 
'       K 

ryi       III anli-plane* 

K, I platt; 
■      K 
i2       \ in-plane 

(9) 
^Wplale ~   ,2 "-UIn-plane 

For the two Reissner plate notch/crack problems, the only different part is the plate thickness 
(h, and h2). Form Eq. (9), the approximate relationship with respect to SIFs between the different 
pi ate thickness can be deduced 

*u..fa). 
V 

(10) 

5. NUMERICAL EXAMPLES 

To assess the performance of the two relationships, a number of numerical examples are given in this section. 
The following examples are computed by the newly developed method [6-7] namely orthogonal integral 
extraction method. 

rrrm?)W)') kkkkkkkkkkkk 

2a 

2L 
► V 

2W 

WWWW 
2L 

(a) Bending plate with a center crack       (b) Uniform stretch with a center crack 

Fig. 2 Finite plate with a center crack 
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Example 1 Approximate relationship of SIFs between bending plate and uniform stretch plane 

In this example, as Fig. 2 shows, we consider a finite bending plate with a center crack and a 
finite uniform stretch plane with a center crack. The crack length is 2a, the plate thickness is A, 
and the necessary constants are 2L = 2W = Aa, E = 2 x 106, v = 0.3, a = 1, A = 1. Table 1 gives a 
list of the computed results of SIFs K, and the approximate ratio of the SIFs for bending plate and 
plane. Where  r0 indicates the integral radius along the crack tips. 

Table 1. The computed results of finite plate with a center crack 

Bending Uniform stretch KlpUe /Klplane (Theory « 6) 

0.00001 9.728794 2.363948 4.115486 

0.0001 9.743342 2.363946 4.121643 

0.001 9.784121 2.363943 4.138899 

0.01 9.865933 2.363946 4.173502 

0.1 9.832484 2.363945 4.159354 

0.5 10.099617 2.363951 4.272346 

Example 2 Approximate effect on SIFs (Kx) of the different plate thickness 

In this example, as Fig. 2(a) shows, we consider a finite bending plate with a center crack. The 
crack length is 2a, and the necessary constants are 2L = 2^ = 4a, £ = 2xl06, v = 0.3, a = l.The 
three cases of the different thickness are A, /a = 0. K A2 /a = 0.5 and A3 /a = 1.0 . Table 2 gives a list 
of the computed results of SIFs K,, where r0 indicates the integral radius along the crack tips. Fig. 
3 gives out two ratio curves of the different SIFs K, with respect to the different cases, the 
approximate values match very well with the theory values. 

^\ h\a 
0.1 0.5 1.0 

0.00001 793.823490 36.101453 9.728794 

0.0001 793.800340 38.376926 9.743342 

0.001 794.154503 42.004670 9.784121 

0.01 800.501913 33.544143 9.865933 

0.1 842.029973 35.785873 9.832484 

0.5 929.598925 38.401774 10.099617 

6. CONCLUDING REMARKS 

In this present paper, the Relationship of SIF between plate and plane fracture problems and the 
effect of the plate thickness on SIFs are discussed. Both of the two approximate relationships are 
checked by two simply examples. From example 2 we know that the numerical values match very 
well with the theory values in the second relationship with respect to the different plate thickness. 
From the two relationships, we can give an approximate estimate for the unsolved problems from 
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the corresponding solved problems and a check to computed results and some methods based on the 
well known examples. 
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ABSTRACT 

The disk test is performed to examine the characteristics of Mode I or II fracture in the 
viewpoint of fractography. Test pieces of fracture surface are prepared by the disk test method. In 
this method, the circular specimen with a central crack is subjected to the concentrated 
diametrically opposed loads in an inclined direction to the central crack orientation. The main 
results obtained in this test are as follows; (1) No remarkable difference of the roughness of fracture 
surfaces between Mode I and II is observed because the Mode II specimen is not necessarily 
fractured in Modell after crack propagating. (2) There is remarkable difference on fracture 
roughness measured in the crack propagation direction and in the perpendicular direction of crack 
propagation. It is considered that the measurement in the crack propagation direction is more 
reasonable than that in the perpendicular direction of the crack propagation. (3) As the measurement 
magnification becomes lower, the measured area increases but the accuracy of measurement 
decreases. Therefore, it is necessary to determine the optimal measurement magnification. 

1. INTRODUCTION 

Fractography is one of the effective techniques when the damage cause generated on the site is 
elucidated [1]. However, a considerable experiences are necessary to give a correct judgement with 
this technique. Therefore, it is not necessarily easy to use this method. This research has been 
recently progressed for the sake that one aided with a computer will be required not much 
experiences to analyze a specified fracture problem[2]. 

For instance, the damage such as the pitching or spalling often becomes a problem in the 
machine elements with slip/rolling at the high contact pressure. Afterwards, the damage area 
becomes the crack initiation point, and machine fails. There are a lot of reports of serious accidents 
[3]. Then, many researches on this type of crack initiation or propagation mechanism have been 
reported using fatigue examination of non-contact type or analysis calculated aided with a computer 
so far [4 - 7]. In this case, the crack initiation and propagation behaviors have been discussed only 
from the standpoint of dynamic characteristics on typical Mode I and Mode II. Then, it is reported 
that the resistance of the material to these damages may be fatigue crack growth resistance 
threshold stress A KT th of the crack sliding shearing mode[8, 9]. However, the fracture of some 
machine elements would be generated under the condition of other fracture mode such as Mode I 
type or the mixture type. 

In this study, the test materials which failed under the conditions of Mode I and Mode II are 
prepared. Then, the difference between the above two kinds of fracture appearance are examined 
using proper fractographic technique. Consequently, it is examined whether this technique can be 
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applied as an evaluation method for the fracture analysis. 

2. EXPERIMENTAL PROCEDURE 

Four kinds of test materials, referred to as AD, HCR, HX(SKH) and DC were used. Table 1 and 
2 list their chemical composition and mechanical properties, respectively. In addition, the test 
specimens for Mode I and II fracture were made by disk test method as shown in Fig. 1 [10, 11]. 
The preliminary crack installed at the center of the disk is set in fixed angle a (in case of Mode I: 
a = 0 degrees, and Modell: a-21.2 degrees [11]). Afterwards, the crack is fractured due to the 
tensile stress generated by applied compressive load. 

Table 1 . Chemical composition mass% 
C Si Mn Ni Cr Mo V W P          S 

AD 1.7 0.4 0.5 0.7 1.0 0.3 - — 0.003    0.007 
HCR 2.8 0.5 0.5 — 17.5 1.3 - — 0.021    0.013 

HX(SKH) 2.0 0.5 0.5 — 5.0 6.0 5.0 6.0 0.014    0.018 
DC 3.3 1.5 0.6 1.8 — 0.4 - — 0.060    0.014 

Table 2.   Mechanical properties 
Tensile 
strength 
(MPa) 

Hv 

(-) 

Fracture 
toughness 
(MPa-V™) 

AD 608 430 19.3 
HCR 853 686 21.9 

HX(SKH) 1138 745 26.7 
DC 540 372 34.0 

c/R = 0.3 

Mode I 
a = 0 degrees 

Modell 
a = 27.2 degrees 

Fig.l. Schematical illustration of experimental 
procedure. 

Fig.2. Calculation method on the range of 
roughness in fracture surface. 
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Every test specimen is observed with a pair of fractographs using a scanning electronic microscope. 
In the arbitrary observation area shown in Fig. 2, the difference Ah between the heights of point A 
and point B is calculated using the following equation. 

L L' 
Afc 

tan    6 sin    6 
(1) 

where Q is the tilting angle respected to the O-O axis, and 0=10 degrees was set in this test. The 
value of Ah is the average value measured at three typical positions in the measurement area under 
the specified magnification. 

3. RESULTS AND DISCUSSIONS 

Figures 3 and 4 show the observation result of the fracture surfaces for the crack initiation area 
and the comparatively steady propagation area of the material AD and the material HCR, 
respectively. From these figures, it is understood that the value of roughness (Ah) in the crack 
initiation area is larger than that in the steady propagation area. In addition, although the results of 
all materials are not shown in these figures, there is remarkably difference on the characteristic of 
each material in the fracture state. However, it is difficult to analyze quantitatively the real effects of 
material properties on the value of Ah of the fracture mode. Therefore, it is attempted to evaluate 
such a qualitative difference with a quantitative value calculated by equation (1). 

Table 3.   Average range of roughness Ah at the crack initiation area     (Unit: //m) 

\^ 
In the perpendicular direction of 

crack propagation 
In the direct 

propa 
ion of crack 
nation 

^\ Mode I Modell Mode I Modell 
AD 30.8 25.6 40.2 20.2 

HCR 25.9 22.7 16.4 15.2 
HX(SKH) 35.0 34.6 44.8 31.8 

DC 20.8 13.8 5.8 19.2 

To examine the influence of the fracture mode on the fracture surface state, Table 3 lists the 
values of roughness (Ah) on the fracture surfaces measured in the perpendicular direction and in 
the propagation direction at the crack initiation area. The value of Ah measured in the direction of 
the crack propagation trends to be relatively less than that in the perpendicular direction of the crack 
propagation. The fracture surface state in the direction of the crack propagation is smooth, and this 
means that the fracture surface is formed like a continuous state in that direction. On the other hand, 
the crack in the perpendicular direction of the crack propagation dose not necessarily initiate at one 
point, then two or more different cracks may propagate, and make some steps at their combining 
zones. When the influence of the fracture mode on the fracture surface state is investigate, it can be 
considered that it is more appropriate to take the measured value in the direction of the crack 
propagation. For the above mentioned reason, the roughness of the fracture surface is examined 
with the value of Ah measured in the direction of the crack propagation. 

Figure 5 shows the effect of the fracture mode on the fracture surface state at the crack initiation 
area and the steady propagation one. Regardless of the fracture mode, the roughness in steady 
propagation area is generally less than that at the crack initiation area. Briefly, the fracture surface 
state at the crack initiation area is comparatively rough. On the other hand, the fracture surface state 
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Stable crack propagation area (Mode I) 
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Fig.3.     The observation results of specimen's surface for AD. 
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Fig.4. The observation results of specimen's surface for HCR. 
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Fig.7.   Relation between Ah at crack initiation area and fracture toughness. 

in the steady crack propagation area is quite smooth. In addition, there are no remarkable 
differences on the measured results for the test specimens failed under the conditions of Mode I 
and Modell. In the case of test specimens failed under Modell condition, it is considered that the 
fracture mode in propagation area is not necessarily in Mode II type, even if the fracture near the 
crack initiation area is Modell. The difference of fracture mode do not clearly affect on the 
roughness of the fracture surface. 

Figure 6 shows the effect of the measurement magnification on the roughness in the fracture 
surface for material HX. Considering the result of other test materials, the Ah measured under the 
low magnification becomes higher than that measured under the high magnification. That is, the 
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maximum value of Ah shows the increasing tendency so that the examination area may extend as 
the measurement magnification decreases. However, the accuracy of the measurement value 
decreases occasionally when the measurement magnification is lowered too much. In this case, an 
appropriate evaluation might not be necessarily obtained. Therefore, it is necessary to examine the 
optimal magnification experimentally. 

It is thought that the value of fracture toughness influences in the roughness on the surface of 
the damaged material. Figure 7 shows the relation between the value of Ah near the crack 
initiation area and that of fracture toughness. It is difficult to give any clear conclusion from this 
figure. However, it seems that the value of Ah increases with increasing the value of fracture 
toughness. Therefore, even if the test specimens fail in the same fracture mode, there is much 
difference on the values of Ah between a high toughness material and a low toughness one and 
hence it is difficult to determine the fracture mode only according to the surface roughness without 
understanding the characteristic of each material when this technique is used. 

When the method examined in this study is practically used, the optimal measurement 
magnification or the influence of mechanical properties for each material on the roughness, etc, 
should be firstly examined. However, those factors will be easily obtained by some fundamental 
experiments. Therefore, this method will be effectively used because it is very simple and dose not 
require much experience. 

4. CONCLUSIONS 

The results obtained in this research are as follows : 
(1) No remarkable difference of the roughness on fracture surfaces between Mode I and II is 
observed because the Mode II specimen is not necessarily fractured in Mode II after crack 
propagating. 
(2) Considering the measuring direction of the fracture surface roughness, there is remarkably 
difference on the value of fracture roughness measured in the crack propagation direction and in the 
perpendicular direction of crack propagation. It is considered that the measurement in the direction 
of the crack propagation is more reasonable than in the perpendicular direction of the crack 
propagation. 
(3) As the measurement magnification becomes lower, the measured area increases but the 
measurement accuracy decreases. Therefore, it is necessary to determine the optimal measurement 
magnification. 
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ABSTRACT 

We discuss the microscopic deformation at the crack tip of ferroelectric ceramics by domain 
switching. Experiment for polycrystal ferroelectrics after out-of-plane poling indicates the crack tip 
domain switch by the application of a lateral electric field. The theory of crack tip domain switch is 
presented to explain electric fracture. The analysis is developed for both in-plane and out-of-plane 
poling. Implication on how to raise the fracture toughness of ferroelectrics will be addressed. 

1. INTRODUCTION 
Ferroelectric ceramics are featured by large switching strain and low fracture toughness. The 

incompatible strain during domain switch may cause internal stress as high as hundreds of mega- 
Pascals, while the fracture toughness assumes a typical value of IMPaVm. Therefore, fracture may 
occur from a flaw of a few microns. Fracture toughness anisotropy for poled ferroelectrics was 
extensively reported in the literatures [1] through Vickers indentation. Park and Sun [2] performed 
compact tension tests under combined mechanical and electrical loading and found that the apparent 
fracture toughness varied asymmetrically for poled ferroelectrics under positive and negative 
electric fields. 

The analysis for the fracture of ferroelectrics under electrical and/or mechanical loading 
becomes a focus point of solid mechanics. Considering the nonlinear effect, Yang and Suo [3] 
modelled the electrostrictive material and derived the stress intensity factor on the flaws around the 
electrode edge under electric loading. Lynch et al [4] provided a preliminary explanation for the 
cracking in relaxor ferroelectrics. Gao et al [5] proposed a strip saturation model to investigate the 
effect of electric yielding. 

The non-linear effect dominates in the vicinity of internal flaws. The stress and electric fields 
around the flaw attempt to reorient the domains. Constrained by the un-switched material outside, 
the stress distribution near the flaw is altered. It is the variation of the stress intensity factor at the 
crack tip that dictates the apparent fracture of ferroelectrics. Pursuing along this approach, the case 
of in-plane poling was explored by Yang and Zhu [6]. The present work explores the effect of 
poling directions to the variation of the stress intensity factor at the crack tip. The theory is used to 
explain Vickers indentation data for PZT-5 polycrystals and for PLZT single crystals. 

2. CRACK TIP DOMAIN SWITCHING 
(Pbo.96Lao.o4)(Zr0.4oTio.6o)o.9903 (PLZT) ceramics were synthesized by the conventional powder 

processing technique. The x-ray diffraction pattern reveals that at room temperature, PLZT 
ceramics adopt a tetragonal perovskite structure with a = b = 0.4055 nm, and c = 0.4109nm. 
Consequently, the aspect ratio da is 1.013 and the spontaneous strain ys is 1.3%. The PLZT 
ceramic samples were mechanically cut and ground into specimens with the size of 3.5mmx5mmx 
25mm. One 5mmx25mm surface was ground and polished [7]. The two opposing 5mmx25mm 
surfaces were sprayed with Au electrodes. The samples were then poled under an electric field of 
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2.3kV/mm at 120°C. After removing the Au electrodes, the polished surface of 5mmx25mm were 
indented under 5kg load. The two opposing surfaces of 3.5mmx25mm were sprayed with Au 
electrodes and lateral electric field of 0.6EC (Ec= 1100V/mm) was applied. The poled PLZT 
ceramics with different lateral electric fields were etched. The etching rates of ferroelectric domains 
of different orientations are different, so that the "c"" domains appear bright, "c+" domains appear 
dark, and the "a" domains appear gray in a SEM micrograph [7]. The zone of domain switch near 
the crack tip was observed by SEM. It was shown that lamellar 90° domain structure appeared in 
poled PLZT, illustrating the formation of 90° domain switching near the crack tip, as shown in Fig. 
la. In the grain ahead of the crack tip, 90° domain switching takes place in several strips, and leads 
to marks of straight 90° domain walls. 
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Fig. 1   Poled PZT with 0.6EC lateral electric field 
(a) formation of 90° domain switching at the crack tip; (b) field lines around the crack tip. 

As shown in Fig. lb, the indentation crack forms an inclined angle a with the horizontal axis. 
The applied electric field can be decomposed into a component of £sina: parallel to the 
indentation crack and a component of £ cos or normal to it. The electric field concentration near the 
indentation cracks drives a localized 90° domain switching. The singular part of the crack tip 
electrical field can be described by [3] 

K, -sin(<9/2) 

2nr I cos((9/2) (1) 

We label the in-plane co-ordinates by x, (parallel to the crack) and x2 (normal to the crack), and 
the out-of-plane co-ordinate by x3. Polar co-ordinates r and 0 are centered at the crack tip. The 

intensity of the crack tip electrical field is given by KE =£cosa:Vrc£ , where L denotes the half- 
length of the impreamable crack. The field lines are depicted in Fig. lb. 

3. SMALL SCALE 90° DOMAIN SWITCHING 

In the presence of electric and mechanical fields, switch of 90 degrees is activated by the 
combined mechanical and electrical work, see Hwang et al [8] 



Key Engineering Materials Vols. 183-187 177 

cr,A*, + £,A/>>2/>s£c (2) 

In (2), av and hstj are the stress and the switching strain tensor, £, and AP, are the electric field 

and the polarization switch vectors, Ps the magnitude of the spontaneous polarization, and Ec the 
coercive field. The right hand side of (2) describes an energy threshold for polarization switch. 

Small scale domain switching consists of a practical configuration. In terms of the electric 
loading, the recent experimental observation gave merit for the case of crack growth below the 
coercive field. Under such circumstances, the zone of domain switching is either focused at the 
crack tip or along the crack wake. For the case of mechanical loading, the presence of a crack 
necessarily causes the stress concentration. Consequently, the zone of domain switch (as activated 
by the crack tip stress) is confined near the crack tip [6]. 

For the case of small scale switching, the geometry can be regarded as a semi-infinite crack in an 
otherwise infinite medium. The remote stress field is characterized by £app, the applied SIF, and is 

given by 

o-,, 
^app e cos 
2m      2 

1   • e .   36»] 
1-sin— sm — 

2 2 
,     •   0 W 
1 + sin — sin— 

2 2 
. e W 

sin—cos— 
2 2   J 

(3) 

Denote Km as the applied stress intensity factor, and Ktip = Km + AK as the stress intensity factor 

that governs the fracture process at the crack tip. Presence of 90° switching zone alters the near tip 
stress intensity factor by an amount of AK. The value of AK can be evaluated in the spirit of 
transformation toughening. For poled ferroelectrics, the toughness variation induced by switching 
strain can be evaluated along the boundary r,. of the switching zone by [6]: 

A* = 4>AdT. (4) 

For an instantaneous elastic isotropic response, the amount of body force layer 7] is given by 

T^l/Asytij. (5) 

In (5), n denotes the shear modulus, and ni the outward normal of Ts. Volume conservation 

during domain switch is used in deriving (5). The weight function ht in (4) denotes the SIF caused 

by a unit point force along the z'-th direction. The expressions of \ and h2 are given below: 

h,= 
(K + \)yl2nr 

'     .    e   . . . 30 
(1-ä:)COS— + sm6'sin— y       '      2 2 

(l + ftr)sm — sine? cos— y      '     2 2 

(6) 

For the case of plane strain, K = 3 - 4v ; and for the case of plane stress, K = (3 - v) /(l + v), where 
v denotes the Poisson's ratio. 
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4. DOMAIN SWITCH WAKE BY A GROWING CRACK 

The attention is focused on the case for crack extending in steady state, and domain switch is 
activated by the stress field. Domain switching wakes are formed by the activation of the crack tip 
stress field. Yang and Zhu [6] studied the formation of domain switching wakes for the case of in- 
plane poling. New analysis is presented herein for the case of out-of-plane poling. 

4.1. Domain switch wakes in specimens poled in out-of-plane direction 
Consider a specimen poled in the out-of-plane direction. Undergone a domain switch of 90 

degrees, the out-of-plane poling axis may rotate to an in-plane polarization of any angle a with the 
crack. The induced domain switching strain is 

Asij=rs 

cos w   sin w cos m 
2 (9) 

sin »cos«    sin w 

where ys denotes the spontaneous strain of 90° switching. Substituting (3) and (9) into the left- 
hand side of (2), one has 

<T„A*„ = ^-± cos — 
2m       2 

1-sin — sin 2a> 
2     {2 

(10) 

Polarization switching should proceed in a manner to release the maximum amount of that stress 
work. The maximization of (10) leads to the following expression of a>, 

0) = 
3<9 + sgn(6>>r 

(11) 

The above expression implies that all domains along a radial ray from the crack tip have the same 
polarization switch. The shape of switching zone, denoted by R(9), is determined by equating the 
maximum of the switching work to the energy threshold 2ECPS. The profile is given by: 

•JR = T]R0 cos — 1 + 
e 

sin- (12) 

The size of the switching zone is scaled by 

R0= — 0    8TT 

K  r A 
app/ s 

E.P. 
(13) 

As the crack grows, switching wakes form above and below the crack [6]. The height of the 
switching wake equals to the maximum vertical position of the switching zone. For a specimen 
poled in the out-of-plane direction, the height of its switching wake is given by H »1.573 5i?0. 

4.2. Shielding on crack tip stress tip stress intensity factors 
Yang and Zhu [6] discussed switch toughening under in-plane poling, their expression of the 

apparent fracture toughness is 
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*NC — ■"■intrinsic/ 
\__MlSL 

(K + l)P.Et 

(14) 

where Kmtrinsk denotes the intrinsic fracture toughness for the sample without any domain switching 
and the dimensionless function Q depends on the domain orientation. The plane strain calculation 
[6] indicated that Q = 0.022 for a polycrystalline specimen poled along the direction parallel to the 
crack; and Q = 0.044 for poled along the direction normal to the crack. Both results were derived 
under the assumption that the domain polarizations are distributed uniformly within a fan between 
- 45 and 45 degrees with respect to the poling axis. 

For a specimen poled out-of-plane, the shielding on the stress intensity factor can be computed 
by tracing various strips of infinitesimal height Ay. Omitting the details, one find the value of Q is 

Q = —(2.4077K-0.0322). (15) 
167t 

5. VERIFICATION BY EXPERIMENTS 

5.1. Three-point bending tests 
Single-edge-notch-beam (SENB) specimens were cut to 4x2x 15mmdimension for the three 

point bending tests. The specimens were divided into three groups with 10 specimens each, and 
poled along the x (thickness), y (longitudinal), and z (height) directions. The poling is conducted at 
130°C under an electric field of 2.5kV/mmfor 0.5h. After poling, a 0.3mm notch was cut by a 
diamond saw for a depth of 1.85mm. In an ascending order, the average fracture loads are 
Fl =16.95N, Fb =19.3IN, and Ft =22.25N for the specimens poled along the longitudinal, 
height and thickness directions. For a SENB specimen, the fracture toughness can be estimated 
from the fracture load F as: K1C® = 0.94MPaVnT, £IC

(h) = 1.08MPaVm~, £IC
(t) = 1.24MPa Vm~. 

For polycrystalline PZT-5, the formula (15) would predict an Q value of 0.079 for the mono- 
domain case under plane strain condition. The actual domain configuration under an out-of-plane 
poling, however, is described by distribution of polarization vectors covering a fan of - 45 to 45 
degrees from x3 axis. One may still use (14) to estimate the toughening but to scale the Q value by 

a factor of 8/;r2. The corrected Q. value is 0.064, considerably higher than the one for in-plane 
poling. 

An intrinsic fracture toughness of 0.83MPaVm is taken and it fits to three sets of experimental 
data. For the specimen poled in the longitudinal direction, the present analysis predicts a KIC value 

of 0.939MPaVm against the experimental measurement of 0.94MPaVm . For the specimen poled 
in the height direction, the present analysis predicts a KIC value of 1.081MPaVm against the 

experimental measurement of 1.08MPaVm . For the specimen poled in the thickness direction, the 
present analysis predicts a Klc value of 1.253MPaVm against the experimental measurement of 

1.24MPaVm . Thus, the present analysis is supported by the experiments. 

5.2 Vickers indents for ferroelectric single crystals 
We conduct Vickers indents for ferroelectric single crystals. The single crystal has uniform 

lattice structure, then leads to uniform poling. The single crystal is free of grain boundaries, then 
rules out the possibility of pre-existing microcracks. The micrographs of Vickers indents on single 
crystal PLZT are shown in Fig. 2. The micrograph on the left refers to the case of outward poling. 
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Domain bands perpendicular to the indenting cracks are formed, and effectively suppress the crack 
extension. That measurement agrees with the prediction in (14), since Q assumes a large value of 
0.079 for the case of a single crystal. 

The micrograph on the right of Fig. 2 refers to the case of upward poling. The theoretical 
prediction for the apparent fracture toughness is again given by (14), where Q = 0.0056 for the 
prediction of K± and Q = 0.062 for the prediction of K„ [6]. The micrograph shows that indenting 
cracks under the same indenting load grow longer under upward poling than the ones under outward 
poling, in agreement with the theoretical prediction. Moreover, since the predicted value for K± is 

smaller than the one for K„, the indenting cracks tilt toward the direction normal to the poling axis, 
as would be predicted under the present model. 

Fig. 2 Micrographs for Vickers indentation on single crystal PLZT under different polings, 
(a) outward poling, (b) upward poling. 
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ABSTRACT 

The relationship of notch fields and crack fields is concerned in this paper. Based on 
theoretical studies and 3D numerical simulations, some common features of the 3D elastic-plastic 
notch fields and the crack fields are analyzed and the unified description of the fields is discussed. It 
is surprising to find that the 3D stress constraints at a circular hole, a notch and a crack can be 
described uniformly. Fracture of notches is discussed and some interesting topics in this direction 
are listed to unify fatigue mechanics and fracture mechanics. 

1.    INTRODUCTION 

Both notches and cracks are stress raisers in structures. They have the same importance in 
strength analysis and safe design. For sharp cracks, the fracture mechanics method of stress-strain 
analyses has been shown to be effective and successful. However, the stress-strain fields at notches 
with blunt ends are much more complicated and difficult to deal with. Even for two-dimensional 
(2D) notch problems, there is no rational description available for the elastic-plastic fields near the 
notch-root. In the three-dimensional (3D) frame, the additional scale of the finite notch-root radius 
will introduce several mechanics parameters which are necessary to be considered in stress analyses, 
such as the ratio of root radius to thickness, root radius to the size of the plastic zone, etc. On the 
other hand, notches and cracks have many common features. Physically, there is no ideally sharp 
crack. When the depth to root radius ratio and the size of interesting region to the radius ratio 
become larger, the effect of the notch-root radius become less important and a notch can be treated 
as a crack. Another typical case is circular holes for which 2D as well as 3D elastic theoretical 
solutions can be found in the literatures. 

As shown by Fig.l, the geometrical variation from a hole to a notch and to a crack is a 
continuous process so that there is no determined distinction between notches and cracks. In the 
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figure, p is the notch-root radius, a is the notch depth, B is the thickness of a plate. 

It is well known that the elastic solution of a 2D crack can be obtained by the solution of a 
elliptical hole as pi a is approaching zero. The Creager and Paris solution [1] and the recent work by 
Kuang [2] and Lazzarin and Tovo [3] have built a relation between the 2D notch-root and crack-tip 
elastic stress fields. The elastic solution for a circular hole in a finite thickness plate has been 
obtained by Chang and Guo [4]. For general notches in finite thickness plates, the in-plane stress 
distributions are insensitive to the notch radius to thickness ratio pIB [5] while the stress 
concentration factor K, is a function of pIB and changes through the thickness. In elastic-plastic 
situation, theoretical solutions can only be obtained for 2D circular holes under specific loading 
conditions [6] and sharp cracks. The 3D fields and the elastic-plastic deformation near general 
notches which are more interesting in engineering are poorly understood, thus it will be the focus of 
the following discussions. 

Notch Deep notch 

«-                                   ) 1 
Blunt crack 

pla decreasing 

Sharp Crack 

p->0 

Fig.l. The geometrical relationship between notches and cracks 

2.    ELASTIC STRESS ANALYSIS 

2.1. A Unified Description of Notch and Crack Tip Fields 

When the stress solution is formulated for a general notch, the stress function expressed in variable 
separated form of r and 8, 

(p = VM9o(6) + £v^.(e) (i) 

should satisfy the governing equation of the problem, 

vV + 77~° «k.i, =°- 1 + v (2) 

Where the second and higher terms in (1) are the solution for a sharp crack or a sharp V-notch 
which can be solved easily by the fracture theory, the first term represents the influence of blunt 
notch-root and p<Äi<Ä2<-... Once the terms for a sharp crack or V-notch are obtained by solving 
the standard two-point boundary value problem, the first term can not be solved accurately along the 
notch boundary, as shown in [3], but p. and  cp0, <p0', <p0", cp0'", cp0"" can be solved accurately on 
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the line of 9=0 by the boundary conditions at the notch-root and eq.(2) [7]. Thus the stress solution 
for a deep blunt notch can be written as 

aii = Aor *-2S?,+ tT 
'■I *sharp (3) 

and ju and 5° can be determined completely by the solution of the sharp notch. It is important to 

find that not only the singular term of the sharp notch field, but also the higher term(s) have strong 
influence on /j. and 5°. Therefore, u-2=-3/2 as obtained by Creager & Paris for a blunt crack [1] 

and Hui & Ruina for a small hole at the crack tip [8] is only a specific value under certain in-plane 
constraint. For example, u is a function of the T-stress for a blunt crack as shown in Fig.2 where W 
is the width of the plate. 

Central U-notch 
p=0.1,a/p=21,a/W=0.35 

H=0.5+0.263T-0.0603"T 

0.35 

0.25 

HN      0.15 

0.05 

-0.05 

Notch and Blunt crack 
a/p=21,B/p=2to40 

B      3D FE: V-Notch(p=90°) 

3D FE: V-Notch(p=60°) 

o      3D FE: Blunt crack 

  3D FE: Sharp crack 

On the mid-plane 

1.0 0.2 0.4 0.6 

T r/B 

Fig.2 The effect of T-stress on the notch-root   Fig. 3 The out-of-plane constraint ahead of cracks 
stress solution. and notches in finite thickness plates 

2.2. 3D Constraints 

3D finite element analyses [5] show that in front of a opening mode notch in finite thickness 
plate, the distribution of the normalized stress cry/<%max and the in-plane stress ratio T^a^Cy? with 
rlp'xs nearly independent of the plate thickness and can be predicted well with the corresponding 2D 
solutions. Therefore, the out-of-plane stresses become an important parameter in describing the 3D 
notch-root fields. For convenience, the out-of-plane constraint factor Tz=a2J{axx+OyJ) used by Guo 
[9] for 3D cracks is introduced. For elastic through-thickness cracks, Tz can be expressed 
approximately by 

T,=v 1-1.79J-]    +0.113f^l + 0.63lf r f(z/B). (4) 

When the origin of the coordinate r setting at the middle point of the center of the notch root 
arc and the notch-root, the variation of Tz with r/B in front of a blunt crack, a shallow notch and a 
hole can collapse to a unified curve, as shown by Fig.3. Therefore, the solution for a circular hole or 
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for a through-thickness crack can be used to estimate Tz for general notches. It can be seen from the 
figure that when B/p<\, Tz will remain less than rzmax/4 and merit less attention in practical 
application. 

3.    Elastic-plastic Stress-Strain Fields 

The elastic-plastic deformation near notches is much more complicated than elastic one, 
theoretical solution can only be found for some simple notch geometry and loading configurations. 
Recently Guo [6] obtained the solution for an equal-biaxial stressed infinite plate with a circular 
hole. He found that the elastic-plastic solution of the problem can be obtained from the elastic 
solution by a simple replacement of variable. If the elastic solution of the equivalent strain ahead of 
the notch is known as 

*- = /(r), (5) 

then the corresponding elastic-plastic solution can be obtained as 

/(/■'),    r'=rx 
'po 

(6) 

where ^is the yield strain of the material, rp0 is defined byfi,rp0)=l and rp is the size of the plastic 
zone ahead of the notch. This is the so called Strain-Equivalent-Rule (SER). 

Finite element analyses show that the SER can not only be applied to general 2D and 3D 
notches, but can also be applied to short cracks. Some typical results are given in Figs.4 and 5. 

Tz=0, n=10 

•       Theoretical 

notch-root 

1.0 1.5 2.0 2.5 3.0 3.5 4.0 

r/rp r/p 

Fig.4. Strain distribution at a circular hole in   Fig.5. Strain distribution at a deep U-notch in a 
plane stress state finite thickness plate. 

For long cracks the SER can not hold good, but the plastic zone size is still a useful controlling 
parameter of the elastic-plastic fields. 
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4. FRACTURE CRITERIONS FOR NOTCHES AND CRACKS 

It is well known that the fracture of a material element is strongly dependent on the 3D stress 
state. With increasing a/p, the stress triaxiality Ra which is equal to the ratio of the mean stress to 
the equivalent stress will increase. For a smooth bar Ra\s about 3/4 and for notched bar Ra=l to 2. 
For sharp cracks Ra is about 3 on the mid-plane. Figures 6 and 7 give the simulation results by use 
of 3D finite element and a cell model [10]. It is shown clearly that both the critical fraction of void 
volume and the VQC are not constant and do not change monotonously with Ra. For notched bar (Ra 

is about 1 to 2), VGC is nearly constant as has been investigated in many experiments. However, in 
front of a crack VGC may be much higher. For lower Ra as in a smooth bar VQC is obviously higher 
than in notched bars as well. Therefore, with proper initial values of the material parameters the 3D 
cell model simulation can provide us a more complete picture of fracture of notched and cracked 
bodies. 

=0.0025, f=0.001, n=10 

VG=Eeqexp(3/2Fy 

Fig.6. Critical fraction of void volume against 
stress triaxiality 

5. DISCUSSIONS 

Fig.7. Variation of the critical strain and VGC 

with stress triaxiality 

Rational prediction of the life of structural components has long been the main objective of 
fatigue mechanics and fracture mechanics. The traditional fatigue mechanics determines the life by 
stress-strain concentration analysis of notches and mainly concerns the crack initiation life. In 
contrast, fracture mechanics is based on crack analysis and always provides the life of crack growth. 
To predict the whole life of a component rationally, confusion of fatigue mechanics and fracture 
mechanics is necessary. The following topics will be interesting in this direction: 

i) Mechanics behavior in the crack blunting zone in which the fracture process occurs. 

ii) Unified description of 3D elastic-plastic notch fields and crack fields. 

iii) Fatigue damage mechanism of material elements at notches and cracks. 

iv) Unified description of the whole process of crack initiation from material defects or pits 
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and crack growth, 

v)   Whole life prediction based on unified descriptions of notches and cracks. 
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ABSTRACT 

The energy release rate when thin films on compliant substrates delaminate and buckle with or 
without cracking is shown to be much greater than if the substrate is stiff. For very compliant 
substrates relative to the film, such as indium tin oxide on polyethylene terephthalate the energy 
release rate can be more than an order of magnitude greater than the value obtained if the 
deformation of the substrate is neglected. The mode-mixity is also less on compliant substrates than 
on stiff ones. 

1. INTRODUCTION 

This paper was motivated by the Institute of Materials Research and Engineering's interest in 
flexible organic light emitting displays (OLED) and in particular the mechanical behaviour of 
conducting transparent oxides such as Indium-Tin oxide (ITO). Experimental studies have been 
undertaken on ITO deposited on a thin polyethylene terephthalate (PET) substrate, which is 
commercially available. When the composite film is flexed, the brittle ITO can crack under tension 
or compression. The steady state tension cracking of a brittle film on a substrate has been 
adequately studied and will not be discussed here. If the PET film is bent by controlled buckling so 
that the ITO is in compression, cracks appear in the ITO coating aligned normal to the direction of 
bending. Since the ITO film is conducting, the critical radius of curvature of the film, and hence the 
strain, can be determined by monitoring the resistance of the ITO. The cracks are superficially 
similar to cracks formed when the ITO is under tension. However, closer examination shows that 
the cracks grow behind delaminated buckles that propagate across the film (see Fig. 1). 

section AA section BB 

Fig. 1 SEM picture showing tunnelling delamination-buckle-crack 
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When the existing analysis of compression cracking of thin films [1] was used to analyse the 
compression cracking of ITO films on PET substrates, it was found that the indicated interfacial 
toughness was too low to be believed (5 J/m2). As a result the analysis of thin films under 
compression is revisited and an analysis for steady state delamination and buckling on compliant 
substrates is presented. 

2.  BUCKLING OF FILMS ON COMPLIANT SUBSTRATES 

Under uniaxial strain, a delaminated buckle propagates normal to the applied strain with stable 
straight sides [2]. The analysis follows that of Hutchinson and Suo [3], but deformation in the 
substrate is taken into account. Provided the ratio of the half width of the delamination, b, to the 
film thickness is large, the deformation in the substrate due to the relaxation in the buckled film is 
independent of the delamination width. On buckling the normal axial force in the film relaxes from 
the applied value, N, to the critical buckling value, Nc, and the substrate relaxes by an axial 
displacement, u0. The bending moment, M0, at the edge of the delamination causes a rotation, §. In 
addition the change in axial force causes a rotation and the bending moment causes an axial 
displacement. The compliances are defined by 

°~      E        nEhn 

Eh Eh (1) 

where Zsis the plane strain elastic modulus. The compliances depend upon the two Dundurs' 
parameters, a and ß[4] and have been calculated by the finite element method. The first Dundurs' 
parameter, a, is the most important. Results are presented for ß=0 when the stress intensity factors 
at the tip of the delamination are real and for an infinitely thick substrate are given by 

'-4 
iS—cosa- 

{N-Nc) . 
■- —sin<y 

2VÄ Mn   . (JV-JVJ 
sin<u+- cos CO (2) 

where GO is a function of a [3]. 

2.1. Buckling without cracking 
The buckled deflection, w, of the delamination can be written as 

w = 
12Mn 

Eh3A2 

cos A(b-x) 

cos Ab 
(3) 

where  A2 = 12NC /Eh3. The bending moment, Mo, can be found by equating the rotation given by 

Eq. 1 to that given by Eq. 3 at x=0. The eigen value of X can then be found from the change in 
length of the buckled form and the displacement given by Eq. 1. There are multiple eigen values 



Key Engineering Materials Vols. 183-187 189 

and the one chosen is that which gives the minimum potential energy with the constraint that A,b<jt. 
The compliance Au has the most effect on buckling. In the limit for a rigid substrate %b=n. 

For steady state tunnelling, the energy released by delamination and buckling is the difference 
between the energy stored well ahead of the buckle and that well behind it. The average energy 
release rate can be obtained from this difference. The local energy release rates can be obtained 
either from the stress intensity factors given in Eq. 2 or by differentiating the average values. For a 
rigid substrate the energy release rates are only dependent upon the ratio £/ec where £c is the critical 
buckling strain for a rigid substrate and is given by 

,=^' 
\2\b (4) 

The average and local energy release rates, Gd, normalised by, G0 = Es2h/2 the energy release rate 

if all the strain energy in the film were released by the delamination, are plotted against J(JJ7C), is 

plotted in Fig. 2. The square root is chosen rather than the ratio e/ec because the square root is 
proportional to the delamination width, b, for a given film thickness and strain. 

-Local 
■ Average 

Fig. 2 Average and local energy release rates for delamination and buckling at indicted strains on 
substrates varying from very compliant (a=.99) to rigid (a=-l). 

The result for a rigid substrate (a=-l) has already been given by Hutchinson and Suo [3]. On 
compliant substrates, the energy release rate is much greater than that for a rigid substrate. For ITO 
on a PET substrate a=0.97. In addition even the average energy release rate has a maximum value 
when the substrate is compliant which limits the width of the delamination. There are two limits to 
the validity of the curves in Fig. 2: one limit arises from the assumption that b/h is large, and 
another limit arises at large values of b/h when there is compressive contact between the buckled 
delamination and the substrate [5,6]. The limits of validity are indicated in Fig. 2. 

The mode-mixity angle defined by 

!^ = tan-'(*„/*,) (5) 

has been calculated from Eq. 2 and is shown in Fig. 3. For compliant substrates, the mode-mixity 
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angle increases relatively slowly with delamination width. And it is suggested that the width, b, of 
the buckled delamination is limited more by the decrease in energy release rate with b than by the 
increase in mode-mixity. However, if the substrate is stiff then the Hutchinson and Suo [3] 
explanation that it is the increase in mode-mixity that limits b is reasonable. 

-10 

-20 a=0 
-30 

■»" -40 

£   -50 
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: \ ■3- -70 v 
-80 

\ 
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Fig. 3 Mode-mixity for delamination and buckling at indicted strains on substrates varying from 
very compliant (a=.99) to rigid (a=-l). 

2.2. Buckling with cracking 

Valid results 
Outside validity limits 

  
yCi&f,]';;!! 

IIf  *v005* ill       \o.oi* a=0 

1             ~ Valid results 
Outside validity limits 

<s 

Valid results 
Outside validity limits 

Fig. 4 The total energy release rates for delamination and buckling with cracking at indicted strains 
on substrates varying from very compliant (a=.99) to rigid (a=-l). 
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The analysis follows closely on the work of Thouless [1] for rigid substrates, but it is assumed 
when cracking is complete the force acts through the bottom edge of the cracked film rather than at 
the centre of the film. The displacement of the buckled and cracked film can be written as 

w = — sin Äx + (S - h/ljl - cos Äx) 
A 

(6) 

where 8\% the deflection of the buckle at the cracked centre. The values of if), 5, and A can be found 
as in section 2.2. The average energy release rate, G,, is a combination of the energy released by 
delamination, G</, and the energy released by the cracking of the film, Gc, and is given by 

G,=Gd+Gc{h/2b) (7) 

The total energy release rate, Gh is shown in Fig. 4; the limits of validity are indicated. 
The mode-mixity has also been calculated and is shown in Fig. 5. The mode tends to pure mode II 

at smaller values of -J(sjsc)  than in the uncracked case, hence the width of the buckled 

delamination is more restricted 

Fig. 5 Mode-mixity for delamination and buckling with cracking at indicted strains on substrates 
varying from very compliant (a=.99) to rigid (a=-l). 

3. DISCUSSION AND CONCLUSIONS 

When thin films delaminate and buckle from compliant substrates under compressive strain, with 
or without cracking, the energy released from the substrate can be very much more than the energy 
stored in the film itself. 

The explanation that delaminating and buckling films tunnel without increasing the width of the 
delamination due to increased mode-mixity is probably correct for films on stiff substrates. 
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However, the change in mode-mixity with increase in width of the delamination is much less 
pronounced for films on compliant substrates. However, on compliant substrates, the average 
energy release rate does exhibit a maximum with increase in width and hence in this case the width 
of the delamination is also limited because of the decrease in energy release rate. 

The analysis of the delamination, buckling and cracking under compression has been used to 
estimate the interfacial delamination energy for ITO on a PET substrate. The total energy release 
rate given in Eq. 7 comes largely from the interfacial delamination energy and an estimate of the 
delamination energy can be obtained even if the film cracking energy is unknown. In this case film- 
cracking energy, 62 J/m2, was obtained from tension tests on the ITO film on a PET substrate. 
Using the value of a=0.97 for ITO on a PET substrate and the measured delamination with, the 
interfacial delamination energy was estimated to be 35J/m2 which is seven times the value obtained 
if the compliance of the substrate is not taken into account. 
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ABSTRACT 

Some basic three-dimensional (3D) problems in fracture mechanics are discussed in this paper. 
Firstly, the interaction between the stress-strain fields and the out-of-plane constraint is analyzed. 
The weaker singularities of stresses at the crack border in both linear elastic and elastic-plastic 

. materials are shown to be confined to an infinite small zone at the intersection point of the crack 
front line and the free surface of the cracked body. Therefore, the AT-based linear elastic fracture 
mechanics theory and J-based nonlinear fracture mechanics theory can be extended to 3D cracked 
bodies. The influence of the out-of-plane constraint factor Tz on the crack tip fields was analyzed 
and the variations of some important fracture parameters from plane stress to plane strain state are 
summarized. Then, in consideration the influences of both the in-plane and out-of-plane constraints, 
a general J-QrTz or J-Aj-Tz theory is proposed and proven to be more effective. Finally, the 3D 
effect on fracture of engineering materials is outlined. 

1. FUNDAMENTAL EQUATIONS 

For a 3D isotropic continuum without body force, the stress tensor a and strain tensor t should 
satisfy the equilibrium and compatibility equations 

°"i,-,,=°>    emlkenijekiJl = 0. (1) 

Where eij](=(i-j)(j-k)(k-i)/2. 
In the frame of deformation theory we have 
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8, =*;+*„'=-£*-«,+-^-0.5, (2) 

where E is the Young's module, Es is secant module,  v   is the elastic plastic Poisson's ratio 

"'-iii-°Jt (3) 

Consider a sheet element in the normal plane of the crack front line at any point P on the line, the 
in plane strains can be get from (2) and (3) as 

1 
£ir = —[(l- ovTz)p„ - vcp(l + Tz)aeg^, 

em = -^[(l - vjz)am - uep(\ + Tz)arr\ (4) 

£ee =Y (l + lJre)crre- 

And the out-of-plane strain can be written as 

c= =Y{Tz~v"p\a" + a<>i> )• (5) 

At the tip of an open mode crack, (orr + agg) > 0,   s__ < 0   and aZ1 > 0, so that 

0<Tz<uep<|. (6) 

When the Ramberg-Osgood constitutive relationship is assumed, 

v«,=\ - {\ - A.  , \ v..,- (?) 
z    \z      ; l + a[ae I a0) 

When the Maxwell stress functions 4>\\ (i=1,2,3) are introduced, the stress tensor satisfying 
the equilibrium equation (1) can be expressed as 

CTm»   = emiienijYM,kl (8) 

2. CORNER SINGULARITY OF 3D ELASTIC CRACKS 

It has been shown by previous work that the near tip stresses can be expressed in form of 
variable separation for 2D cracks and in the interior of a 3D cracked body: 

-,,=LvV,,(>),    ^,=f-i- (9) 
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At comer points where the crack front intersected with the free surfaces, weaker singularity 
was found in spherical coordinate (/?, #>, y/): 

ov = Ap-Äa(<p,y),       A<l/2. (10) 

So the dominate term of the Maxwell functions for general 3D cracks can be assumed as 

t^r'^faTz),  Tz = Tz(r,e,z) (11) 

Substituting (11) into the compatibility equation (1) and using (6) it can be gotten finally that: 

dTz -- 
i) When < co, the stress singularity is the same as in (9), or is r 2. 

dz 

dTz -- 
ii) When  —> oo, r 2 singularity can not be determined. So only in this case a weaker 

dz 

singularity may exist. 
For through-cracks in plates with thickness of 2h under tension, Tz satisfying the equilibrium 

and boundary conditions can be expressed as 

Tz = v 
«('■) 

F(rlh). (12) 

Then by means of variational method, it can be found that the only stationary value of the 
complementary energy is g(r)-»«> at the tip of the crack. So that 

Tz = v r->0. (13) 

dTz 
or the Tz-z curve tends to a rectangle as r-»0 (Fig.l). The region in which  ->°o is infinite 

dz 

small, so is the possible weaker singularity region. 

ATZ 

II I 

Fig.l Through thickness variation of Tz (f—» 0   &   p-»0   as r->0) 
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3.3D ELASTOPLASTIC CRACK BORDER FIELDS 

3.1 Singular Structure of the Fields 

Under 3D condition, the dominate term of the crack border stresses can be assumed as 

a„ = r f'{%(0,Tz),       Tz = Tz{r,6,z) (14) 

By using the basic equations of the problem as well as the properties of Tz, it can be found that: 
dTz 

i) Providing  < oo, the singularity and angular distribution of stresses and strains are 
8z 

functions of the triaxial stress constraint Tz, that is 

<Tv=Kr'-2<Tv{0,Tz),       s^^aK'r^e^Tz),       {ij = 1,2) (15) 

and 

as = TzKr'-2(axx+Zyy),   eB = [rz-^K"r<'^szz(0,Tz) (16) 

The traverse shear stresses and strains are one order lower as r-»0.1n this case the problem can be 
simplified to a quasi-planar problem with Tz being considered. This makes it possible to solve the 
problem analytically. 

dTz 
ii) In the case of > oo, singular structure of the fields can not be settled. It is similar to the 

dz 

corner problem in 3D elastic cracks. Again, this region will be infinite small and not important in 
application. 

3.2 Asymptotic Solution Under Triaxial Stress Constraint 

dTz 
In the case of < oo, all of the singular stresses in a 3D cracked body bear relation to only 

dz 

one stress function ^, and it can be get from (14) that 

<j>3}=Krf{2)0{e,Tz), (17) 

where fiz) is a function of Tz. 

Substituting (17) into (8),(2) and (1), the governing equation in a strain hardening material can 
be obtained under given Tz 
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\ + Tz 

3 

+a2 (of/"' f) + n(f - 2)[5/-' (aj + 0')] = 0 
(18) 

where ()'= —■, a; are functions of fand n. 

For a stress free mode I crack in homogeneous continuum, the problem can be summarized as 
a two point boundary problem of (18) with 

(x) = p(x) = t"'(0) = f(0) = 0.. (19) 

Solution of (18) and (19) shows that both the exponent of singularity fand angular distributions of 
the fields change with Tz. (f-2) is highest at Tz=0 and 0.5 and agrees with 2D HRR solution, but 
when 0<Tz<0.5, the singularity becomes weaker and Rice's line energy integral Jwill no longer be 
path independent. The amplitude coefficient K is related to J by 

J = as 0a0K"+'r »+l,(«+l)(/-2) l(n,Tz). (20) 

Substituting (20) into (15) leads to 

J 
as „a j(n,Tz)r 

l/(n+l) 

&MH 

su =    a 
"     2 as0(J0l(n,Tz)r 

n/{n+ 
(21) 

s,(ejz). 

3.3 Distribution of Tz in Front of 3D Cracks 

In front of a mode I through-crack in finite thick plate, Tz can be predicted very well by the 
following expression (where \ =r/2h) 

1- 
0.94r 

(22) Tz = vcp{\-1.218£"2 -0.359£ + 0.361<f2) 

Substituting (22) into (21), 3D stress and strain fields near the tip of a real crack can be predicted 

3.4 Effect of 3D Constraint on Interface Crack Tip Fields 

From (22) and (3) it can be seen that Tz will change with materials. Then in the case of crack 
on the interface of two different materials, crack tip fields may be affected by the change of Tz from 
one material to another. 

Our investigation on the near tip fields of cracks lying on the interface of two strain hardening 
materials under 3D stress constraints has shown strong effects of Tz on the continuities and 
singularities of the radial and equivalent stresses. 
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4. J-A2-Tz THEORY 

4.1 Out-of-plane and In-plane Constraint of Plane Strain Cracks 

In plane strain state, e..=0. So from (5) and (7) it can be get that 

Tz = v„„ = - -   — v\ 
'"     2    \2     Ja 

0 ' (23) 

Therefore, the in-plane stress-strain fields are coupled with Tz. This coupling relation is hard to be 
revealed properly by the asymptotic solutions. Based on the higher order solution which can match 
the in-plane constraint very well and the above analysis we propose the following J-A2-Tz theory 

J      "~ 
as0a0I r a,Ae) + ^[r"^M + V'M*)].   (U = 1,2) 

aii=Tz(all+a22), (Tz = vcp) (24) 

o-e=[(l-7z + rz2)(crfl+^2)-(l-27z-27z2)CTnc722+3^2p. 

When a J-Q representation is used to replace the J-A2 solution in (24), a J-QrTz theory can be 
obtained. 

4.2 J-A2-Tz Theory for General 3D Cracks 

For general three-dimensional cracks, the constraints consist of the in-plane constraint as well 
as the out-of-plane constraint. 

i) Out-of-plane constraint 
The out-of-plane constraint is defined as the stress constraint out of the plane of the sheet 

element in consideration. It can be represented by Tz. For general 3D cracks the real distribution of 
Tz of the cracked body should be used. For through-thick cracks, Tz is given by eq.(22). 

ii) In-plane constraint 
In-plane constraint is defined as the constraint caused by the boundary conditions of the sheet 

element. The J-Q representation or higher order solutions can be used to match the in-plane stresses 
for various in-plane constraints. 

Considering both of the in-plane and out-of-plane constraints, a J-A2-Tz or J-QrTz theory can 
also be proposed for general 3D crack problems: 

i) In-plane stresses o y (ij=l,2): described by J-A2 or J-Q theory. 
ii) The equivalent stress a e and a __: determined by eq.(22) and the last two equations of (24). 

iii) Strain field and other parameters should be calculated on the basis of i) and ii). 

Acknowledgment: This work is supported by the National Distinguished Young Scientist Fund of 
China and the Cheung Kong Scholars Programme. Limited by the space the references are not listed, 
gratitude is given to the contributors in this field. 
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ABSTRACT 

By applying the linearized theory of Pao and Yeh [1], the governing equations are derived for 
determining the magnetoelastic coupling between through cracks in soft ferromagnetic elastic solids 

and magnetic fields. Using the complex potentials, the explicit solution of coupling fields for the 
ferromagnetic solid with collinear cracks is derived by employing singular integral equation 
technique. 

1. INTRODUCTION 

The general theory of interaction between induced magnetization and reformation was 
developed on the basis of continuum mechanic and the classical theory of magnetism [2]. In the 
work [1], the perturbation of magnetic field generated by deformation are assumed to be very small 
and magnetic quantities are decomposed into two parts. A linear theory for ferromagnetic 
deformable solids is then developed for small deformation in a quasi-static state[3,4]. By employing 
Fourier transform, the magnetoelastic crack problems for the case of the magnetic field normal to 
the crack was analyzed [5,6]. Closed form solution was also obtained [7] for the magnetic field 
generated by mechanical singularity in a half plane. Complete solution for linear magnetoelastic 
coupling in half space was found by developing the Papkovich-Neuber solution of elasticity [8]. As 
well known, complex potentials is valuable for analyzing crack problems [9]. In this paper, complex 
potential solution is derived for magnetoelastic field in a ferromagnetic elastic materials. The crack 
problem in soft ferromagnetic materials is then obtained by solving the singular integral equation 
problems. 

2. THE LINEAR THEORY 

For a ferromagnetic deformable material in magnetic field, the deformation is coupling with the 
magnetic filed. The effect of the coupling field on the material can be expressed in terms of the 
magnetoelastic stress tensor, ty. The field equation of the magnetoelasticity can be expressed as 

following for the case |mj|« Af .K,. . . 
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tVJ + Mo (M, HJJ + Mfijj + mi Hj,i) = 0 

eiJkHkj=0,Bu=0, eIJkhkJ=0,bu=0 
(1) 

where//,and Ä,are respectively the magnetic intensity in the rigid state and perturbed state, The 
permutation tensor is eijk, and comma denotes partial derivative with respect to the spatial variable. 
The linear constitutive relations of an isotropic solid with the magnetostrictive neglected are [6] 

*u =au +—M,Mi +^-(M,m +Mjm,) 
X X 

Hi = zH„ B, = Mo[H, +Mi)=jU0MrH< 

™t = Xk, b, = Mo{K +m)= MoMÄ 

(2) 

where «jis the displacement while qj.is the Cauchy stress. /4=47txl0"7 N/A2, Mr^+X is the relative 
magnetic permeability and X and G are Lame constants. 
The continuity conditions on a jump plane of the linear theory are 

,«,[//,]= 0, «,[5,1=0, ^iAj-i!,«,^] )=0 
"M~>wM=0,   «41 = ^0«, M„ + M0n AM„m„l 

(3) 

where, Mn =Mini, m^mpi,. The unite vector of the boundary is «,, The symbol [[ ]] represents a 
discontinuity jump. 

3. THE COMPLEX POTENTIALS 

Consider an infinite soft ferromagnetic elastic ^XR 

solid with a number of collinear through cracks 
subjected to in-plane magnetic field and mechanical 
load at infinity (Fig.l). The x-axis of coordinate lying 
in the line of the cracks. The material are assumed to 
be homogeneous and isotropic. 

From the theory related in the last section, it can 
be derived that the magnetic field in the materials is 
in-plane,  Bi=b3=0. Introducing harmonic magnetic 
potential function g(x, y), and letting 

v0 
A /a. 

b, a2 

/ 

D, 

b2    aN   bN 

N, CT2 

*-f*"f 
Fig.l Collinear cracks subject to 
applied magnetic field and loads 

(4) 

where 
V2£ = 0 (5) 

From continuity condition in Eqs.3, one can obtain that the quantities of H1 and B2  are no 
change between the two side of the jump plane with «=(0,1,0). Thus, from Eqs.l, the solution for 
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the rigid body sates in the original configuration are obtained as 

Putting Eq.4, Eq.5 and Eq.6 into Eq.l, it yields that 

do„     dox 

dx dy - + 2ju0Z 

do        do 

dx        dy 

dx      ft0fir d*dy 

dxdy    juQjur dy 

= 0 

= 0 

The solution of the above can be represented by the stress function, 

d20   rr d20 d20   rr 

where 

V = -2MoZ 
&    MoMr dy) 

(6) 

(7) 

(8) 

(9) 

In Eq.8, the stress o^ satisfy the equations of compatibility to ensure the existence of single value of 
displacement. Making use of Eq.2, Eq.5, and Eq.8, the equation of compatibility for the 
magnetoelastic problem can be represented by the same form as in elasticity 

V4<Z> = 0 (10) 

Employing the theory of analytic functions, the general solution to Eq.10 and Eq.5 can be 
represented by 

0 = 2Re(z<p(z) + t(z)] £(z) = Re(<y(z)) (11) 

where z=x+iy, cp(z), <a(z), £(z) are analytic complex functions. 

Similar to Muskhelishvili's complex representation of stress and displacement, the coupling 
field can be written as 

where 

0^+0^= 2(p'(z) + <p'(z)) + c3co(z) + c3a)'(z)) 

<?yy -oa +2ioxy=2(Cz-z)<p"{z)-<p\z) + 0\z)) 

2G(ux + iuy) = Ktp(z) -(z- z)q>' (z) - Q(z) + ßc3co(z) 

hx-ihy=co'(z) 

K = 1-AV and ß = 2(1 - 2v) for the plane strain, 

K = (3 - v)/(l + •). ß = 2(1 - v)/(l + v) for plane stress; 

Q{z) = z(p(z)-q\z) ,c3=Q+ iC2 = -ßaHi + 'wB2 
fMr 

(12) 
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Putting Eq.ll and Eq.12 into Eq.3, The boundary conditions on a plane normal to y-axis can be 
obtained. For the case of the out side is vacuum, it is reduced to 

-8u„ 
22 "°   3 dx w (13) 

Ik, - to» 1=r+<c2 (z-2)- tcx )hy + tc2hx 

where x = (c2(j-2)-zC,C2)/(2//0j), the quantity with a prime of'*' is the quantity in the 

vacuum side and <Jyy-icrxy are functions of o(z), cp(z) and Q(z), 

a^ - ia^ = (z - z)cp'\z) + <p'(z) + Q'(z) + c3ca(z) + c3 co'(z) 

4. THE SOLUTION FOR COLLINEAR CRACKS 

It can be regarded that the effect of cracks on the stress and magnetic fields far from the crack is 
neglectable. Then the fields at infinity can be represented by the applied magnetic field and load. 

H[ = H?,T2 = B2-,A,(oo) = A, («) = 0 

*Z+al=AB,   (<r;-cC+2*<r;)=25' (M) 

where H" and B2 denote the magnetic quantities at infinity. <x°° is the stress in the region where 
the effect of cracks are neglectable, which represents the resultant of the mechanical loads and the 
force of magnetic field on the materials in the region. 

The cracks are defined by the L: {(t,0): ak> t > sh £=1,2, ..., N). The complex functions 
#>(z),<»(z)andQ(z)are analytic in the Region Du that is the complex plane except L. On the up 
faces of the cracks and on the down faces of the cracks, the boundary conditions are respectively 

K(p'{ty -K(p'(ty +n'(ty -n\ty +c1a\ty +ct<o\ty = cs&''(t) 
q>\ty +n\ty+c,a\ty + cwä\ty = r 

K<p\ty -Kq>\ty +n\ty -n\ty+c7w'(ty +c8ö/(o+ = c5a
,(t) 

<p'(ty +n\ty +c9w'(ty +cww\ty =r 

where 

c9 =i(C1+iC2(x + l)\ c10 =1(30,-/0^-1)) 

Combine of Eq.15 and Eq.16 are equivalent to the following equations 

[K<P' (tj + n1 (t) + C7 eo' (t)\ - [- K0 (t) - H'(t) + C8 a'(t)\ 

-([K<P'(t) + n'(t) + C7co'(t)\ -[-K~q>'(t)-TT'ft) + C8a'(t)]) = 0 

(15) 

(16) 

(17) 
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[lap' (t) + Q'(t) + C1 a' (t)Y +[-K<p'(t)- Q'(t) + C8 m'(t)} 

+ [K(p'(t) + n'(t) + C1a
,(t)\ +\rK~<p'(t)-J2'(t) + Cia

,(t)] =2cso)''(t) 

[cp'(t) + C,co'(t)Y-]p>(t) + Cwä'(t)] = [<p'(t) + C9a,'(t)l -}p'(t) + Cwä'(t)] 

y(t) + C,w'(t)\ +\ö'(t) + Cwm'(t)f +[<p'(t) + C9a>'(t)Y +\ä'(t) + Clom'(t)] =2/ 
(18) 

The value of the functions at infinity are deduced from Eqs.14. The solution for Eqs.18 can be 
obtained by using the singular integral equation technique [10]. 

co{z) = cn + cnzN X(z)+YJdikz
k X(z) 

W-l 

cp(z) = c2i + c22z
NX{z)+^d2kz

kX(z) 
i=0 

Q{z) = c3i+c22z
NX(z)+YiduzkX(z) 

(19) 

where, X(z) is the basic solution of the problem. The branch for   lim zN X{z) = 1 is 
1*1-»» 

X(z) = Y\{z-sk)-y>{z-ak)- (20) 

the constants are 

^^(-IBil + KyB' + ^-l + Ki-B'-B^-B'l-^-c^/d + ^c^ + r) 

Cn =yC14(4.B + B'+B~)-\cu{y + y),   c14 =(-c7 -cg\l + K)/d 

c21 = -±ff-c9cu + ±y, c21 = -±[2B + B')-c9cny 

C3, =—yi>—C10CU +2"/   , 

du=ciAi2k +<iu)-2rdok> 

"ik = ^2k ~C\0"\k ~jY"-ük 

c32=-±(2B + B')-cl0cl2-±r 

"2k ~^2k ~C9"\k — IT"!)* 

sm, m = l,2,-,N 

L«m, m = (N + \),(N + 2),-,2N 

and q2k are determined by the following algebra equations 

N-\ 

I 
k=\ 

(21) 

Yj(Kd2k-d2k+ßc3d3k)^'zkX+(x)dx = 0 , £rf3t %" zkX+(x)dx = 0,m=l,2,~N      (22) 

In the above, the single-valued of displacement and magnetic potential function along the closed 
curve enclosing every crack are used. 

Thus, the stress, displacement and perturbation of magnetic field are obtained by substituting 
Eqs.19intoEqs.12 

o-„+ffw=4Re 
  /         N AM   

c21 +c,cu +{c22 +cicn)zNX(z)+YJd2k +c3dlk + zkX(z) 
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°„ -^xx +2i°xy =2 -c21 +c31 -(c22 -c32)zwZ(z)+^^uz*^(z) 

+ (- z + z(c22 (^z""1 JT(z)+ z"*'(z))+ §rf2t (fe
i-1Z(z)+ z*Z'(z)) 

(23) 

An infinite crack defined the interval -a<x<a is considered as a examples. The stress fields are 
get by reducing Eq.23. The singular stress near a crack tip can be obtained by letting r-»0, z=a+re'e. 
The result shows that the stress singularity is inversely proportional to the square root of the radius 
from the crack tip, which is same as the result in [5]. A rectangular crack plate with biaxial tension 

8.8.9CH 

B^O.OOS^/G^" 

BO=0.0067GH„ 

BO=0.007^/GJI7 

8.8& 

0.10 

0.08 cf 

0.06   S 

0.04 p 

0.02 "S 

0.0 
0.0 0.5 1.0 1.5 

The angle between the direction of crack face 
and that of the plate side   a [Degree] 

Fig.2 The stress singularity for a magnetoelastic crack problem 

jo=8.862MPa to be in magnetic field normal to one side of the plate is considered. The stress 
singularity are described in Fig.2, which shows magnetic field have effect on the stress field near 
the crack tip. 
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ABSTRACT 

Energy crisis is expected to be the major problem in the new millennium. Industries are the 
major consumers of energy in the form of electrical, mechanical, chemical etc. Especially metal 
forming industries are energy intensive industries. This paper aims at determining the requirement 
of deformation energy of P/M copper and ingot material at elevated temperatures in order to make 
comparative analysis. 

1. INTRODUCTION 

Powder metallurgy route of manufacturing gains momentum mainly because of material and 
energy savings due to easier recycling of swarf. The research work [1] indicates that there is 26.5% 
saving in the cost of manufacture of commutator sleeves by cold forming of sintered iron preforms 
compared to the extrusion of wrought parts. Kannan [2] has observed 11.5% and 16.5% reduction in 
cost and deformation energy respectively, when recycling the copper powder to make tubes by 
Hooker extrusion. In the research work [3], it is indicated that 50% of energy is saved when 
manufacturing differential pinions through powder metallurgy process instead of wrought material. 
However not much work has been done so far in the comparison of deformation energy requirement 
between P/M and ingot material. 

2. EXPERIMENTAL DETAILS 

In the present investigation P/M copper preforms were prepared at three different density 
values viz., 7.00, 7.35 and 7.70 g/cc. The above preforms were sintered in endogas atmosphere at 
1173 K for 60 minutes. Rings with dimensions in the ratio of 6:3:2 as Outer Diameter : Inner 
Diameter : Height were prepared to perform the standard ring compression tests. Rings with the 
above mentioned dimensions were prepared from ingot electrolytic copper also. 
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The above rings (both P/M and ingot material) were compressed at different temperatures 
ranging from room temperature to 1073 K in steps of 473 K. During compression, force vs. stroke 
plots were developed to determine the forming energy requirements. Optical micrographs were 
taken on the P/M and ingot material, compressed at elevated temperatures to obtain the 
structural - property correlation. 

3 RESULTS AND DISCUSSION 

3.1 Effect of Strain Hardening Exponent on Deformation Energy 

The force vs. stroke diagrams for P/M copper and ingot copper are shown in Figures 1 and 2. 
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From the compression test data, strength co-efficient and strain hardening exponent for P/M copper 
(Ka, na) and ingot material (K, n) were calculated. The effect of forming temperature on the strain 
hardening exponent (n) for ingot material is shown in Fig. 3. Similarly for P/M copper, the effect of 
forming temperature on na is shown in Fig. 4. Generally when deforming ingot materials at very 
high temperatures, the material do not experience strain hardening and as a result, the value of n 
approaches zero but in the case of P/M materials na does not approach zero as temperature increases 
since persistent densification takes place [1]. This is evident from the Figures 3 and 4. Even at 
1073 K for P/M materials the na value is 0.30 whereas in the case of ingot material the value of n at 
this temperature is not significant (0.05). Similar observation was made in the research work [2]. 
Higher the value of strain hardening exponent, more is the resistance for deformation and hence 
energy requirement is more. 
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Fig.4 Variation of na with Temperature 

3.2 Effect of Temperature on Energy Requirements 

Energy required for deformation with forming temperatures is shown in Fig.5 for different 
initial densities of P/M copper preforms and corresponding ingot material. It is seen that sintered 
preforms consume more energy than ingot material. This can be attributed to the following reasons: 

(i) In the research work [3], it is mentioned that after each working stage, the grain size of 
P/M material became markedly finer than that of wrought material. If the grain size is 
smaller, according to Hall-Petch equation, strength is higher which augments the 
resistance for deformation. This causes more energy requirement during deformation. 
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(ii) Forming force can be estimated from the Hollomon - Ludwick equation, which is widely 
used. This equation is, 

a= KaG [1] 
where 

a = flow stress 
e = strain 
Ka = strength co-efficient 
na = strain hardening exponent 

Due to pore closure, P/M material strain hardens more than that the wrought material. Hence 
the strain hardening exponent na is higher for P/M copper [4] than the ingot material. This 
causes more resistance for deformation and demands more force and energy. 

From Fig. 5, it is also observed that the difference in the deformation energy requirement 
between P/M and ingot is more at lower temperatures and it gradually decreases at elevated 
temperatures. Because at higher temperatures, P/M material undergoes persistent densification and 
the density approaches to the theoretical value. 
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Fig.5 Comparison of Deformation Energy of P/M with Wrought Copper 
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Fig.6   Micrographs 
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3.3 Micrographs 

Optical micrographs were taken on all the compressed ring specimens to obtain the 
structure-property correlation at elevated temperatures. The micrographs are shown in Fig. 6. In the 
copper ingot, twinning increases as temperature increases. Twinning starts at 473 K and completes 
at 673 K. Also, recrystallisation starts at 873 K. 

In P/M copper, significant reduction in porosity is evident as the temperature increases. This 
may also consume more energy during deformation. At 873 K grain growth and twinning increase. 

4. CONCLUSIONS 

The following conclusions are drawn from this investigation: 

(1) Strain hardening exponent (na) is higher for P/M copper than the ingot material. Due to this the 
deformation energy requirement is more for P/M copper than the ingot material. 

(2) Preforms with lower initial density require more energy. This is due to higher value of strain 
hardening exponent for lower preform density. 

(3) Twinning and pore closure are observed in the micrographs taken on the ring specimens 
compressed at elevated temperatures. 
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ABSTRACT 

The objectives of this paper are to study the fracture properties of a coating structure through 
analysis on the stress intensity factor of a coating crack perpendicular to the interface between the 
coating-material and the base-material, and arrested in the base-material. The weight function of 
the coating crack is given and the coefficients of the weight functions are determined. Using this 
weight function and the finite element method, the analytical expression of the stress intensity 
factors for the crack is given, and a good agreement between the calculated stress intensity factors 
by the weight function method and that by the finite element method is reached. The influences of 
the materials' properties and the geometrical dimensions on the stress intensity factors are 
analyzed and discussed. 

1. INTRODUCE 

In modern composites, such as the fiber strengthen Silicon-Carbide(SiC), coating cracks often 
appear in fiber layer and strongly influence the properties of the composite[l-2]. In Ref.[3-16], the 
singularity and the stress intensity factors of the singular stress fields around this kind of cracks 
were analyzed by different methods and some work has been done to analyze the effects of this 
kind of cracks on the properties of the fiber strengthening composites in Ref.[17]. But there seems 
no reports, at least rarely or not systematically, about the stress intensity factor of this kind of the 
coating crack, especially, about the influence of the geometrical dimensions and the materials' 
properties on stress intensity factors. So it is very necessary to carry out some researches on this 
subject. 

2. GEOMETRICAL CONFIGURATION OF THE COATING CRACK 

The geometrical configuration of the coating crack is shown in Fig. 1. M, and M, indicate the 
base material and the coating material, respectively. The crack is perpendicular to the interface of 
the base-material and the coating-material, the crack length(a) is equal to the coating thickness(t). 
The other geometrical dimensions are shown in Fig. 1. E,, E2, v, and v2 denote the elastic module 
and Possion's ratio of the base-material and the coating-material, respectively. The geometrical 
configuration is symmetrical and belongs to the pure mode I loading even though material 
inhomogeneity exists in the coating structure. So only mode I stress intensity factor K, appears. 

3. FINITE ELEMENT METHODS(FEM) FOR THE CALCULATION 

The researches on the singularity of this kind of coating cracks have shown that the stress field 
near the crack-tip of this kind of the crack is still of the 1/Vr singular property[18-19, 6-8]. So 
based on the theory of fracture mechanics, the eight node isoparameter element can be used to 
calculate the stress intensity factor of the coating crack[20, 22-23]. To get real stress intensity 
factor, the stress components ahead the crack-tip in the range within r<10"7 (mm) were at first 
calculated by the finite element method, then by the stress method[20, 22-23], the stress intensity 
factors are calculated. Tab. 1 shows the comparison between the stress intensity factors by this 
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method and the results in Ref.[21]. The crack is in homogeneous material and is subjected to mode 
I unit crack surface pressure. It can be seen that the stress intensity factors from both methods 
agree with each other very well. Further researches on the convergence and the exactness of this 
finite element method have been carried out in Ref.[18-19, 22-23]. The finite element program 
package Abaqus in Research Center of Karlsruhe, Germany, were used in the numerical 
calculations. 

Tab. 1 Comparison Of The Stress Intensity Factors From Different Methods 

a/W(W/H,=l) K,'2°l/<Wa K,/cWa (K.M-K.yK, 

0.2500 2.6591 2.6110 0.01828 

0.1750 2.33095 2.32651 0.00190 

0.0999 2.10943 2.05105 0.02768 

0.09167 2.09124 2.03399 0.02738 

0.08571 2.07906 2.01937 0.02871 

0.08125 2.07038 2.00492 0.03162 

0.07778 2.06389 2.00192 0.03003 

0.07599 2.06067 1.98026 0.03902 

4. WEIGHT FUNCTION METHOD(WFM) 

Based on the general principle of weight function methods[18, 22-23], for this kind of the 
coating crack under a arbitrary crack surface load ( P = Px i+ PY j ), the stress intensity factor K, 
can be calculated by the following equation: 

K, = ^Ph,chc (1) 

Here h, is the weight function. If only the K, factor will be calculated, h, can be expressed as 
following[22]: 

h,= 1^(1--) (2) 

D, n are coefficients of the weight function, which can be determined with the help of different 
conditions. In principle, all the coefficients D, „ can be determined with different conditions[18, 
22-23]. However, it has been found that the three terms' weight functions are good enough to meet 
the needs of this kind of the coating cracks, and the first term's coefficient of the weight function 
has been analytically derived as following[l 8, 22-23]: 

D,,o=l (3) 

So the weight function for this kind of the coating crack can further be expressed as following: 

3" 

h,: 
1      +D]J(l-x/d)+D12(l-x/a)2 

V(l-x/a) 
(4) 
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The second term's and the third term's coefficients can be determined in terms of the reference 
system shown in Fig. 2. In Fig. 2, the coating crack is acted by unit pressure. Based on the theory 
of the weight function[22-23] and the reference system, the second term's and the third term's 
coefficients are: 

o,^r,-2 Z>1.2 
12 V 2 3 

Here Yl is geometrical function of the coating crack under the unit pressure. The geometrical 
functions can be calculated by the finite element method. 

5.   COMPARISON BETWEEN THE CALCULATED STRESS INTENSITY 
FACTORS BY WEIGHT FUNCTION METHOD AND FEM 

The loads, which act along the crack surface in the coating-material and along the crack 
surface in the base-material, are different. The two parts of the loads can be respectively seen as 
constants, which are shown in Fig. 3, because both of the coating thickness t and the crack length 
a are generally very small[24]. According to the balance principle, there is a relationship between 
the two parts of the load[24]: 

Pi EL (5) 

Here P, and P? stand for the two parts of the constant pressure, which act respectively in the 
coating material and in the base-material. So the pressure acted along the coating crack surface 
can be expressed as the following vector[22-23]: 

P(x) = 
Oi + Pzj 

Oi + P,j 

0<x<t 

t<x<a 
(6) 

Set the load Equ.(6) and weight function Equ.(4) into Equ.(l), then the stress intensity factor of 
the coating crack can be expressed as following: 

2 + 2(—L-l)(l )- 
En a 

2 2   ^i i. + £(_J--l)(l- 
3 3   £0 

-)2 5/,l + 
2    2   E\ ± + ±(-L- 1X1- 
5     5   E2 

V DI2   P2 

(7) 

By using the Equ.(7), the stress intensity factors K, for different conditions have been calculated. 
To be convenient, let P2 be equal to the unit in the following calculations. 
Fig. 4 shows the comparison between the stress intensity factors calculated by the weight function 
method and by the finite element method for different a/t and different E,^. The geometrical 
dimensions, (a-t), L and H1; are constant. From Fig. 4, it can be seen that the calculated stress 
intensity factors from the two methods agree very well with each others; the stress intensity factors 
increase with the increase of the value E,/E2 for a constant a/t value, i.e., the coating-material 
plays the role of the strengthen material; and the tendency of the distribution of the calculated Kj 
factors against the value a/t is also supported by the results in Ref.[25]. 
The stress intensity factors for different crack length a and different E,/E2 are calculated by the 
weight function method and by the finite element method. The calculated results are shown in the 
Fig. 5. The geometrical dimensions, t, W and Hi, are constant. Both of the calculated results by 
the two methods coincide perfectly with each other. The Krfactors increase with the increase of 
the crack length as well as with the increase of the value E,/E2. 
Through the comparison between the calculated stress intensity factors for different coating 
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thickness t by the two methods, the effects of the coating thickness t on the stress intensity factors 
are shown in Fig. 6. The geometrical dimensions, a, W and Hi, are constant. The stress intensity 
factors by the two methods agree very well with each other. From Fig. 6, it can also be seen that 
the stress intensity factors increase with the increase of the coating thickness if the E,/E2 <1. But 
the factors decrease for the E,/E2 >1, which means clearly that the coating-material acts as the role 
of the strengthen material in a coating structure. 

7. INFLUENCE OF THE GEOMETRICAL DIMENSIONS OF THE 
COATING STRUCTURE AND THE MATERIALS' PROPERTIES Et/E2 

OF THE COATING STRUCTURE ON THE STRESS INTENSITY 
FACTORS 

Fig. 7 shows the influence of the base material's thickness L on the stress intensity factor. The 
other geometrical dimensions are t/Ht = 0.125, a/t = 2. The material's properties are E]/E2 = 0.69, 
v, /v2 = 1. From Fig. 7, it can be seen that the geometrical dimension L has larger influence on the 
stress intensity factor when the L is smaller; this influence seems to disappear if the L is very 
large. 

The effects of the coating structure's height H, on the stress intensity factor are shown in Fig. 
8. The other geometrical dimensions are t/W = 0.125, a/t = 2. The material's properties are the 
same with those about the influence of the base-material's thickness L. From Fig. 8, it can be seen 
that the smaller the Hi is, the larger the influence of this dimension on the stress intensity factor is. 
The stress intensity factors for different E,/E2 are shown in Fig. 9. The geometrical dimensions are 
a/t = 1.83, Hj/W = 1. The other materials' property is v, /v2 = 1. Fig. 9 shows clearly the effect of 
the value E,/E2 on the stress intensity factors. From Fig. 9, it can be seen that the strengthening 
role of the coating-materials is expressed through the decrease of the stress intensity factors with 
the increase of the value E,/E2. 

8.   CONCLUSIONS 

8.1 The finite element method and the weight function's method have very successfully been 
applied to calculate the stress intensity factors of the coating crack under different conditions. 
The calculated K-factors by the weight function method and the finite element method agree very 
well with each other. 

8.2 The general weight function for the coating crack has been given. The weight function's 
coefficients and the geometrical functions have been determined, and the influence of the 
geometrical dimensions and the materials' properties of the coating structure on the geometrical 
functions and the weight functions have been discussed. 

8.3 The stress intensity factors are calculated by the two methods for different conditions. The 
strengthening role of the coating-materials for the coating structures has been clearly shown by 
analyzing the different effects of the geometrical dimensions and the materials' properties on the 
calculated stress intensity factors. 
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ABSTRACT 

A new model combining both plasticity-induced and surface roughness-induced crack closures 
is proposed to describe short fatigue crack growth. The numerical results obtained using this model 
agree well with the analytical predictions of Budiansky-Hutchinson and are reasonably close to the 

experimental data. 

1. INTRODUCTION 

The characterisation of short fatigue crack growth is critical for accurate lifetime prediction of 
components and structures since anomalously fast crack growth rates are often observed at stress 
intensity factors well below the threshold where long cracks are generally presumed dormant. As is 
commonly accepted, crack closure is one of the most important factors resulting in the anomaly of 
short crack growth and the distinction of growth behaviour from long cracks [1-4]. It is agreed that 
plasticity-induced closure is the primary mechanism of crack closure arising from the development 
of residual plastic stretch in the crack-wake. However, it has been recognised, both theoretically and 
experimentally, that the total crack closure should include both plasticity- and surface roughness- 
induced closures. This paper is a first attempt to develop a new short fatigue crack growth model 
including simultaneously both closure mechanisms. 

2. A NEW MODEL OF SHORT FATIGUE CRACK CLOSURE 

An improved short fatigue crack growth model should include both mechanisms of plasticity- 
and roughness-induced crack closures. It should not only consider the mix of both crack closures, 
but should also recover their limiting functions. Due to the existence of the plastic wake and the 
surface roughness as shown in Fig.l, the onset of crack opening (Sop) or equivalently, the total crack 

closure, is given by: 
Sop =S:P+S;p cos0 (1) 
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where 5p
op and 8r

Bp are equivalent crack surface displacements due to plasticity-induced crack 
closure and roughness induced-crack closure, respectively. At the crack-tip, the crack-opening 
displacement can be expressed by Dugdale's model [5] as: 

6 = K?/(E<ry) (2) 

Thus, the crack opening stress intensity factor, Kop, can be obtained from the models of Dugdale 
and Suresh-Ritchie [6] and Eq.2. That is: 

s;p + s,:„ cos e 

cos 0 = 
•Jh1 + {wl2)1 

2y 

l + ( 
1 

2h/w 
Vv + i 

(3) 

(4) 

yis defined as the fracture surface roughness factor, y = h/w, where w denotes the mean base 
width of surface asperities, and h is the average height of asperities. 

Plastic wake 

(a) Full opening at Kmax (b) Onset of opening at Kop (or Kd) 

Fig.l. Illustration of a deflected crack at (a) full opening and (b) commencement of opening. 

Using Dugdale's model again and substituting Eq.4 into Eq.3, we have 

2T 

V4y2 +1 
(5) 

KoP and Kp can be calculated by modifying Newman's numerical method [7,8] and the Suresh- 
Ritchie model, respectively. Kp

op is dependent on plane strain or plane stress, cyclic stress ratio R 
and applied to yield stress ratio a/oy In Suresh-Ritchie's model, K'op can be estimated by 

K '   =  K I   2r% 
op "■   max    -■ / . 

2/Z 
(6) 

where % is the ratio of mode II to mode I displacements, i.e. x = u„ I u,. It does not depend on the 

state of stress at the crack-tip. That is, plane strain or plane stress. Combining Eq.5 and Eq.6 gives 

Kop = KK:Pr+{Kmmf 4y2x 

0 + 2r*)VV +i 
(7) 
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Clearly, Kop for the two limiting cases of pure plasticity-induced crack closure and pure surface 
roughness-induced crack closure can be recovered easily from Eq.7. Also, in this closure model, the 
effective stress intensity factor range ratio, or the effective crack driving force, U, is given by: 

l- 

u = 
(1-ä)*„ 

V x 

u = ■ 

l-\\-{l-R)U']+ ^  f 

\-R 

(i + 2CT)V4r
2 +1 or        (8a) 

1- R 

(8b) 

where 

/(i-Ä) 

(8c) 

and is the effective crack driving force arisen from pure plasticity-induced crack closure. 
The above combined mechanisms of plasticity and roughness induced crack closures can 

also be obtained from Budiansky-Hutchinson's small scale yielding model [9] and Suresh-Ritchie's 
model. Budiansky-Hutchinson presented an analysis to characterise fatigue crack growth with crack 
closure behaviour using AKeff- In light of the B-H results, still referring to Fig.l, the closure stress 

intensity factor, Kcl, is given by       
*•„      .        1 

VO.54 
(9) 

where SR and Smax are the total plastic stretch and the maximum crack-tip opening displacement 
at maximum load. Assuming that the plastic stretch is not coupled to the fracture surface roughness 
and that it is only a function of stress ratio R [10], the effective plastic stretch is 

SR=Sp
R+8R (10) 

where S% and SR are, respectively, the plastic stretch pertaining to plasticity-induced closure and 
surface roughness contribution. Using the Suresh-Ritchie and Dugdale models, Eq.9 becomes: 

■= l- 
VO.54 

2yx    _  5 

\ + 2yx~T„ 
(ID 

which recovers the B-H analytical result for %=0 (i.e. pure mode I deformation) or y = 0 (i.e. flat 
fracture surface). Accordingly, the effective stress intensity factor range ratio, U, is given by 

JJ   max 1 1 
1-- 

(\-R)Kmm     \-RjOM\~   Smax 

In the absence of surface roughness and noting Eqs.10 and 12, we have 

l 

u V0 .54 i 

(12) 

(13) 
l 

where Up is the effective stress intensity factor range ratio for pure plasticity-induced closure. The 
crack closure stress intensity can now be derived from Eqs.l 1 and 13. That is, 
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Kc, = K„ {l--?i=Jo.54[(l-JR)[/n2 --&-     } 

Consequently, the effective stress intensity factor range ratio Eq.12 becomes 

U i"f 2yx 
\ + 2yx 0.54(1 - R)2 

(14) 

(15) 

It should be noted hereto we consider Kcl to be identical to Kop, since the difference between them is 
generally less than the scatter related to the crack closure measurements. 

3. DISCUSSION 

3.1. Comparisons of Present Model, B-H Analytical Solution and Experimental Data 
Crack closures estimated using the present model were compared with the experimental results 

[11,12] obtained from 10 mm thick specimens of a structural aluminum alloy 2024 in T3 and T6 
heat treatment conditions, respectively, in Fig. 2. The numerical predictions under different stress 
ratio R were carried out in plane strain condition using Eq.7 for a/cry=0.15 and 0.77 and y=0.5, 
X=0.2 from fracture surface profile measurements [6]. It can be seen that the predictions are 
reasonably close to the test data at high values of R. Comparisons of crack closure and effective 
crack driving force under plane stress condition estimated based on Budiansky-Hutchinson's 
analytic solutions (Eqs.l 1 and 12) are shown in Figs. 3 and 4, respectively. It is clear that they agree 
quite well with the predictions from the present model (Eqs.7 and 8). 

Kop/Kmax 

0.55 

0.45 

0.35 

0.25 

Present model: 
O  CT/<Jy=0.15 

Experimental data: 
■ 2024-T3 Al [10] 
♦ 2024-T6 Al [11] 

-0.2 -0.1 0 0.1 0.2 

Stress ratio, R 
0.3 0.4 

Fig. 2. Comparisons of theoretical predictions and experimental data for plane strain. 
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Fig. 4. Comparison of effective crack driving force between numerical results from 
present model and results from B-H solution. 

3.2. Effect of Crack-Tip Shear Sliding on Crack Closure and Crack Driving Force 
Roughness induced crack closure is strongly attributed to the crack path deflections caused 

by the heterogeneous material microstructures and the shear sliding of the crack-tip. This effect is 
predominant at low R, where the minimum crack-tip opening displacement is significantly smaller 
than the asperity height of the fracture surface. Fig. 5 shows the influence of crack-tip shear sliding 
on the plane stress effective crack driving force U calculated from Eq.8 for different intensity of 
crack surface roughness. Clearly, U decreases with increasing shear sliding x, since a larger shear 
sliding gives a stronger engagement of asperities on the fracture surfaces leading to more severe 
crack closure. In the limit, 7=0, there is no surface roughness induced crack closure for flat fracture 
surfaces (except plasticity induced crack closure) at any level of crack-tip shear sliding, %■ 
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U 

Fig.5. Influence of mode II sliding on crack driving force at short crack length (a =0.10 mm) in 
plane stress condition. 

4. CONCLUSIONS 
A combined model of short crack closure accounting for both mechanisms of plasticity- and 

roughness-induced crack closures was developed to characterize crack growth characteristics. The 
results of crack closure and effective crack driving force estimated by numerical simulation with the 
present model agreed well with available test data and those analytic solutions obtained by the 
Budiansky-Hutchinson model. Crack-tip shear sliding also enhanced crack closure and reduced the 
effective crack driving force. The higher the shear sliding the more was the crack closure. 
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ABSTRACT 

In this paper, we study the scattering of plane compressional waves by a spherical 
inhomogeneity with an imperfect interface. The interface is modeled by a linear spring assuming 
that the tangential and normal interfacial displacement jumps are proportional to the associated 
tractions. By using series expansion method an analytical solution is obtained for the displacement 
potentials of the reflected and refracted waves as well as the stress fields in the inhomogeneity and 
the matrix. Results of some special cases are then discussed. 

1. INTRODUCTION 

Recently there has been more and more interest in the research of imperfect interfaces and their 
effect on the properties of composite materials. The imperfect interface is a simplified description 
of the complex interfacial zone between the reinforcement and the matrix in composite materials. It 
may be a thin layer of another material introduced by design or by chemical interaction of the 
constituents, or it may be a region containing many small defects such as voids or cracks. 

On of the most useful imperfect interface condition is a linear spring type interfacial condition, 
which assumes a linear relation between interfacial displacement discontinuities and associated 
traction components. This kind of linear interfacial condition has been employed to investigate the 
effect of imperfect interfaces on the local stress distribution inside and outside an inhomogeneity in 
an infinite matrix [1,2], and on the elastic properties of composite materials [3,4]. In order to 
characterize the interfacial properties by nondestructive means such as ultrasonic techniques, it is 
needed to study the scattering of elastic waves by inhomogeneities or obstacles in an infinite 
medium. A large number of contributions concerning the scattering problems of elastic waves have 
appeared in the literature [5]. 

In the present paper, we study the scattering of plane compressional waves by a spherical 
inhomogeneity with a linear spring type interface. By using series expansion method an analytical 
solution is obtained for the displacement potentials of the reflected and refracted waves as well as 



224 Fracture and Strength of Solids 

the stress fields in the inhomogeneity and the matrix. Results of some special cases are then 
discussed. 

2. BASIC EQUATIONS 

trtttt 
Fig.l. Spherical inhomogeneity 

Consider a spherical inhomogeneity of radius a 
embedded in an infinitely extended elastic matrix. 
The inhomogeneity has elastic moduli and density 
(A,,//,,/£?,) different from those of the matrix 
(A2,ju2,p2). Assume a plane compressional wave 
propagating symmetrically about the z-axis, as 
depicted in Fig. 1. The displacement component ut 

and the stress components c^.cr^ vanish due to 
axial symmetry. Accordingly, the displacement 
vector in spherical coordinates (r,0,0) can be 
expressed in terms of two displacement potentials O 
and T as 

u = V<D + Vx(e. dVldO) (1) 

where V is a vector differential operator and e. is a 
unit vector normal to constant <j> coordinate surface. 

These two displacement potentials satisfy the following wave equations: 

C2V2(D = ö20/5?2 c2
2V

2x¥ ■■ ■ d2vf/dt2 
(2) 

where c, = [(A + 2p)/ pf'2, c2=(ju/p),n are the velocities of compressional waves and shear 
waves, respectively; A, p are Lame's constants, and p the density of the material. 

The stress a is related to the displacement u by Hooke's law, such that 

= A(V.w)I + 2/i(Vu + uV) (3) 

where I denotes the unit tensor. 
Assume that the interface between the inhomogeneity and the matrix is imperfectly bonded, 

which can be modelled by a linear spring, i.e., the interfacial conditions on r = a are given by 

«o-u'a=f^le <-u'r=f2a'r 

(4) 

(5) 

where the superscript "A4" and "7" are used respectively for the quantities associated with matrix 
and inhomogeneity. Eq.4 and Eq.5 imply that the interfacial tractions remain continuous, while the 
tangential and normal interfacial displacement jumps are proportional to the associated traction 
components. f{ and f2 denote the respective compliance in the tangential and normal directions 
of the interface. It can be seen that /j and f2 characterize the interfacial behavior. For example, 
the case where fx = 0 and f2 = 0 corresponds to a perfectly bonded interface, while the case 
/ -> oo and f2 ->• co represents a completely debonded interface. 
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3. SOLUTION 

Let the incident plane compressional waves propagating along the positive z direction be 
described by two potentials 

<D« = (D0e'<a'2-'1*) ¥(,)=0 (6) 

where a, (= 2n IL) is the wave number of compressional waves in the matrix, L denotes the 

wavelength, co is circular frequency, and <J>0 is a constant. It can be found from Eq.2 that 

a] =co2px /(/I, +2JJ{). In spherical coordinates, the potential 0(,) can be given by a series 

expression 

<D(» = <t>0fj(2n + l)inj„(alr)P„(cosd) (?) 

in which jn (x) is the spherical Bessel function of first kind, Pn (x) is the Legendre polynomials. 

In Eq.7 and sequel the time factor e~"°' is omitted whenever its occurrence is apparent. Then the 
displacement and stress due to the incident waves can be determined by substituting Eq.6 and Eq.7 

intoEq.l andEq.3. 
The reflected waves in the matrix can also be written by a series expression 

#(,)=£4A(<VK(cos0) ^M=JTß,A(/W(cos0) (8) 

where hn (x) is the spherical Hankel function of first kind. The refracted waves, being confined in 
the spherical inhomogeneity, are standing waves, which can be represented by 

O(/)=-JTC„y„(a2r)P„(cos0) Y<" =-]TZV„(/W(cos0) (9) 

In Eq.8 and Eq.9 

at=a>2plWl+2Ml) ß?=a)2p,/M, (» = 1,2) (10) 

and An,Bn,Cn, Dn are coefficients to be determined from the interfacial conditions, Eq.4 and Eq.5. 

As a result the resultant waves in the matrix are then determined by the superposition of the 
incident and reflected waves, i.e., the two potentials can be written as 

Accordingly, displacements and stresses in the matrix are obtained as 
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«" —IHV," + A£u +B„s:2]P„(cos0) 
(12) 

and 

r2 ff™ = -^r Z HV? + A4 + B„S;2 ]P„ (cos Ö) 
r      n=0 (13) 

r    " at' n=0 

with 

£," =-r(2« + l)[«/-„(a,r)-a,r/-„+l(a1r)] £2" = -i"(2n + l);(I(a,r) 

53" =-i"(2« + l)[(«2 -«-AV2/2U,(a,r) + 2a1r7-„+l(a]r)] 

< = i"(2n +1)[(» -1)7„ (a,r) - a,a,+1 (a,/-)] 
£u = nK («iO - « A+1 (

air) £2\ = K (/v) 

4 =(«2 -n-ßy /2)hn(a1r) + 2a,rh„+](alr) 
£l\ =(»- l)h„ (a,r) - a,rh„+l (axr) s"2 = -n{n + \)hn (/?,r) 

e»22=-(n + \)h„(ßlr) + ß}rh„l(ßlr) 

s"i2 = -n{n +1)[(« - 1)A„ (ßr) - /?A+, (#/■)] 
s:2=-(n2-n-ß?r2/2)hn(ßlr)-ß]rh„+t(ßlr) 

Other stress components can also be easily determined from Eq.3, which we omit here. 
Since the refracted waves are the only waves in the inhomogeneity, then the potentials in the 

inhomogeneity are 

cp' =olf) W' =xi)U) (14) 

And corresponding displacements and stresses in the inhomogeneity can be obtained as 

u'r=--tl[Cne;i+D„eMP„(cosO) 
r n=0 

r „=o do 

(15) 

and 

/ _    t-h-i 
<y, = 

2ju2 

'        n=0 
£[C„^3+ö„^4F„(cosÖ) 

arB  = rZj tC»ff43 +D„£«] —  
f       n=0 UU 

(16) 
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with 

*?4=-/!(» + lM,(Ä»0 

e"i=fV„(a2r)-a2rjn+](a2r) ^=j„iß2r) 

e"n = {n2-n-ß2r2l 2)j„ (a2r) + 2a2r/„+, (a2r) 

<3  = (« " i)J„ (a2r) - airJn+\ (a2r) 

e"u=-{n + \)jn{ß2r) + ß2rjn+s(ß2r) 

s"M = -n(n + \)[{n - \)jn (ß2r) - ß2rj„+, (ß2r)] 

el = -(n2 -n-ßyi2)j„(ß2r)-ß2rjn+](ß2r) 

Substituting Eq.12, Eq.13, Eq.15 and Eq.16 into the interfacial conditions, Eq.4 and Eq.5 leads 
to four simultaneous algebraic equations, which can be used to determine the four unknowns 
An ,Bn,Cn,Dn. These equations can be written in matrix form 

EÜ F" ■c,12. tn +                   £33 
a 

ß14 ^                   •c'34 
a "4" £," 

E'n 
E" C23 I"                    Ü43 

a 
E" + Wl E" •C-24 T                    ß44 

5„ 
= <D0 

£2" 

£" 
F" E" pE"i3 pE» D, F.', 
F" ■C41 

F" 
£■42 PE"„ PE"M 

(17) 

where £,? = (£,")r=„, £,"=«),.„, /? =//2 ///,. Once 4,, 5„, C„, £>„ are determined, it is easy to 
obtain displacements and stresses in the matrix and inhomogeneity from Eq.12, Eq.13, Eq.15 and 
Eq.16. 

4. RESULTS OF SPECIAL CASES 

(1) When the interface is perfectly bonded, i.e., /, = f2 = 0, Eq.17 reduces to 

F" F" En K A 
F" IL2\ 

F" c22 E» E2A B, 

K F" ■c,32 PE"2 PE"3A c, 
£4" F" ■^42 pE"n PEI D 

= 0, 

E: 
E"2 

E"3 

K 

(18) 

which confirms the result of Pao and Mow [6]. 
(2) If the inhomogeneity is much harder than the matrix, it may be treated as a perfectly rigid 

body. Let Uz denote the rigid body translation of the spherical inhomogneity along the direction of 
incident waves (z-axis). The interfacial conditions at r = a become 

+ U2sin0 = fta% -Uzoos9 = f2<7K
r 

(19) 

(20) 
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The translation Uz is determined by the following equation of motion 

^£2. !?IL = jjtf cos e - <r% sin 0y sin 9 d6 d</> 
dtL (21) 

with the integration domain s taken over the spherical surface (r = a). Resorting the time factor 
e'"a) and substituting Eq.16 into Eq.21, we have 

Uz = -[3/O0y, («,a) + Ax\ (axa) - 2Bxhx {ßxd)Y (22) 

where t] = pxl p2. Substituting (22) into (20) leads to the following equations for the unknowns 

A. and5„: 

where 

= «, 

en = E\\ ~ V\ («i«) - Q-Uji l<*)E\\ 

A\ = Eli + 7*1 («i«) - (2-"i/i la)E\\ 

e{ = E\ + 3 iij jx (axa) - (2juJ21a)E\ 

ex\=E"n-{2Mxf2la)E"iX 

e"2i = E"2] —Pfitfi la)El e"22 = E"22-(2juxfx I a) El 

e"x = E"x - (2/i,/2 /a)£3" e2" = E"2 -(2//,/, /a)£4" 

e,'2 = £,'2 + 2/7Ä, (#a) - (2//,/2 / a)£3'2 

4 = £22 -2rjhx(ßxa)-(2Mxfx ld)E\2 

p" = F" e12       ^"12 

e2 = E\ - 3 iTJ jx (a,a) - (2//,/, /a)£4 

(2^/2/fl)£3"2 

(23) 
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ABSTRACT 

An optical extensometer has been in-laboratory constructed to precisely measure large 
displacement or deformation of materials under static as well as dynamic loading. The use of the 
apparatus has made it possible to elucidate new aspects of dynamic deformation and fracture 
problems of materials. Some examples are presented from recent research of the author's group on 
dynamic mechanics in three-point impact bending, rate dependency of mode-I dynamic fracture 
toughness of PC, annealing effect on fracture energy of HDPE under impact, impact energy 
characteristics of HIPS under dynamic tensile loading and mode-II dynamic interlaminar fracture 
toughness of polymer composites. 

1. INTRODUCTION 

In the application of polymers and polymer composites to structural materials, it is important to 
correctly understand mechanics and mechanical properties of the materials under dynamic loading 
[1]. As far as mechanics are concerned, situations should be similar to cases of other materials. 
Dynamic effects greatly influence on the measurement procedure, particularly on the force 
measurement, under dynamic loading when the impact velocity becomes higher [2]. The effects 
come from wave and vibration phenomena generated through impact against a stationary member, a 
specimen, in the testing system. Well-known Hopkinson bar method is a way to avoid the dynamic 
effects. However, in the application of this method to soft materials like polymers and polymer 
composites, we have several problems. The major one is that mechanical impedance mismatches 
between Hopkinson bars and a specimen material is so great that the measurement sensitivity 
becomes significantly poor. If we should adopt polymeric materials for the bars to avoid the 
mismatching problem, then non-linearity of the bar materials becomes a course of measurement 
error. Soft materials which undergo large nonlinear deformation even under dynamic loading has 
been required to find a way better for dynamic mechanical characterization other than the bar 
method. 

It is important, therefore, to add a new repertory to our limited number of methods for dynamic 
mechanical measurements. Beguelin et al. [3,4] proposed a new extensometer to evaluate a large 
dynamic strain of a tensile specimen on a servo-hydraulic tester. The extensometer made use of 
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optical fibers as position indicators on a specimen: a set of photo-detectors quantitatively sensed 
each position, i.e., a change in the distance between each position of the fibers, from whose ends 
laser light rays had been emitted onto the PSD detectors. 

Recently, the present author has constructed a general purpose impact machine [5,6], where the 
optical fiber extensometer was utilized [6]. And further, coupled with a usual instrumented impact 
machine, the extensometer has been used in various three-point impact bend tests [7-14]. This paper 
introduces the in-laboratory constructed optical apparatus and describes some results recently 
obtained from the dynamic tests. 

2. MESURING SYSTEM 

A schematic diagram of the PSD sensor is shown in Fig.l. In this case, the displacement >> can 
be obtained from the currents 71 and 72 at the electrodes 1 and 2 using the following relation: 

y _ 72-71 
L~Y2 + Y1 (1) 

The dynamic displacement measuring system using a PSD sensor is shown in Fig.2. In this 
system, L2+PSD is used as a monolithic component. There is a linear relation between the 
displacement and the electrical output, and the relation is obtained as a calibration beforehand. One 
end of the optical fiber is attached to the object using a sticky tape, and the laser light condensed by 
the lens LI is introduced into the other end of the fiber. The output of the laser light from the 
attached end is focused on the PSD sensor through the lens L2. Mechanical effects of the fibers are 
considered to be negligible because the fibers are very thin, light and flexible. Therefore, this type 
of measurement can be regarded as a non-contacting measurement although the fibers are sticked to 
the object. 

The result of a dynamic characteristic evaluation of the measuring system using a luminescent 
semiconductor circuit (LED 1,2) indicated that the system possesses a frequency characteristic of 
100kHz [6]. 

4      L     % 4       L     fc *               w *               w 

KL \*-J*\ Y2 
ä 

1 2 

Fig.l Schematic drawing of a PSD sensor 
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Fig.2 Schematic drawing of the optical displacement meter 

3. EXAMPLES OF DYNAMIC DISPLACEMENT MEASUREMENT 

3.1 Application to three-point impact bending test for polymers 
3.1.1 Waveforms at Charpy impact 

Deformation behavior of a Charpy specimen with V-notch under drop weight impact was 
observed by attaching an optical fiber on the upper surface of the specimen [2]. The impact rate was 
2.8m/s that corresponded to a testing rate for a standard Charpy test. The relation between the fiber 
position during impact and the output of the strain gage attached to the dart is shown in Fig.3. In 
this figure, the number 1 indicates the initiation of deformation (impact), 2 is the time at which the 
impact was transmitted to the dart gage, 3 corresponds to the fracture initiation and 4 is the fracture 
initiation exhibited by the dart gage. 2 and 4 delayed about 20|j.s from 1 and 3, respectively. Fig.3 
shows that dynamic effects have significant influences on the dart gage output at this impact rate. 
The fiber velocity can be obtained at intervals of 10ms by differentiating the displacement signal 
from the fiber with respect to time, and the velocity varied oscillationaly with the central value of 
2.8m/s. 
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Fig.3 An example of the experimental result obtained by Charpy impact test of PC 
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3.1.2 Determination of KIC for Polycarbonate as a function of loading velocity 
An experimental method for KK evaluation in which dart gage output is not used is described in 

the following [7]. A strain gage is attached in the vicinity of the notch-tip of the three-point impact 
bend specimen shown in Fig.4. Since dynamic effect can be negligible at a low impact rate of lm/s, 
the compliance Cs is evaluated using the load Fd obtained from the dart gage and the displacement 
Ss measured by the fiber with the aid of the following relation: 

C,=S,lFd    (Vrlm/a)        (2) 

It is assumed that the Cs value obtained is approximately equivalent to that at F>=2.8-5.5m/s. For the 
higher rates (2.8-5.5m/s), the F value is calculated using the Cs and values of Ss measured by the 
fiber system. On the other hand, a calibration of the crack-tip gage (CTG) is also made at the impact 
rate of lm/s (Fig.5). By assuming that the calibration factor can be used at 2.8-5.5m/s, the load is 
estimated by both the compliance method and CTG. Critical stress intensity factor (fracture 

Fig.4 Geometry of Charpy PC specimen with optical fiber and crack-tip strain gage 
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Fig.5 Crack-tip load and deflection versus time for a Charpy PC specimen 
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toughness) KIC is then evaluated from the maximum value Fm 

following formula: 
. of the load curve obtained using the 

&ic - 
3    S 

2BW 
T&Yiafir^        (3) 

where S is the span, B the specimen thickness, W the width, a the notch length and Y{alW) the 
geometrical factor. 

Dependence of K,c of PC specimens with V-notch on impact rate is shown in Fig. 6 [7]. K1C 

values obtained using the load values evaluated by the deflection method with optical fiber, the 
CTG method and the dart gage method (dart; attached to the drop weight of 2.6 kg) are shown in 
this figure for comparison. The KIC values obtained by the fiber displacement meter and the CTG 
slightly decrease as impact rate increases up to 5.5m/s, while the KIC value estimated using the dart 
gage output increases. The latter is considered to be caused by the error induced by dynamic effect. 
In the former methods, the modulus and compliance of the material are assumed to be unchangeable. 
However, in general, the modulus tends to increase and the compliance tends to decrease as impact 
rate increases. In that case, the downward slope of KIC is reduced. Fracture surface morphology of 
the specimens substantiates this deduction. 

Loading-rate dependence of the impact strength of PC specimens has been investigated [15-18]. 
Most of the studies exhibited that the strength tends to decrease as loading rate increases, except the 
study by Beguelin et al [7] indicating that the strength is almost independent of loading rate up to 
lOm/s. 
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Fig.6 KIC versus impact velocity relations for PC obtained by three different metods 

3 

V. 

3.1.3 Effect of annealing on impact fracture energy for HDPE 
In general, annealing embrittles polymers; therefore, some impact fracture test results showed 

that brittle-ductile transition temperatures of polymers shifted to higher temperatures. PE's except 
high density PE (HDPE) exhibit this kind of behavior. On the contrary, the transition temperature of 
HDPE shifted to lower temperature and its fracture energy increases as a result of annealing [19]. 

Impact testing results for HDPE obtained using the instrumented impact bending Charpy testing 
machine with the optical fiber system are shown in Fig.7 [9,20]. It is understood from Fig.7 that the 
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increase of impact fracture energy described above mainly corresponds to the increase of absorbed 
energy during the fracture propagation process. On the other hand, annealing hardly influences K1C. 

A model to explain the increase of fracture propagation energy due to annealing is shown in 
Fig. 8 [8]. Embrittlement induced by annealing results in extensive microcracking in the vicinity of 
crack-tip as shown in Fig.8. As a result, surface energy increases due to the increase of total fracture 
surface. 

200 
'■«..IOO'C 

lM -120 hour» 

0 1 2 3 4 5 6 7 
Displacement (mm) 

Fig.7 Load-displacement curves of HDPE specimens impacted at 3.8 m/s 

(a) (b) 

Fig.8 A model to show enlargement of the process zone for an annealed 

(b) HDPE specimen as compared with as-received (a) specimen 

3.2 Application to dynamic tensile loading test for HIPS 

Tensile and compressive displacements under high-speed deformation can be measured by using 
a pair of the displacement meter with two optical fibers as described before [1]. The experimental 
system is shown in Fig.9. Two types of drop weight impact testing machine (tensile and bending) 
with piezo load cell were developed [1]. High speed photography was also conducted to assess the 
reliability of the measurement of elongation using the optical extensometer. Strains evaluated by the 
two different methods coincide reasonably well [21]. 

Impact tensile deformation behavior of two kinds of HIPS containing rubber particles with 
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Fig.9 Schematic drawing of the optical extensometer 

micron or submicron diameter [10,21]. The material properties are shown in Table 1. Stress-strain 
curves for 0.45S and 0.84S obtained using the impact tensile testing machine are shown in 
Figs. 10(a) and (b). Fig. 10(a) shows a typical viscoelastic deformation behavior in which strain at 
fracture decreases as tensile rate increases (three quasi-static rates: 0.003, 0.02, 0.15/sec and an 
impact rate: 18/sec). On the other hand, in Fig. 10(b), the elongation at the impact rate (18/sec) is 
much larger than those at the quasi-static rates, and furthermore the impact response exhibited a 
large deformation greater than 15%. A craze model to explain the enlargement of 'yield' strain at 
impact rate is shown in Fig. 11 [8]. The 'yield' strain in HIPS is assumed to be mostly induced by 
the rubber elastic elongation of crazes, which is different from permanent plastic deformation. It is 
considered that fracture induced from surface defects prevents the material from the large 
deformation at quasi-static rates. The results shown in Fig. 10 suggest that the rubber particle size 
has a significant influence on the dynamic craze formation. It is noted that it is very difficult to 
obtain those stress-strain relations shown in Fig. 10 by strain gage method because the strain gage 
sticked on the specimen surface affects the deformation and usually quantitative measurement of 
such large deformation is very difficult using strain gages. 

Table 1 Material data for tested HIPS specimens 

Composition     Weight average    Average size     ,, ,,„,„„„„, 
(wt%) molecular weight      of rubber      „ÄÄ?. Specimen 

St Bd of PS particles (um) 
rubber particles 

0.45s 

0.84s 

92 

92 

239,500 

225,300 

0.45 

0.84 

Salami 

Salami 
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3.3 Application to dynamic interlaminar fracture test for polymer matrix composites 

The optical displacement meter was used in the measurement of the dynamic mode II 
interlaminar fracture toughness of carbon/epoxy composite laminates [11,22]. Impact testing system 
consisting of an instrumented drop weight testing machine and the displacement measuring 
apparatus is shown in Fig. 12. End Notched Flexure (ENF) specimen was used as the mode II 
interlaminar fracture specimen. Applied load was obtained through the output of the strain gages 
attached to the loading dart. Load-point displacement was measured by placing an optical fiber on 
the bottom surface of the specimen as shown in Fig. 12. Strain on the specimen surface close to the 
crack-tip was also recorded to detect the initiation of crack propagation. An example of 
experimental results obtained from low speed (0.9m/s) impact testing is shown in Fig. 13. Several 
sudden changes caused by the initiation of crack growth are seen on all the data, namely, the load, 
the displacement and the strain gage signal. Those inflection points took place in the order of the 
strain gage signal, the displacement and the load. The strain gage signal measured at the closest 
point to the crack-tip indicated the fastest response to the crack initiation. 



Key Engineering Materials Vols. 183-187 237 

Falling dart 
Strain gage 

-Rubber sheet 

TT Ä 
Strain gage 

Bridge circuit 

XJ       .Optical fiber 

He-Ne Laser 

PSD (detector) 

Strain AMP AMP 

Wave 
memory 

Personal 
computer 

Fig. 12 Dynamic mode II interlaminar fracture testing system 

300 
ENFtest                 N»v 

5 

250 (v=0.905m/s)                    i Disp. j/ 
4 

1" 
200 

Load / Ml m E 
3   ~ z 

TT 150 
CO 

3 
/  Vj I c 

eg 
E 

'      CO 

100 /       s T Q. 

/ / >~ |    Strain gage 
1     Q 

50 f\s             ***'' r    output         '_ 

sts.^       "Y^    " 
.tC/^^1    i             i             i             i n 

0          1           2          3          4          5          6 

Time (msec) 

Fig. 13 Dynamic load, displacement and surface strain-time curves of T800H/2500 

For all the data obtained, those three different inflection points (load, displacement and strain) 
were evaluated, and the dynamic mode II interlaminar fracture toughness was estimated by 
evaluating the critical load and the critical displacement on the basis of the following two methods 
A and B: 
(A) The critical load and displacement are estimated at the time of the maximum of the strain gage 
signal. These critical values are denoted by PA and SA. 
(B) The critical load and displacement are obtained at the inflection points of the load and 
displacement curves, respectively. These values are denoted by PB and 4, respectively. 
The mode II interlaminar fracture toughness was then evaluated using the following formula with 
the aid of those critical values: . 
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Table 2 Static and dynamic mode II interlaminar fracture toughnesses of CFRP laminates 

Static Dynamic 

G\tc 
(J/m1) 

G»C(PA) 
(J/m») 

GlK (&) 
(J/m«) 

G,,c(ft) 
(J/m») 

G.c(«) 
(J/m1) 

T800H/2500 
T800H/3631 

534 
727 

533 
612 

467 
596 

599 
717 

482 
615 

_   9a2P?   _ 36a2S2Eh3 

"C    \6EB2h3     (2L3+3a3
0)

2 W 

where Pc and Sc are the critical load and the critical displacement, respectively. aQ is the initial crack 
length, E the bending modulus, B the specimen width and 2h the specimen thickness. Gnc values 
obtained for two types of carbon/epoxy composites are shown in Table 2. All the dynamic 
toughnesses obtained by the method A are smaller than the corresponding static toughnesses, while 
GncC^s) of T800H/2500 is higher than the static toughness. This result implies that the rate- 
dependence of the interlaminar fracture toughness depends upon how to determine the critical point. 
This corresponds to a fact that a definite tendency for the rate-dependence on the interlaminar 
fracture toughness of FRP laminates has not been obtained yet [23]. Also, all the load-based Gnc 

values are higher than the corresponding displacement-based Gnc values. This is because the critical 
load values were overestimated due to the effect of oscillation appeared on the load data. These 
results imply that the accurate detection of crack initiation is one of the critical factors in dynamic 
interlaminar fracture test. It appears that the proposed method (the method A), in which crack 
initiation is determined from the strain signal measured on specimen surface and then interlaminar 
fracture toughness is evaluated on the basis of load-point displacement measured using the optical 
displacement meter, is a suitable way to evaluate the dynamic interlaminar toughness of FRP 
laminates accurately. 

4. CONCLUSION 

An optical system for the quantitative measurement of displacement and elongation under high 
speed deformation was developed. This system has been applied to impact bending and tensile tests 
of polymers and polymer matrix composites, and valuable knowledge has been obtained. 
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ABSTRACT 

In this paper, we investigate the scattering of an axially symmetric longitudinal elastic wave by 
the cylindrical interface cracks between an elastic cylindrical inclusion and its surrounding material. 
The number and length of the cracks are arbitrary. By using the Fourier transformation and 
introducing the dislocation density functions, we reduce the problem to a set of singular integral 
equations of the second type, which is solved numerically for a range of values of the frequencies. 
The variations of the dynamic stress intensity factors are plotted versus the frequency of the incident 
wave. Numerical results show that the size of cylinder radius has important influences on the 
resonance peak. 

1. INTRODUCTION 

Because of its practical importance in various engineering and seismological applications, the 
elastic wave scattering by the cylindrical interface cracks between an infinitely long cylinder and its 
surrounding material has received considerable attention in recent years. And a number of papers 
concerning the problems have been published [1"3]. The interface cracks under consideration in those 
papers are all assumed to be infinite in the direction of the cylinder length. 

However, the interface cracks are often finite. In this paper, we study the interaction of 
longitudinal waves with cylindrical interface cracks. By using Fourier transformation and 
introducing the dislocation density functions, we reduce the problem to a set of singular integral 
equations of the second type, which can be easily solved numerically to calculate the dynamic stress 
intensity factors (DSIFs). Numerical results show that resonance peaks occur only at low 
frequencies, and that the size of cylinder radius has important influence on the resonance peak. 

2. STATEMENT OF THE PROBLEM 

Consider the problem shown in Fig.l, there are n cylindrical interface cracks between an 
infinitely long cylinder with radius b and its surrounding material. Use cylindrical coordinates 
(r,0,z), and let the z coordinates of the £th crack tips be ak and bk {k = 1 ~ n ). An incident 

plane P wave propagating in z -direction with circular frequency co excites the cracks. 
The total field may be divided into the incident field and scattered field. Set {M^.O

-
*''} 
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represent the wave field when no cracks exist, and set 
j«(s),crwJ    represent   the   scattered   field   which   is   the 

modification to the incident field due to the existence of the 
cracks. Considering the symmetry of the problem, the 
potential functions of the scattered field should satisfy the 
following wave motion equations (for simplicity, superscript 
(s) and the time factor exp(-iwt) having been all suppressed 

in this paper) 

-> z 

Fig. 1. Mechanic model 

v-,2 1 2 .7=0,1 (i) 

where V2 = 3J + ^ä:+&'' K
<-J
=W

N(
X

J
+2

^J)IPJ■' Kv=G>/iJMj/Pj , Pj is the mass 

density, and 2y and n} are Lame constants. The subscript j = 1 represents the cylinder, and 

j = 0 represents the surrounding material. The continuous interface conditions and stress boundary 
conditions on the cracks, respectively, can be written as 

CT
JT1  

— °>0' an\  = an0 

WrI - Ur0 = Dr    uzl - uz0 = Dz 
r=b,   -oo<z<+oo (2) 

cr„, = -a. 

cr„, = -o-. 

(') 
(0    r = b'Z£T,(akA) (3) 

where 

o *«U(a*A) 
Drl(z) ze(ai,b,),Vle{l,2,--:n} 

0 2«|J(fltA) 

Dz>;(z) Ze(a;,ö;),V/e{l,2,-...«} 

DzAz) = uAb>z)-uAb>z) 

Drl  and £>z,  are dislocation functions of the  /th crack.  o-„,(,) and cr^/0, which are assumed 

to know, are stress components corresponding to the incident field. In addition, the scattered field 
must satisfy the radiation condition at infinity. 
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3. THE DERIVATION AND NUMERICAL SOLUTION OF SINGULAR INTEGRAL 
EQUATIONS 

3.1. Dual Integral Equation Groups of Dislocation Functions 
By using the Fourier integral transformation, we can get the scattering potentials in the 

transformation domain. By employing the defining solution conditions (2), (3) and the radiation 

condition at infinity, the dual integral equation groups about the unknown functions Dr   and Dz 

can be obtained as follows 

1     (WJ 

9TT J-» In •"-» A(£)       _ 

In A(4) 

z e U(«*A) (4) 

2ft_   .. **U(«tA) 
2/r 

Dze"'^=0 
(5) 

where Dr   and Dz, respectively, denote the Fourier transformations of Dr  and Dz, and A, 
Pn,  Pn,  Pn  and P22, which can be omitted here [4], are known functions of £. 

3.2. Singular Integral Equations of Dislocation Density Functions 

Substituting Dr   and  Dz   for Dr  and  Dz  and noticing the intrinsic properties of A(£), 

/>„(£),  ^(<T),  P2M) and  i>22(^),wehave 

w[ a< v-z 

+ ^}Qn(v,z)fr,(V) + Qu(v,z)fz,(v)}dv] = aJ\b,z) 

+ i f [ft, (v,*)/rJk (v) + Ö22 (v,*)/,, (v)]dv) = aj» (b,z) 

ze\J(a„b,) (6) 

n **1 

, N     dD Ay)                          dD    (v) 
where   /* t(v) = —  and   f, t(v) = —  are called crack dislocation density functions. ■>r,k\   ) ^ Jz,k\   , ^ 

Qu(y,z),   Qn(v,z) ,   Qn(y,z)   and   Q22(v,z)   are known functions, and   sl   and s2   are two 

different constants. Limited by the length of this paper, they are all omitted here and can be found in 

reference [4]. By setting ck=— -, dk= —  and applying the substitutions 
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v = ckr] + dk,   z = c,g + d, 

KAg) = frAc>s+d) > r,As)=fAc>S+di) 
H"t{n,g) = CtOrtfaij + d^cg + d,)     (m,i = 1,2) 

<r„v(b>$) = cr^facß + d,),   tr„v(b,g) = aj^b^^ + d,), 

equations 6 can be further converted to a set of standard singular integral equations 

0      -s28kl 

s2Su       0 
KM) 
FM 

HZfa)   K{rj,g) 

n -Li 

1    0 

0    1 

FM 
F.A1j)l{pkt}-clg) + (dk-dl) 

drj 

^(7)],      larrl,(b,g)\ 
(7) 

Recalling that  Frl(g)  and  Fzf(g) represent z-derivatives of displacement differences, the 

single-valued conditions may be expressed as [5] 

lFrJ(g)dg = 0 

lFzJ(g)dg = 0 
V/e{l,2,--,«} (8) 

3.3. Derivation and Numerical Resolution of Cauchy Singular Integral Equations 

For simplicity, in this section we take the case of one crack as an example to solve Eqs.7 and 8. 
By setting ax = -c, bx=c and y = s2 /J, , we can easily have 

0   -y 

y     0 

-I H\\{ri,g)   Hl2
l(n,g) 

FIA(TJ)} s,\a^{b,g) kl<i 

(9) 

Clearly, the dominant parts of Eqs.9 are coupled. Substituting 

FM~[\KM) 
into (10) and then multiplying the obtained equation by [i?]"', we get 

(10) 

y     0 
0   -y 

1 
17ZS, 

KM) 
KM) in ^rj-g 

•A7?) 

.An). 
dr/ 

KAI))    ». ■J H...(M 

en) 
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where 

[*] = 
1    1 

-i   i 

l*MH*r [R\. 

At the same time,  0rl (g) and </>r] (g) should also satisfy 

f I'"' KM 
(?) 

t = o (12) 

Equations 11 are two standard Cauchy singular integral equations of the second type. By using 
the methods described by Erdogan and Gupta [6], the algebraic equations corresponding to Eqs.ll 
and 12 are obtained and can be solved numerically. The dynamic stress intensity factors at the crack 
tips -c and +c can be given as follows 

Ktt(+c) (13) 

where Mr(f) = (l-r)~°(l + 0~/V,1i(0. ^z(0 = (1-')~/'(1 + 0~<V*.i(0- The detailed «oafy^s can 

be found in reference [4]. 

4. NUMERICAL RESULTS AND CONCLUSIONS 

For a given incident plane P wave, it is quite difficult to obtain the accuracy stress components 
arrl

Q)(b,z) and o„x
<0(b,z). Considering that arrl

(i)(b,z) and aj'^b^) should exist as stress 

waves, for simplicity, here we directly set arrl
(i)(b,z) = a0e

iKL'z and aj'\b,z) = 0 (the DSIFs 

corresponding to arrl
(i)(b,z) = 0, anl

0)(b,z) = T0e
x"' can also be calculated similarly). Because 

of the symmetry, only the DSIFs as z -> c* need to be evaluated. As an example, assume that 
cylinder and surrounding material are glass and epoxy, respectively. The values for material 
parameters are set to be the same as those given in reference [5]. 

To verify if the results for KLlc -»■ 0 approach the corresponding static resolutions, the DSIFs 

have first been calculated in the case of crrH
(0(Z),z) = a0  and KLlc = 10"4. Figure 2 shows good 

agreement between the results of the present study as  KLXc -■► 0  and the static results of Erdogan 

and Ozbek[5). 
For different b/c, the normalized first and second DSIFs versus  KLlc  are presented in Fig.3. 

As shown in Fig.3, both the first and second DSIFs have obvious resonant peaks, and there are total 
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two resonant peaks within the range of the wave number considered. In general, the main peak 
values of the first DSIF are higher than those of the second DSIF, and the peak values of both Kx 

and  Kn  vary with b/c. 

-•-Erdogan method 
-»-Present method 

123456789   IE 
b/c 

Fig.2. KL1 c=10"4, comparison with the static results for different b/c 
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Fig.3. Effect of geometry criterion on dynamic stress intensity factors 
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ABSTRACT 

The present study has shown the experimental results for characterization of the mode I 
delamination fracture of continuous carbon fiber/epoxy multidirectional composites under a wide 
range of test rates, up to high rate of 11.4 m/s. At the high rates of test >1.0 m/s, Equation (4) 
requiring the values of the actual arm displacement and flexural (axial) modulus was better for 
deduction of Gic However the maximum value of Gic so obtained was considerably 
underestimated and needed a compensation of loss. With increasing the rate up to 1.0x10" m/s, there 
was little differences in the delamination fracture behavior, whereas with an increase of the rate 
beyond 1 .Om/s the maximum value of Gic decreased considerably. 

1. INTRODUCTION 

Fiber composites, based on continuous fibers embedded in a polymeric matrix, are very 
promising for applications in various mechanical structures where a high stiffness-to-weight ratio 
and strength-to-weight ratio are required. A limitation of the fiber composites, however, is their 
poor resistance to delamination. The majority of the works on the delamination fracture of 
composite materials has been conducted through the application of linear-elastic fracture-mechanics 
(LEFM), which are concerned with the determination of the interlaminar fracture energy Gc. The 
interlaminar fracture energy Gic often shows an initial increase with crack length: an increasing 
resistance effect, i.e. rising "R-curve" is found during the initial propagation of a crack [1-4], which 
mainly arises from the increasing degree of fiber bridging behind the crack-tip, crack-tip blunting 
and/or damage zone development around the crack-tip. 

As the fiber composites have been increasingly applied in engineering structures, 
characterization of the interlaminar fracture behavior under high-rate loading has been significant. 
For unidirectional fiber composites, the extent of decreasing rate in Gic for similar fiber-composites 
was considerably various from report to report[5-7], which sometimes offered a conflicting finding. 
Blackman et al.[8] showed that a considerable care must be taken in the experimental aspects when 
undertaking the tests at high rates of test. They further analysed the dynamic effects on the behavior 
of Gic being invariably associated with high-rate tests[9]. The above high-rate test studies were all 
conducted on unidirectional fiber composites. 
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The purpose of the present study is to characterize the mode I - delamination fracture of 
continuous carbon fiber / epoxy multidirectional laminates under slow and high rates of test 
(0.5mm/min - 11.4m/s). Recently, the present authors studied the delamination fracture of the 
multidirectional laminates under a slow rate of test (0.5mm/min) [10] and showed that the values of 
Gic at crack initiation were significantly greater than those for the unidirectional laminates. On the 
basis of the static test results the present study considers (i) the dynamic effects in the double- 
cantilever beam tests and (ii) rate effects on the behavior of the delamination fracture energy. 

2. THEORETICAL CONSIDERATION 

2.1 Static analysis 
In the standard Mode I double-cantilever 
beam( DCB) specimen as shown in Fig.l 
with an end deflection of 5, a crack length 
of a and the beam width B, the two arms of 
the test specimen are loaded by applying 
symmetrical opening loads. For the static 
analysis the value of the interlaminar fracture 
energy Gic is expressed [4] by 

G,c=- 
3PS 

N  2B{a + Xlh) 

or,   alternatively 

3A3£2£n 
G,c = 

N2   \6{a + XlhY 

Fig.l The Mode I double cantilever beam 
(DCB) composite specimen 

(1) 

(2) 

From Equation (1), the value of Gic can be deduced directly by measuring the crack length a and 
corresponding values of P and 8. Since Equation (2) does not require a direct knowledge of the 
load, the expression (2) may be used for deducing values of Gic in the high-rate tests. In this case, 
not only the displacement 8 and corresponding crack length a, but also the value of the modulus En 

have to be determined. 
From the modified beam theory [4], the expression for the compliance C is given by 

C=   8/P 

8JV 
Bh3E, 

•(a + Xjhf (3) 

where h is the thickness of one arm of the specimen; Eu the axial(flexural) modulus of the laminate 
arm; %i a correction to the crack length to allow for end-rotation and deflection of the crack tip; F a 
correction for large displacement and N a correction for the stiffening caused by the metal end- 
blocks. 

2.2 Dynamic effects 
For   steady-state crack propagation when a> 0, 

kinetic energy term.    Therefore 
there is a crack velocity contribution to the 
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G,= 
3     F     h'EuV

2 

16  N2   (a + Xlhy) 

i    111£„A 
1120 

(4) 

where V is the rate of test; / the loading time; C0 is the longitudinal wave speed in the composite 
arms and is given for the plane strain condition. It is to be further mentioned that effects of stress 
waves propagating in the specimen are not taken into account in Equation (4). 

3. EXPERIMENTAL 
3.1 Multidirectional composite specimens 

The multidirectional fiber composite panels were prepared from 24-ply layups of (- 
45o/0o/+45o)2s(+45o/0°/-45o)2s utilizing a continuous unidirectional carbon fiber/epoxy prepreg 
tape ('Fibredux 6376C supplied by Ciba Geigy pic, UK). A layer of "Teflon" release-film of 
12.5um in thickness was inserted onto the -45°/+45° interface at the mid-plane of the laminate lay- 
up in order to make the initial delamination that acts as a starter crack for the interlaminar fracture 
testing. The composite panels were cured in an autoclave according to the manufacturer's 
instructions. The fiber volume fraction and total thickness of the laminate were nominally 65% and 
3.4mm, respectively. From the cured panels, the specimens were cut to be nominally 24.5mm wide 
and 130mm long. One longitudinal edge of the test specimens was coated with a white brittle paint, 
i.e. type writer correction fluid, to render the crack tip more visible, and was marked with a 
millimeter scale to aid the measurement of the crack-tip location. 

3.2 Mode I interlaminar fracture tests 
Slow-rate tests were performed at constant displacement rates of 0.5mm/min(i.e. 0.83 xlO" 

5m/s) and 5mm/min(i.e. 0.83 xlO^m/s) using a screw-driven tensile-testing machine. The tests were 
conducted at 23±2°C. 

At intermediate and high test rates, i.e. in excess of 1.0xl0'2m/s and up to 11.4m/s, a servo- 
hydraulic testing machine (Instron Model 1343) was used. The DCB specimens were fixed on to the 
test rig between two titanium shackles. The lower shackle on the stationary side of the specimen 
was coupled to the piezo-electric load cell (PCB 
208A) having a high natural frequency of 70kHz and 
its    short   rise-time    of   lOus.    Each   test   was 
photographed using a high speed camera (Hadland 
16mm Photec IV) with a maximum operation speed 
of   40,000 frames per second.    To determine the 
actual specimen displacement 8 and the crack length 
a at any time during the test, each film negative was 
projected and greatly enlarged on to a screen, from 
which precise measurement of the crack length and 
specimen arm displacement could be made. 

To deduce values for Gic via Equation (4), the 
value of the flexural modulus £fiex should be 
accurately determined. Bend specimens were the 
multidirectional composite beams about 1.7mm in 
thickness(h), about 11.5mm in width (b) and 60mm in 
test span (S), which was the same materials as those 
in the fracture tests. A small V-shaped striker about 

-100 

Fig. 2 Three point bending load-time 
traces of the multidirectional composite 
tested at a displacement rate of 
4.94m/s. 
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1.5mm in the tip radius and 3.6g in weight was 
made of a light weight and high strength 
aluminium alloy to minimize the inertia effect. 
Except for the 1st cycle formed by an inertia 
effect, the two consecutive upper and lower peaks 
in advance of the maximum load in the PS curve 
are adopted to measure the average value of the 
corresponding slopes (i.e. (E\ + E2) / 2 in Fig.2), 
which is used as the measurement method of Ef\eK 

at test rates >1.0m/s. Figure 3 shows values of 
£fiex for the multidirectional fiber composites 
measured as described above. As the rate 
increased to lm/s, Ef\ex reached 47.4GPa. For 
the rate beyond 1.0m/s values of Eaex were 
considerably scattered but more enlarged on an 
average. 

Fig.3 Flexural modulus Eüex measured as a 
function of test rate 

4. RESULTS AND DISCUSSION 

4.1 Load versus time curves 
Load (P) versus time (?) traces of the multidirectional DCB specimens tested at four different 

loading rates are exhibited in Fig.4. At a test rate of 1.0xl0"2m/s, the load (Fig.4a) increased 
initially, showing a linear elastic behavior with an increase of time in advance of the crack initiation 
and then decreased little by little as the crack began to propagate. During the initial propagation of 
the crack, fiber bridging might be formed behind the crack tip, hindering the crack propagation and 
thus resisting considerably the external load. However, Fig.4b shows the dynamic behavior at 
the increasing test rates. The presence of an increasing number and amplitude of oscillations on the 
trace arose owing to the dynamic effects. These dynamic effects are likely to occur from several 
causes:   The 1st peak in the trace was greatly influenced by inertia effects. The following multiple 

201) 

Fig. 4 

100- 

7M 7i| 73 I      7i m* 

-101) ■ 

4 6 8 10 

Time   (ms) 

(a) (b) 

Typical load(P)-time(t) traces of the DCB multidirectional composite specimens 
under a specimen arm displacement rate of (a) 1.03xl0"2m/s and (b) 5.7m/s. 
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oscillations were caused by resonant 
vibration due to "spring-mass effect"[ll] 
of the specimen and loading rigs as well as 
flexural stress waves propagating in the 
specimen. 

4.2 Interlaminar fracture energy in the 
slow rate tests 

Utilizing Equations (1) and (2), the 
values of Gic of a specimen tested at a rate 
of 0.5mm/min may be measured as a 
function of the propagating crack length a, 
as shown in Fig.5. The results obtained 
through Equation (1) [denoted by "Gic(P5)"] 
are straightforward to deduce. In Equation 
(2) [denoted by "Gic(5: 

axial modulus En of 
required: the values of the flexural modulus 
independently measured by a three-point bend test (Eflex) or the effective flexural modulus (Ec/„) 
calculated from the measured compliance in Equation (2). The value of Gic obtained through 
Equation (1) at the initiation of crack growth was almost the same in value (s0.46kJ/m2) as that 
obtained through Equation (2). With an increase of a to about 48mm, a "rising R-curve" was 
obviously shown: the maximum value of Gic (Gic.max) was obtained from the "GiC(52 Efiex)", which 
was considerably lower by about 13% than that from the "GiC(P5)". This is due to the fact that 
Efiex was considerably lower than Ec/n, due to the presence of the fiber bridging behind the crack tip. 
At longer crack lengths, when the crack jumped into the 0° ply, it resulted in an intraply (0°) fracture, 
which was initially accompanied by a high degree of fiber bridging. The value of Gc eventually 
decreased to the minimum value(Gic, min) of 0.30kJ/m2. Because the value of Gic at the crack 
initiation (GicO and the minimum value (Gic.min) obtained via Equation (2) were equivalent to those 
via Equation (1), Equation (4) may be used for the deduction of Gic,i and Gic.min- However, the 
values of Gic,max obtained through Equation (4) could be considerably underestimated as described 
in Fig.5, and thus had to be compensated for the loss, which may be given by 

2 E)"], however, the 
the   composite   is 

100 
mitianon fl        (mm) 

Fig. 5 Values of the Mode I interlaminar 
fracture energy Gic, obtained by the two data 
reduction schemes, versus the length a of the 
propagating crack for the multidirectional 
laminate. 

= 1.15GIC(«S2Eflex) 
\UEuh(V 

1120   \C 
(5) 

4.4 Rate effects on Gic 
The values of Gic for the specimen tested at a rate of 5.7m/s are shown in Fig.6, which were 

obtained via Equation (5) [Gic (S2En)]. In comparison with the corresponding value in the slow 
rate test (Fig.5), the value of Gic (0.38kJ/m2) at the crack initiation was a bit lower. In the case of 
Gic,max, the value corrected via Equation (5) was 0.77kJ/m2 which was also lower. However the 
minimum value («0.30kJ/m2) was almost identical. 

For the multidirectional carbon-fiber/epoxy composites, Figure 7 summarizes the values of 
Gic at crack initiation (Gic.O, the maximum values (Gic,max) and the minimum values (Gic.min) as a 
function of test rate from 0.83xl0"5m/s to 11.4m/s. Firstly, there is no major difference in the 
values for either Gici or Gic.max or G!C ,min   with increasing rate up to 1.0xl0"'m/s. Secondly, 
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average values of either Gic,i or Gic,min 
remained to be constant with an increase of 
rate until LOxlC'in/s, but showed a modest 
reduction only at rates in excess of 1.0m/s. 
Thirdly, the values of Gic.max decreased 
considerably with an increase of the rate to 
>1.0m/s, but at 11.4 m/s, Gic,max showed a 
drastic change depending on the initial crack 
length a\ : at short a\, values of Gic>max 
largely increased while at long a\ they 
decreased equivalent to the value at 5.7m/s. 

5. CONCLUSIONS 

The   present   study   has   shown   the 
experimental results for characterization of 
the    mode    I    delamination    fracture    of 
continuous     carbon     fiber/epoxy     multi- 
directional composites under a wide range of 
test rates, up to high rates of 11.4 m/s.    At the 
slow    rates    of    test    <1.0xl0"'m/s    the 
delamination fracture energy showed a "rising 
R-curve" due to the large extent of crack 
jumping and ensuring fiber bridging. In this 
respect Equation (4) requiring the values of 
the load and displacement was better for 
deduction of   the interlaminar fracture energy 
Gic . With increasing rate up to l.OxlCr'm/s, 
there was little differences in the delamination 
fracture behaviors. However, with an increase 
of the  rate  beyond   1.0m/s  the  maximum 

values of Gic decreased considerably for long 

- 90 

Fig. 6   Typical delamination fracture energy Gi 
and the corresponding crack velocity ä versus 
crack length a for the DCB specimen tested at a 
displacement rate of 5.7m/s. 
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ABSTRACT 

The plate impact experiments at strain rate up to lOV1 for the cement mortar were performed by 
using a one-stage gas gun under the pressure ranged from lGPa to 5GPa. It was found that the 
shock velocity D versus particle velocity u for this material can be expressed by a linear relation: 
Z)=2.29x 103+0.831«(m/5). Furthermore, the Hugoniots for the solid cement mortar, as a mixture 
of cement and sand, was theoretically obtained by virtue of the different shock data for the 
constituents. Moreover, the effects of the internal damage such as microcracks and voids were taken 
into consideration, and the corresponding Hugoniots at different levels of damage were calculated. 
The comparison between the experimental Hugoniots and the theoretical predictions shows a good 
agreement when and only when the damage effects are taken into account. 

1. INTRODUCTION 

While the dynamical behavior of concrete since seventies have been studied widely [' , but its 
constitutive equation at various strain rates has not been described systematically and appropriately 
so far. Recently in China, these fields have gained attention increasingly [3'4l But these works were 
limited within the one dimensional stress state for cement mortar and the one dimensional strain 
state just for pure cement stone. In this study, the plate impact experiments at strain rate up to 10V 
for the cement mortar were performed by using a one-stage gas gun for studying the dynamical 
behavior of this material at intense dynamical loading. 

2. EXPERIMENTAL METHOD 

The mix of the cement mortar specimen is listed in Table 1. After casting of the cement mortar in 
six steel molds, mixing, vibration and first 24 hours mold curing, the cast was pushed out of the 
molds. Then the specimens were placed in the moisture room for 28 days cure. After this, 
specimens were further ground on both end surfaces to ensure their smoothness and parallelism. 
The density of the specimens is 2210Kg/m3. 

The experiments were performed in a one-stage gas gun with 100 mm inside diameter. The 
schematic of the experimental apparatus is shown in Fig.l. Both of flyer and target were made of 
LY12 aluminum alloy. The thickness of flyer and target is 10mm and 5mm respectively. The 
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diameters of them all are 95 mm. The specimen of cement mortar is composed of seven pieces of 
test elements with 5mm thickness and 70mm diameter. The four pieces of Manganin piezoresistive 
pressure gages were used. The one of them is embedded between the aluminum target plate and the 
first test element. The others were embedded among the followed test element slices. The recorded 
pulses of voltage can be transformed to the corresponding dynamical stresses through the calibrated 
formula. 

Table 1-Mix of cement mortar specimens 
Water cement ratio 0.5 

525#Porland 
cement 

lOKg 

Sea sand 20Kg 
Water 5Kg 

Target 

Sample 

Fig.l schematic of the experimental 
apparatus 

Tim«/(js 

Fig.2 The typical shock stress profiles at 
different distances of the specimen 

3.EXPERIMENTAL RESULTS AND DISCUSSION 

100       200       300       400       500       600 

Up   m/s 

Fig.3 D~u relationship 

700       800 

In experiments, the velocities of the flyer plates are 200, 321, 402, 500, 733 m/s respectively. The 
typical shock stress profiles at different distances of the specimen are shown in Fig.2. According to 
the different rise points of shock pressure profiles recorded by the Manganin gage in different 
positions, the velocity of shock front in specimen D can be calculated. Because Manganin gages 
were embedded in specimen to measure the shock pressure directly in our experiment, the particle 
velocity u in specimen can be determined from shock pressure P and the velocity of shock front in 
specimen D. This point is on the 2S-2R curve of reflected wave in standard material LY12 
aluminum. The experimental and calculated results are listed in Table 2. The shock velocity in 
specimen D vs. specimen particle velocity u is shown in Fig.3. The pressure P vs. particle velocity u 
is shown in Fig.4. The pressure P vs. volume strain 1-V'V0 is shown in Fig.5. In Fig.3 it is 
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demonstrated that for cement mortar the linear relationship between D and u can also be formulated 

like the most types of materials. According to formula:  D - C0 + S ■ u, the experimental data were 

fitted and we got: C0=2.29 X103 m/s, 5=0.831. That is:  D = 2.29 x 103 + 0.831 • u {m/s) 

Table 2 

Specimen ID 

No. 

Impact 
Velocity 
07 m/s 

Shock velocity 
in specimen 

D /km/s 

Specimen par- 
ticle velocity 

u   /m/s 

Shock pressure 
P/GPa 

5 200 2.45 185 1.0 

4 321 2.54 298 1.7 
7 402 . 2.77 574 3.5 

2 500 2.81 629 4.0 
6 733 2.88 711 4.5 

-T 
100 " 200     300     4Ö0     500     600     700     800 

U    m/s 

Fig.4 P~u relationship 

OH 
0.00 0.05 0.10        0.15        0.20 

1-V/VO 

Fig. 5 P~l-V/V0 relationship 

3.1 Equation of state for multi-phase mixtures 
For two- phase (or more) mixtures, we have an equilibrium taking place between the pressures in 

the two phases during the passage of the shock wave. McQueen et al. recommended a rigorous 
method to obtain the Hugoniot pressure of the mixture by virtue of the different EOS for the 

constituents (y0 and V0 are different)'51. By numerical integrating the equation below, one establishes 

the 0 °K pressure-volume plot from the Hugoniot for each element: 

dV 
To 7o 

(~)TO+^PTo=i^[PH +(LIL + V-V0) 
Vn 2Kn 

0 

To 

{C2+2S[V0-S(V0-V)]} 

[V0-S(V0-V)f 

One now mix the 0 "K isotherm on a mass fraction basis (mass fraction of rth component is m,) and 

obtain the isotherm for the mixture. The y0 values are assumed to be unchanged with temperature. 

To To 
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With this value one can now convert the 0 °K isotherm into the shock Hugoniot for the mixture. 

The inverse differential equation to be solved is 

P« _(2V0/ro)(dP/dV)OK+2POK 

2VJy0+V-V0 
(dV)H+2V0/y0+V-V0 

Here, we used a much simpler procedure that is based on the interpolation of C0 and S values 

in the EOS by mass averaging. Thus, 

C0 = 2>,C0,        S = ]Tm,S, p0 = Y™iP* 

For the cement mortar, we treated it as a two-phase mixture composed of pure cement and sands. 

Yang mosong et al. measured the shock Hugoniot of the pure cement ranging from 10~ 50GPa by 

means of a plane-wave generator (explosive lens) and optical technology. The linear fitted formula 
for the  measured   shock  velocity D  and  the  particle  velocity  v  behind  the  wave  front 

is: D = 2260 +1.58 u [6]. Its initial density />0=1942Kg/m3, initial volume F0=5.15X 10""4 m3/Kg. In 

the other hand, the density of solid sea sands is measured by using the filling water method: 2550 
Kg/m3, which is close to the density of quartz. The main constituent of sands fully weathered is 
SA coincided with the quartz. The linear fitted formula was obtained for shock velocity D and 
particle velocity u behind the wave front ranging in P<3QGPa for quartz[s]:  D = 916.2 + 137 u . 

Its initial density P0=265OKg/m3,  initial volume F„=3.77X 10~4nr7 Kg, used as the calculated 

parameters for quartz. Thus, the weight fraction of the constituents of the cement mortar,   C0, S 

and  p 0 are shown in Table 3: 

Table 3 
Constituents Wt.% C„ m/s S P 0 Kg/m3 

Sands 57% 916.2 1.37 2650 
Pure cement 43% 2260 1.58 1942 

By mass averaging:   pc =^m,p0l.= 2346Kg/m\      V0 = 4.26x10"4™31 Kg 

S = 2>,S, =1.46 ,        C0 = 2>,C0, = 1.49xl03w/5 

So the relationship between D and u for the cement mortar as a two-phase mixture predicted by the 

theoretical analysis is as follows: D = 1.49x103 +1.46-u. That is different from the experimental 

results:  D = 2.29x10' +0.831 u 

It should be noticed that the cement mortar is treated as an ideal solid material in above 
discussion. But in practice, the cracks and voids are induced in the interfaces between aggregates 
and cement matrix unavoidably. Details of analysis for this is as follows. 
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3.2 Equation of state for damaged materials 
By mass averaging, the theoretical predicted density of cement mortar should be 2346 Kg/m3. 

But the practical measured density is just 2210 Kg/m3, which equals about 94% of the theoretical 
value. It can be estimated that 6% voids were induced because of the mixing of sands. It is easy to 
understand that as the fine aggregates-sands mixed, the weak interfaces were created between the 
cement gels and the aggregates. A large amount of micro-cracks exist in the interface. G.Farran in 
France suggested the concept of "transition zone " in interface in 1972. Soon other models followed. 
All these models unanimously agreed that in transition zone the porosity is large. Thus, all its 
density and strength are low. 

The three equations for the conservation of mass, momentum, and energy (Rankine-Hugoniot 
relationships) are simultaneously applied to both the porous material and the solid. The relationship 

between P and V for the damaged material can be derived: 

2V-y(Vt)-V)1F2(V0-V) 
P = 

[2V-y(Vm-VW0-S(V0-V)T 

The above theoretical relationship of D ~ u for cement mortar is: 

Z) = 1.49xl03+1.46w p0 =2346Kg/ m\ V0 =4.26x10"4»?3/ Kg 

They are used as the parameters of solid cement mortar. Grüneisen parameter is related toS: 

y     1    t 
£ = — + - + — , wherey,, is the Grüneisen parameter for zero pressure.   / = 0,1,2 (express three 

2     3    6 

different Grüneisen parametersYS,YDM,Y,\ taking   yDM:  y0 =25-1 = 1.92.  It is commonly 

y      y 
assumed that:  -^- = — = const. Above equation was slightly modified to incorporate the constant 

ratio  * and get: P =       ^W^)3C^ -F) 

let:   a = -C-22. _ Take: a=0.95,0.85,0.75 and 0.65 respectively. From this equation, different curves 
Po 

for P ~ V can be calculated and drawn, as shown in Fig.6. There the experimental results for 
cement mortar are marked with star. It can be seen that its corresponding density is about nineties 
percent. It is much close to the above estimation 94%. 

4. CONCLUSIONS 

(1) By using the plate impact experiments at strain rate up to 105 s"1 for cement mortar, it is found 
that the shock velocity D versus particle velocity u for this material can be expressed by the 
linear relation: 

£> = 2.29'xl03+ 0.831 M (mis) 

(2) By virtue of the different shock data for the constituents, the Hugoniots for the solid cement 
mortar, as a mixture of cement and sand, was theoretically obtained. Moreover, the effects of 
the internal damage such as micro-cracks and voids were taken into consideration, and the 
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corresponding Hugoniots for different levels of damage were calculated. The comparison 
between the experimental Hugoniots and the theoretical predictions shows a good agreement 
when and only when the internal damage effects are taken into account. 

0.00030 0.00040 0.00050 

SPECIFIC VOLUME.V 

Fig. 6 The comparison of P ~ V curves for different porosities 
with the experimental results 
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ABSTRACT 

Energy release rate (J integral) and stress intensity factors of bimaterial specimens, under the 
dynamic loading condition were studied using both numerical and experimental methods. Low 
velocity impact test was performed with three point bending type of bimaterial specimens 
composed of aluminum and PMMA [Poly-Methyl Methacrylate]. Experimental results were 
analyzed by FEM and fracture parameters of interfacial crack were calculated by the programmed 
post-processor. Domain integral method and interaction energy method were used in the post- 
processor. Post-processor showed good performance in the decomposition of stress intensity factors 
with path independency. Phase angle of stress intensity factor varied with time. The relationship 
between energy release rate and phase angle at the onset of crack propagation showed 
unsymmetrical graph. 

1. INTRODUCTION 

Energy release rate (J integral) and stress intensity factors (K) are important fracture parameters 
not only in the static fracture but also in the dynamic fracture. To analyze the dynamic crack 
problem, dynamic fracture mechanics have been applied to various research topics such as wave 
propagation, crack initiation, propagation, arresting, kinking, curving, branching and so on [1]. 

Recently, reliability assessment of bimaterial under the impact loading becomes very important 
because bimaterial is widely used in various engineering structures, such as military armor, 
transportation vehicle, aerospace, electronic package and so on. Researches about the fracture 
parameters of bimaterial have been performed in various ways since the experimental study of 
Tippur and Rosakis [2]. However, a few dynamic experimental results with numerical analysis are 
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found compared with the static results. Therefore, we studied fracture parameters of crack tip, such 
as energy release rate and stress intensity factors, under the condition of dynamic loading using 
numerical and experimental method. We confined this study to the low velocity impact and fracture 
parameters at the onset of cracking. Firstly, we performed experiments using bimaterial specimens 
under the mixed mode impact loading. Secondly, we analyzed the dynamic problem using FEM. 
Finally, we calculated elastodynamic J integral and stress intensity factors using domain integral 
method and interaction energy method with the programmed post processor. The post processor 
performed calculation using data such as coordinates, displacements, velocities, accelerations and 
stresses obtained from the commercial FEM package program (ABAQUS). In the interaction 
energy method, auxiliary fields, formed by the far field pure mode I and mode II loading condition, 
were used to calculate stress intensity factors. 

2. FRACTURE PARAMETERS IN DYNAMIC FRACTURE MECHANICS 

According to Atluri [3], the energy release rate under the dynamic loading condition could be 
written as 

ck. 
G^mj(W + T)n,-ti-L 

3c, 
ds (1) 

where W, T, Tr, r, n, t, u, are strain energy, kinetic energy, integration path, radius of path, normal 
vector, traction and displacement, respectively. 

Lo et al. [4] showed that J based interaction energy of the current field, A, and auxiliary field, B, 
could be written as 

J' =^^£°ny-(*W+*°ut^j+p^^n)^ (2) 

When we choose bimaterial stress field (Suo,1989) as auxialary field, and consider pure mode I 
(B,) and mode II (B2) such that K = 1+iO and K = 0+il, stress intensity factors could be written as 

KA = 8 cosh2 pre) jAA        KA = 8 cosh2 pre) jA:B? 

C+c, 
(3) 

where s, JA,B' and JA,Bl are oscillation index, interaction energies of AB! and AB2, respectively, and 

l + /r, 1 + Ä-, 

Mi 
-> K; = 

3-4v-   : plane strain 
3-v, 

plane stress (4) 
1 + v. 

where u and v are shear modulus and Poisson's ratio. Suffix represents the index of material. 
Mode mixity is defined as [6] 

{^ = tan" (5) 
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3. EXPERIMENT 

Impact test was performed by using Dynatup 8250[Instron Co.]. The mass of impactor was 
5.41Kg and the impact velocity was 2.17m/sec. The impact load was measured at the mid-position 
of tup by the load cell and impact velocity was measured by the photo detector. Crack initiation 
time was measured by conductive grid technique [Dotite, electro-conductive] and signals were 
stored to the personal computer via digital oscilloscope. Figurel shows schematic diagram of the 

experimental setup. 

velocity detector 
personal 
computer 

spemmep 

digital oscilloscope 

Fig. 1. Schematic diagram of the experimental setup 

Aluminum 6061-T6 and PMMA [Poly-Methyl Methacrylate, Hanhwa Co.] that had 130mm 
height and 7.8mm thickness were bonded by commercial adhesive 'Weld-On 40'[IPS Co.] as shown 
in Fig. 2. The widths of aluminum were 40, 75, and 110mm and the widths of PMMA were 260, 
225, and 190mm. Contact surface of aluminum was treated by sand blaster and PMMA was treated 
by abrasive sand paper #220. Initial crack with 20, 50 or 80mm was made by Teflon film which was 
inserted into the interface before the bonding process. Adhesive was cured at room temperature for 
48 hours. The thickness of bonding layer was about 90um. These bimaterial specimens have nine 
different crack tip positions as shown in Fig.2. 
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=T*2";    --'■'»li*                               iZ ■ 3taS52: T^  &'*i~                                  iae 

c     75              .   o 
nn        1       , 

300 

Fig. 2. Crack tip positions, size of specimen and FEM modeling of TIP31 
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4. FEM ANALYSIS 

The dynamic response of interfacial crack tip of bimaterial was analyzed by the use of 
commercial FEM package program ABAQUS/implicit. Fracture parameters were calculated by the 
programmed post processors which used data such as coordinates, displacements, velocities, 
accelerations and stresses obtained from the ABAQUS. Material properties are shown in Table 1. 
FEM model of TH^ and crack tip positions of bimaterial specimen are shown in Fig.2. Crack tip 
positions were marked as TlPy where i was the index of x position and j was the index of y position. 
Eight node quadratic plane stress elements were used for this model except the crack tip region 
where degenerated quadratic elements were used. Interface elements, which contact without friction, 
were used for the crack face. The nearest elements to the crack tip (r = 0.04mm) were excluded in 
the calculation. We assumed that two points at the base of specimen were simply supported because 
specimen was supported by two rollers. Load history which was measured in the test was applied to 
the tup by the pressure load in the FEM analysis. Under the assumption that crack initiates when J 
reaches critical value, JID, we determined the calculated J value at the measured crack initiation time 
to be JID. 

Table 1. Material properties of PMMA and aluminum 

Property PMMA Aluminum 
E(GPa) 3.02 80 

v 0.35 0.33 
P(ks/m3) 1190 2710 

5 EXPERIMENTAL AND NUMERICAL RESULTS 

Typical examples of crack propagation paths are shown in Fig. 3. Crack initiates at critical JID 

and propagates along the interface some distance. After then, crack kinks to the PMMA and 
propagates toward the impact position. At the crack tip position of TIP,,, only one of five specimens 
was fractured at the impact energy level (12.7J, v = 2.17m/sec). 

TIP12 v=2.17m/sec 

»kink 
3 
C 

3 

u 
^•interfacial crack 

«-initial crack 

~o 
Fig. 3 Schematic diagram showing crack propagation path of bimaterial specimen TIP12 
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Figure 4 shows the typical variation curve of energy release rate (J) and stress intensity factors 
with time at the TIP12 under the impact load. In this figure, solid line shows the J and K curves 
before the crack initiation. Cross symbol (x) represents the onset of crack initiation. Dotted line 
after the symbol (x) shows the case that the crack was not initiated. For all cases of TIPs, K, 
increased monotonically according to time increase except TIP„. However, Ku has (+) value 
initially, but soon decreases and reaches (-) values. This variation range could be divided into three 
parts. Those are region 1 (K„ > 0, increasing), region 2 (Kn > 0, decreasing), and region 3 (K„ < 0). 
In the region 3, K„ has (-) value and it is observed that crack tends to propagate along the interface. 
TIP21, TIP 31 and TIP 32 belong to region. 
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Fig. 4 Variation curves of energy release rate and stress intensity factors 

with time for the case of TIP,2 

The relationship between energy release rate, J, and phase angle, \\i, at the crack initiation time 
are summarized in Fig. 5(a). Phase angle varies form -30° to 60°, and J varies from 150Pam to 
600Pam. This figure shows unsymmetrical concave graph which had maximum at the TrP31 and had 
minimum values about 10"degree except TIP,,. One important point is TIP,,, that is, only one of 
five TIP,, specimens was fractured in this experiment. It seems that current FEM model is 
insufficient to simulate for the case of TIP,,. The dependency of mode mixity on the energy release 
rate is also found in this Fig. 5(a) under the dynamic loading condition. To compare the dynamic 
result with the static result, phase angle of the crack under the static condition at J = lOOPam is 
shown in Fig. 5(b). All conditions of FEM model are same as the dynamic conditions except that 
the external load is applied quasi-statically. Phase angle shows (+) values only on TIP,2 and TrP,3. 
All phase angles of Fig. 5(b) vary from -25° to 5° and has minimum on TIP31. Therefore, it can be 
said that estimation of phase angle of the dynamic condition from the static result is not correct. 
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Fig. 5 Energy release and phase angle at the onset of crack initiation under the 

(a) dynamic condition and (b) static condition 

6. CONCLUSION 

As a result of this study we obtained following results. Interaction energy method showed good 
performance in the decomposition of stress intensity factor with path independency. The effect of J 
was not shown until about 0.2msec and then increased with time until it reach JID. Phase angle of 
stress intensity factors varied with time. Both K, and K„ increased at first but K„ turned to decrease 
soon. Under the static condition, phase angle showed -25 ° ~ 5 ° degree, however, it expanded to 
-30° ~ 60 "degree under the dynamic condition. Therefore estimation of phase angle of the dynamic 
condition from the static result was improper. The relationship between energy release rate, J, and 
phase angle, i)/, at the onset of crack initiation showed unsymmetrical concave graph which had 
maximum at the TIP3i and had minimum values about 10°degree except TIP,,. Through this result, 
mode mixity dependency on the energy release rate was found under the dynamic loading condition, 
similarly with the static condition. 
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ABSTRACT 

Dynamic fracture behavior of PMMA was studied using the method of caustics. Single- 
edge-cracked tensile specimens were pin-loaded so that cracks could undergo both the accelera- 
tion and deceleration process in one fracture event. The effect of loading position H1 was exam- 
ined measuring the stress intensity factor KJB, crack velocity ä and load P as a function of time t. 
Unloading rate P, time derivative of P, was also evaluated to investigate for a correlation with the 
time variations of Km and ä. 

1. INTRODUCTION 

To characterize the behavior of dynamic crack propagation in brittle materials, crack veloc- 
ity ä has been measured as one of the fracture parameters using different types of specimen 
geometries and loading conditions, and it has been reported that ä changed as a crack propagated 
[1,2]. Stress intensity factor Km has also been measured using different experimental techniques, 
and Km reportedly changed during dynamic fracturing [3-12]. The change in these fracture pa- 
rameters probably has a close relationship with the geometries and loading conditions of speci- 
mens, since they modify the state of stress ahead of a crack front. 

The present work studied this problem using the method of caustics [3]. Single-edge-cracked 
tensile specimens of PMMA were fractured under pin-loading conditions so that cracks under- 
went acceleration and deceleration stages in a single fracture process. The pin-loading position 
H1 was changed to modify the stress distribution ahead of a crack tip. To examine the effect ofH, 
crack velocity ä and stress intensity factor Km were measured in the course of crack propagation. 
Load P applied to the specimens was also evaluated to study the unloading behavior of the speci- 
men. Attention was focussed particularly on the effect of H1on the behaviors of ä, K1D and P. 
Unloading rateP, the time derivative of P, was determined to correlate with the time variations of 
ä and K1B. 

2. EXPERIMENTAL PROCEDURES 

Experiments were performed on single-edge-cracked tensile specimens of PMMA as shown 
in Fig. 1. The material properties of PMMA are listed in Table 1. A sharp precrack was generated 
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by momentum-controlled chisel-impact into a pre-machined saw-cut on the specimen edge. The 
specimens were loaded using U-shaped steel pin fixtures to record caustic patterns at the loading 
points and to evaluate load history during dynamic fracturing [11]. 

The specimen dimensions were 5 mm of thickness and 150 mm of width. The height 2/7 was 
110 mm or 150 mm; and the loading position H1 was determined as indicated in Fig. 1, so thatflj 
was 30 mm or 50 mm. This was done to examine the effect of loading position on fracture behav- 
ior of the specimens. All specimens were tested under a displacement controlled condition, and 
the load up to the time of fracture initiation was measured using a tensile testing machine. Tests 
were performed at room temperature and at a constant crosshead rate of 1 mm/min. 

Dynamic crack propagations were photographed with a modified Cranz-Schardin camera 
which provided bifocal photographs [12,13]. One focal distance was selected for specimen-fo- 
cussed images and another for caustic images. Figure 2 shows examples of high-speed photo- 
graphs for a fast crack in a PMMA specimen, where series (a) represents the specimen-focussed 
images and (b) the corresponding caustic patterns. Size of the caustic at a crack tip increased in 
an early stage of crack propagation and then decreased in the later stage, while caustic size at the 
loading points decreased as the crack lengthened. This was typical fracture behavior with the 
specimen geometry and loading method employed. 

S3 

S    t 
»3 

P 

i P/2      P/2 

\m. 
25-30 

d=5mm 

-150- 

P P/2      P/2 

Fig. 1. Specimen geometry and 
loading method 

Table 1.   Material properties of PMMA 

c* m2/N 4.90 x 10" 

£„ GPa 
d 

5.97 

cL m/s 2540 

cs  m/s 1415 

c* : stress-optical constant, 
£d: Young's modulus, 
cL: longitudinal wave speed, 
cs: shear wave speed. 

(a) 

(b) 

^L:L_... . 

»;■;. jy i ||Lllj£ii:—^U==: 

12 [iSec 144 [j,sec 336 ^sec 1 msec 

Fig. 2. Example of dynamic crack propagation in a PMMA specimen 
(a) Specimen-focussed images, (b) Caustic patterns 
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3. EVALUATION OF DYNAMIC FRACTURE PARAMETERS 

3.1. Dynamic Stress Intensity Factor KlTj 

The stress intensity factor Km was determined using the following equation [3]: 

KB = (2Y2Ji/3z„rfc*/73/2) (0/3.17)5'2 (1) 

where <]> is the caustic diameter at a crack tip, zQ is the distance between the specimen and the 
image plane, d is the specimen thickness and r\ is a convergency factor for incident light rays. 

Figures 3 and 4 show variations of Km and crack length a versus time t. As seen, values of 
K1D increased in an early stage of crack propagation and then decreased in the later stage. The 
effect of H1 can be seen: Figure 3 shows rapidly increasing and decreasing regions of K1B for a 
relatively small value of ^(=30 mm). With increasing^, the slope of Km gradually decreased, 
especially in the later stage (Fig. 4). This implies that H1 was an important factor in changing the 
behavior of Km when a crack was propagated dynamically. 

3.2. Dynamic Load P 
In Figs. 5 and 6, caustic size co at the loading points of the specimen are plotted as a function 

of time t, where co represents the maximum size of caustics perpendicular to the loading axis (see 
Fig. 2(b)). Load P applied to the specimen during dynamic crack propagation was determined 
using the following relation [11] 

i3 = A:(ü)/o)d0-l)"J (2) 

where k and n are coefficients, and o)d0 is the caustic size just after a crack had propagated com- 
pletely through the width of the specimen (see Fig. 2(b)). 

Noticeably larger caustics were obtained at the loading points after the fracture. This can be 
attributed to plastic or viscoelastic deformations around the loading points [11]. Load P during 
the dynamic fracturing was determined using the P-w relationship identified under static condi- 
tions (see Fig. 7) and the following assumptions: (i) The static P-m relationship can be valid up 
to load Pf at fracture initiation as shown in Fig. 8, where P values for the three specimens are 
indicated by the squares, (ii) The viscosity of the material can be neglected under dynamic condi- 
tions, (iii) co=codo at P=0, as indicated by the open circles, so that the change Pf-> oodo is elastic. 
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Based on these assumptions, Eq.2 was employed and the coefficient «=1.04 obtained from the 
epoxy specimens which was not strongly dependent on the rate of unloading caused by dynamic 
crack propagation [11]. The values of A: was determined for each specimen using the values of P 
and(ud0. The dynamic P-co relationships are indicated by the dottedcurves in Fig. 8. 

The values ofP evaluated by Eq.2 are plotted in Figs. 5 and 6 versus time t. Although P 
decreased with t, the behavior altered according to Hv Values of P for i/j=30 mm showed a large 
decrease in the early stage of fracture and a slight change in the later stage (Fig. 5). As H1 in- 
creased, the slope of P tended to approach a constant except in the initial and final stage of 
fracture (Fig. 6). This implies that H1 was also influential in changing the unloading behavior of 
the specimen. 

3.3. Crack Velocity h and Unloading Rate P 
To minimize data scattering in Figs. 3 and 4, the authors employed a numerical computa- 

tional procedure which was proposed in a previous work [9]. Values of Km and crack length a 
were expressed as ninth order polynomial of t based on the least-squares method so that they 
closely fitted their observed values (see Fig. 3 and 4). Crack velocity ä was then obtained from 
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the first time derivative of the fitted curve a(t). This procedure permitted accurate determination 
of ä when a crack was accelerated and decelerated in one fracture event. 

. The unloading behaviors in Figs. 5 and 6 would be related to the change in potential or strain 
energy of the specimen material, there could be a close relationship with dynamic fracture pa- 
rameters such as .KjpOr ä. To examine such a relation, the values of P were expressed as ninth 
order polynomial of r, and determined the first time derivative P, i.e. the unloading rate of the 
specimen using the computational procedure stated above . 

4. CORRELATIONS AMONG THE DYNAMIC FRACTURE PARAMETERS 

Figures 9 and 10 show the correlations among K}D, ä and P as a function of t. It is worth 
noting that the change in a or P was qualitatively in accord with the change in values of K1B. 
However, there existed a slight difference among the values of t giving the maximum P, ä and 
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Km. The peak value of P was reached later than that of a, but earlier than that of Km, so that the 
order was ä, P and Km. 

To study the physical meaning for this, the procedure described in a previous work [11] was 
employed: First, the crack tip positions at the maximum a and K]D were determined. Second, Lx 

and L2, the distances between the crack tips and the loading points were measured. Finally, time 
intervals At 1 and Af2 were evaluated with LJc^nd LJcv respectively, where cL is the longitudinal 
wave speed in PMMA (see Table 1). A£j=15.6 u,sec and Af2=17.6 (xsec were obtained for H=3Q 
mm (Fig. 9). The values were At =22A jisec and A£2=24.4 ^sec for H=5Q mm (Fig.10). It is 
worth noting that almost the same time intervals are shown between the two peaks ä and P, and P 
and Km. This suggests that ä affected the values of/", and i£]Dwas influenced by P according to 
the time interval associated with the wave propagation between the crack tip and the loading 
points. Hence, the loading position of specimens clearly appears to be an important factor in 
changing the dynamic fracture behavior of the material. 

5. CONCLUSIONS 

Single-edge-cracked tensile specimens of PMMA were fractured under pin-loading condi- 
tions. To study the effect of loading position Hv stress intensity factor .K^ and crack velocity a 
were measured during dynamic crack propagation which included both crack acceleration and 
deceleration in one fracture event. Load P applied to the specimen was also measured as a func- 
tion of time t. Unloading rate P(t), time derivative of P(t), was evaluated to correlate with the 
time variations of Km(t) and a(t), and the following findings were obtained: 

(1) Hl was an important factor in changing Km(t), a(t), P(t) and P(t). 
(2) The change in ä(t) or P(t) was qualitatively in accord with the one in ^ID(f)> and the 

maximum P(t) existed between ä{t) and K]D(t). 
(3) The peak value of ä(t) was attained earlier than that of K (t) with respect to time t. The 

time difference between two peaks tended to increase as H increased. 
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ABSTRACT^ 

This study is experimentally performed to evaluate the relationship between impact damage and 
residual strength of plain-woven Glass/Epoxy composites, including the thickness effect. The 
results indicate that the major impact damage of Glass/Epoxy composites is quite different from that 
of unidirectional Carbon/Epoxy composites. Among the residual strength prediction models, 
previously proposed on unidirectional laminates, Avva's and Caprino's models well describe the 
strength reduction behavior of Glass/Epoxy composites. Also, the threshold and critical impact 
energy are significantly influenced by the thickness. 

1. INTRODUCTION 

Since impact-induced damage in composites causes large drops in the load-carrying capacity of a 
structure, their damage and strength reduction behaviors under impact deserve careful investigation. 

The impact damage behaves as a discontinuity when the composites are loaded; therefore, it 
appears that fracture mechanics concept must be employed when the problem of residual strength is 
faced. Based on this theoretical basis, several models have been proposed for unidirectional 
laminates and successfully described the strength reduction behavior due to impact damage[l-3]. 
The strength reduction behavior seems, however, to be quite different with material characteristics, 
thus more extensive research is necessary. 

It is well known that thickness of unidirectional laminates has greatly influenced on the impact 
damage and strength reduction behavior. Also the damage resistance of laminates depends greatly 
on thickness, resulting from the change of damage behavior with thickness[4]. Although these 
behaviors are dependent on both the thickness and material characteristics, not much effort has been 
directed to study these topics. 

In the present study, experimental investigations are performed to correlate impact damage to 
residual strength of plain-woven Glass/Epoxy composites with various thickness. The damage 
behavior of plain-woven composites is identified through non-destructive technique. Subsequently, 
the strength reduction behavior in plain-woven composites is analyzed and compared to that by 
residual strength prediction models proposed for unidirectional laminates. Also, the effect of 
thickness on damage resistance is discussed. 

2. RESIDUAL STRENGTH PREDICTION MODELS 

To assess the strength of composites after impact, it is generally assumed that the impact damage 
causes the same strength reduction as a hole or a crack of same size. Based on such an analogy, 
several models to assess residual strength as a function of impact energy have been developed. 
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Husman et al[l] considered an orthortropic plate with a narrow slit of length (2c) subjected to a 
tensile stress. To derive the relation of the impact damage to the impact energy, it was assumed 
that the difference between the unnotched and notched strain energy density (W„Wb) was 
proportional to the absorbed impact energy (E„) per thickness (B) as follows: 

Ws-Wh=KEa=KEJB (1) 

where K is the material constant and Ea is the absorbed impact energy per thickness. For relating 
the strain energy density to damage length, it is assumed that the failure of unnotched composites is 
characterized by a intrinsic damage length (co) and hence the critical energy release rates (G,c) of 
the unnotched and notched can be expressed as follows: 

G,c = *{»„ /S22[(S22 /Sjn +(2Sn +S66/25„)]}"2 -c0Ws (2) 

G,c =*{2SM /Sn[(S22/Sjn +(2S,2 +S66/2S„)]}"2 -{c + c0)Wh (3) 

where su are the compliance of orthotropic plate. Combining Eq. (1) - (3) and introducing the 
strength prediction model by Waddoups.et al[5], we obtain the equation that can evaluate the 
strength reduction due to impact damage as follows: 

W>-KE° (4) 
w, 

where a0  and aR are the tensile and residual strength, respectively. 
Awa et al[2] assumed that the length of impact damage (2a) was related to an incident impact 

energy per unit thickness (E,,) by 

« = *(£,-£„) (5) 

where k is the constant and £,„ is the threshold value of I,. Under the assumption that the 
impact damage was equivalent to the through-the-thickness crack (2c), the strength of an infinite 
plate with a central crack was given by the average stress criterion[6]. 

where <r„  is the notched strength of infinite plate.    Combining Eq. (5) and (6), we get the model 
for residual strength of a plate with impact damage as follows: 

— = — C- (7) o-0     Fw pk{E, - E,„}+c0 

where  Fw  is the finite width correction factor[7]. 
Caprino[3] showed that for failure of laminates with a notch of length (2c), the ratio of cracked to 

uncracked strength was given by 

-^ = f—I (8) 
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where m is the constant, Co is the length of an existing defect in laminates. Later, Caprino 
considered the residual strength of impact damaged laminates and assumed that strength reduction 
due to impact damage was equivalent to that of a notch size (2c).   The impact damage (a) was 
assumed to be related to the incident impact energy (£,) as follows: 

a = kE" (9) 

where k and n are the constants.    Combing Eq. (8) and Eq. (9) leads to 

°> (E<»Y" (E<>-)a 

^ UJ   UJ (10) 

where a is the material constant and E,h  is the threshold value of E,. 

3.   EXPERIMENTS 

3.1 Materials and specimen 
The materials used in this study were plain-woven Glass/Epoxy composites. The mechanical 

properties of this material were obtained from unidirectional tensile test, according to ASTM D- 
3 03 9-93 [8], and summarized in Table 1. The specimen was straight-sided type and its dimension 
was 250x40mm. The thickness B of Glass/Epoxy composites was 2.3, 3.0, 4.0, 5.0 and 6.6mm 
for identifying thickness effect. The specimens were clamped on two opposite edges and left free 
on the other two edges. 

Table 1. Mechanical properties of plain-woven Glass/Epoxy composites 
£x,(GPa) 

19.96 
gw(GPa) 

19.96 
Gxv(GPa) 

3.1 0.136 
oö(MPa) 

247.6 
B{mm) 

2.3 

3.2 Impact and tensile tests 
The impact tests were performed using the compressed nitrogen gas gun that allowed the 

variation of striking velocity from 5 to 200m/sec. The striking velocity was measured from the 
time of passage between the laser sensors connected to an electronic timer. The tip radius and 
mass of projectile were 12.7mm and 57.2g, respectively. The damaged specimens were inspected 
by the 35mm camera and the scanning acoustic microscope (Sonix HS 1000 Hi SPEED , 75MHz). 
The standard lOOkN capacity machine (Shimazu, AG-100KNE) was used for tensile testing with 
crosshead speed of lmm/min. 

4.   RESULTS AND DISCUSSIONS 

4.1 Impact damage behavior 
Various failure modes, such as delamaination, fiber breakage and matrix crack, can occur during 

the impact of unidirectional laminates. Among these, the first damage to occur is the interlaminar 
cracks within plies and it propagates to ply interfaces and the associated stress concentration may 
then leads to the delamination growth. The delamination is known to occur at the interface 
between two plies with different fiber orientation. Its shape is usually peanut-shaped with its 
major axis oriented in the direction of fiber orientation of the lower ply[l], as shown in Fig. 1. It 
is, however, not clear that plain-woven Glass/Epoxy composites reveal the same damage behavior 
because the impact damage is significantly sensitive to the material properties. 

To identify damage behavior of plain-woven Glass/Epoxy composites, impact test was made at 
the plate center, with the energy level of 5.0J.    Fig. 2 shows the typical damage states in plain- 
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woven Glass/Epoxy composites, which were observed by a scanning acoustic microscope (C-scan). 
Here the damage was captured at the opposite surface against the impact point. The figure shows 
that the impact damage of plain-woven composites consists of fiber breakage and matrix crack. In 
particular, the damage shape is slit-shaped with its major transverse impact damage but little 
longitudinal impact damage. Also, the damage occurs at the opposite surface against the impact 
point though that of unidirectional laminates occurs inside the laminates. It can be, therefore, said 
that the major impact damages of plain-woven composites are the fiber breakage and matrix crack 
occurring on the surface of composites, unlike as the unidirectional laminates. 

A 

V 

< .',         *    '  ' '  ' s " '' * *' 

«   » 

|         10mm 

Fig. 1 Impact damages in Carbon/Epoxy [(0/90)3]s Fig. 2 Impact damages in Glass/Epoxy 

4.2 Residual strength 
Since strength reduction behavior seems to be dependent on material characteristics^], more 

research on the strength prediction models that were proposed on unidirectional laminates is 
necessary. To verify the applicability of these models on plain-woven composites, the residual 
strengths of thickness J5=2.3 and 6.6mm specimens are plotted in Fig. 3, together with the results by 
residual strength prediction models, Eqs. (4), (7) and (10). The parameters in each model were 
obtained from the least square fitting analysis of experimental data, and are presented in Table 2. 
This figure indicates that Husman's model cannot predict the threshold impact energy and strength 
reduction behavior. On the other hand, Avva's and Caprino's models well describe the threshold 
energy as well as the tendency of strength reduction with impact energy regardless of thickness. 

As described previously, each prediction models have simple relationships Eqs. (1), (5) and (8) 
for the impact energy and the equivalent notch size. These relationships seem to greatly influence 
on accuracy of the models. To identify this, the transverse damage length 2«, and strain energy 
density ws - Wb are plotted as a funcion of the incident impact energy in Fig. 4. Here the 
regression lines are obtained by Eqs. (1), (5) and (8).    This diagram indicates that Eq. (1) in 
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Husman's model cannot evaluate the threshold energy E,h, which is the minimum impact energy 
required to cause the reduction of strain energy density. On the other hand, Eqs. (5) and (8) 
describe reasonably the threshold energy as well as the damage behavior in terms of impact energy. 
It can be, therefore, stated that the basic assumptions in Avva's and Caprino's models well describe 
the damage behavior and subsequently the residual strengths predicted by both models agree well 
with the experimental results. 

Table 2. Parameters of residual strength prediction models 
B Husman's model Awa's model Caprino's model 

(mm) K(MPamm/l) WJMPa) co(mm) A:(mm2/J) Elh (J/mm) a £,*(J) 

2.3 0.930 1.982 3.299 2.777 2.220 1.070 4.992 
3.0 0.488 1.921 3.200 6.472 2.227 1.610 6.121 
4.0 0.094 1.224 14.307 2.568 2.630 0.529 12.091 
5.0 0.055 1.224 11.625 3.206 3.935 0.947 21.829 
6.6 0.098 0.766 10.538 5.376 2.053 0.739 13.845 

4.3 Threshold and critical impact energy 
The threshold Eth and critical impact energy Ec, which are the minimum energies to cause 

strength reduction and breakage of a specimen, respectively, are the important design factors in 
damage resistance against foreign object impact[9]. These energies are determined from 
experimental data and plotted in Fig. 5. From this figure, it is seen that the two increase with 
thickness, up to a maximum, and then gradually decreased. This trend implies that damage mode 
may change with thickness. 

To identify the damage behavior of plain-woven Glass/Epoxy composites with thickness, the 

—%— Threshold energy,£ 

—O— Critical energy     ,E 

- 
«HP* ■ 

Thickness of specimen,    B (mm) 

Fig. 5 Threshold & critical impact energy 
with thickness 
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Fig. 6 Change of impact damage with thickness 

(Ei/Ec=75%) 

10mm 

T    ^ ■£,.*. 
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Fig. 7 SAM photograph of impact damage 
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•     Bending factor {E/E = 90%)      . 

(1.7 
O    Contact factor (E E = 90%) 
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'i,|,l   ....      1       ■ 
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Fig. 8 Effect of bending and contact 
with thickness(£,/£c=90%) 
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damages at identical impact energy ratio E-1Ec are captured using a 35mm camera and shown in 
Fig. 6. Also Fig. 7 shows the impact damages in 2.3mm and 6.6mm specimen captured by C-scan. 
In the case of 2.3mm specimen, the impact damage occurs in transverse direction whereas the 
longitudinal damage also occurs in the thicker specimen. Consequently, the damage behavior of 
plain-woven Glass/Epoxy composites is greatly influenced by thickness; the bending stiffness is a 
dominant factor in thin specimen while the effect of contact stiffness on impact damage gradually 
increases in thick one[9]. 

For further understanding the effect of thickness on damage behavior, let us define the bending 
(W-2aJ/w and contact factor 2a2ID, referred to the effect of bending and contact stiffness on 
impact damage, respectively. Here the symbols a, and az denote the transverse and 
longitudinal damage length, respectively. Also £>, is the tip radius of the impactor and W 
denotes the specimen width. Fig. 8 shows the two factors calculated at E-JE^ = 0.9 with thickness. 
The rising trend of the contact factor contrasts with the bending factor of lowering tendency. The 
effect of contact on impact damage increases gradually with thickness and reaches a maximum at 
5=6.6mm whereas that of bending decreases to reach a minimum at ß=2.3mm. The results 
described above and Fig. 5 suggest that the bending and contact stiffness influence on the damage 
resistance simultaneously and give the highest damage resistance at .5=5.0mm. 

5.   CONCLUSIONS 

In this study, the impact damage and strength reduction behavior of plain-woven Glass/Epoxy 
composites, including the thickness effect, were experimentally evaluated and its residual strength 
is compared with the results by residual strength prediction models. The following conclusions 
have been drawn. 
1. The impact damages are mainly fiber breakage and matrix crack in plain-woven Glass/Epoxy 
composites whereas the dominant damage of unidirectional Carbon/Epoxy composites is 
delamination, which depends on the stacking sequence. 
2. Among several residual strength prediction models proposed on unidirectional laminates, Awa's 
and Caprino's models well describe the strength reduction behavior of plain-woven Glass/Epoxy 
composites due to foreign object impact. Also the threshold and critical impact energy increase 
with thickness, up to a maximum, and then gradually decrease. 
3. The threshold and critical impact energy are simultaneously influenced by bending and contact 
stiffness.    The effect of contact increases with thickness, while that of bending decreases. 
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ABSTRACT 

A typical cylindrical explosion device is selected as the test object, which is scaled down with 
the actual Fuel-Air-Explosive device. The behaviors and properties of material at large deformation 
and high strain rate are referred. An electrical measurement is carried out in an explosion chamber. 
The dynamic strain history of the expanding shell is measured. The crucial fracture parameters have 
been obtained. The fundamental principle and specific test method are given, and the results are 
discussed in detail in the paper. Some data are compared with theoretical solutions and they tally 
well with each other. 

1. INTRODUCTION 

The fracture process of metal cylindrical shells under inner explosive loading has been studied 
for decades. Many observations of rupture's state of shells were published, and some experiential 
formulae of dynamic fracture criteria were given. The behaviors and properties of materials at large 
deformation and high strain rate are complex so that the physical mechanism of them is still not 
very clear today. According to a great deal of tests, micro-damages arise in the dynamic fracture 
process when the first explosive wave arrives at the shell wall, then rapid growth of micro-cracks 
appears during the accelerated expansion period. Macroscopic fracture finally results from the very 
rapid propagation of a number of micro-cracks. In addition, there are a variety of descriptions about 
the strain-rate sensitive constitution of material, in which parameters must be obtained by 
meticulous experiment. However, there are not consistent and credible data of sensitivity in existing 
references, especially for aluminum alloys in common use. The constitutive relations with more 
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validated data are often selected. Just for this reason, every criterion needs indispensable validation 
in experiment. 

The work of electrical measurement of dynamic fracture parameters in the expansion process at 
high strain rate is the emphasis in the paper. The time course from shell's initial expansion to final 
rupture is very short because of the high strain rate. The optical method is generally used in the 
conventional measurement. A new electrical measurement, however, is designed subtly and 
implemented in the paper. We have measured the dynamic strain history of the cylindrical shell 
under interior explosive loading, and have obtained the fracture parameters such as critical strain, 
expansion rate and rupture moment etc. 

2.  EXPRIMENT MODEL 

Three identical specimens were made 
for tests. The model is illustrated in Fig.l. 
The shell's material is aluminum alloy that is 
most commonly used in the Fuel-Air- 
Explosive device. The linking way between 
endplates and shell is fastening. The four 
tension bars are used to restrict the endplates 
from breaking off. The height of the shell 
H is 80 mm, the thickness of the shell 5 is 
0.3 mm, the diameter of the cylinder D is 
65.6 mm, the diameter of the central 
explosive tube d is 6 mm, and the thickness 
of the endplate A is 4 mm. There are not 
grooves on the surface of shell. In fact, the 
cracks simultaneously extend from the 
outside and inside of the shell for the thin 
shell, and extend along surface grooves if 
notches have been prefabricated. The shape 
and thickness of the shell are vital factors to 
the structural dynamic response. 

The type of the explosive used is 8701, the 
TNT equivalent of which is 153% [1]. The 
loading density is 1.72 g/cm3. The loading 
way is squashing. The diameter of the 
explosive column must satisfy the following 
limit [2] 

- upper plate   2 
rubber mat   4— 

cap of central tube 
■ tension bar 

water (instead of FAE)   6   thin shell 
central explosive tube   8   explosives 
detonator    10 under plate 

Fig.l. Sketch map of experiment model 
D<D<D, (1) 

Here Dc is called critical diameter that ensures the steady detonation velocity, DL is maximum 
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diameter at which the detonation velocity will not go up with the diameter increasing. The factors 
influencing the boundary values include loading density, granularity, shell's constraining conditions 
and so on. 

3.  EXPERIMENT PRINCIPLE 

In the measurement, resistance coils are wound on the surface of the cylindrical shell and 
linked in a potential allotting circuit. Thus coils will stretch together with the shell's expanding. A 
high-frequency recording apparatus can record the voltage increment in resistance coils. The history 
of peripheral strain can be obtained and other fracture parameters can be calculated subsequently 
from it. 

There are three circuits applied on the upper, middle and under surfaces of shell, respectively. 
The coil in each one has several loops to avoid the random effect of shell's rupture. The conversion 
procedures from directly measured values to needed parameters are given as follows: 

a). Thread of copper alloy is used as resistance coils which are insulated and permit ±5% 
resistance error. The resistivity of resistance coils is constant. Its formula is 

p = Rj (2) 

where, R is resistance, S is cross section, L is length. In our measurement, the cross section is 

0.125X10"
6
OT

2
   and the resistivity  p = 6.9lx\0~6 Q-m. Now the resistance is known for a 

segment of coils with any length. 
b). Set that r is initial radius,  r' is real-time radius,   Ar is the altered quantity of radius, n is the 
loop of coils. Then the alteration of length AL is 

AL = n x.(27tr'-2nr) = 2n7tAr (3) 

peripheral strain eB is 

Ar 

r 

AL _AL 

2mzr      L 
(4) 

c). When the length of coils changes there is the volume unvarying principle 
V = L-S = L'-S' (5) 

Here Kis coil's volume,   V and 5" are respectively altered length and cross section. So 

R' = Pj, = R{jY (6) 

Substitute Eq.6 into the following 

AR = R'-R = R[(—)2-l] (7) 

Set 
L'=L+AL (8) 

The following equation can be obtained 
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L     V      R 
(9) 

d). Now we will give the relationship of the parameters in circuit (e.g. resistance and voltage). The 
experiment principle is shown in Fig.2. 

(Explosion Chamber) 

AR, 

Explosion 

Cylinder 

Protection Wall 

 1 III 

AR, 

AR, T — 
(Synchronously) 

(Ignition) 
Igniter 

U0 is the voltage of the 

isobaric power supply. Ra is 

the voltage allotting resistance. 

Set initial values as UQ =6V, 

Ra=l00n. The initial value 

of Ra should be greater while 

U0 should be less so that the 

display of voltage increment in 

coils is obvious and convenient 

to record. Because the 

resistance of coils will change 

during the expanding process, 

the coils are comparative to an 

alterable resistance in circuit. Set that AU and AR respectively stand for voltage increment and 

resistance increment in coils. It is known that 

w* 

(Control Room) 

Un 

Fig.2. Sketch map of experiment principle 

AU = U'-U = 
R' R 

R' + R„    R + R„ 
Un (10) 

AR = R'-R (11) 
R' is the real-time resistance of coils, and R has been given in the first step. By substituting Eq.ll 
into Eq. 10 

AR-- 
(R + Ra)

2AU 

RaU0-{R + Ra)AU 
(12) 

It shows that AR not only results in AU but also can be expressed by AU explicitly. 
e). Assemble Eqs.4, 9, 12, we can finally establish the corresponding function relation of peripheral 

expanding strain se and directly measured parameter AU as follows 

ee{t) = f{AU{tj) (13) 

The quantitative relational expression is illustrated as the plotted graph in Fig.3. From the visual 
description it is obvious that their relation is approximately linear. 
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4.  RESULT AND DISCUSSION 

Three circuits are arranged in different locations of the shell. There are three routes of signal in 
one experiment. The time range is set at thirty microseconds on the base of theoretically evaluated 
rupture moment. The voltage range is set at 500 milli-volts. Once rupture happens in the shell, 
resistance coils will disconnect simultaneously, and the circuits become open. The input voltages of 
the recording instrument will be equal to power supply's voltage, which is far greater than the 
selected measurement range. Then there appears an abrupt leap in each curve for the case. The leap 

just means open circuit. 
The relations of the peripheral strain to time are shown in Fig.4~Fig.6. They are individually 

listed below. 

0.25 

100  200  300  400  500  600 

Voltage increment, AU (mV) 
5 10 15 

Time, t( us) 

Fig. 3. Relation of peripheral strain 
to voltage increment 

Fig.4. Plot of peripheral strain against time 
for the upper shell 

0.2 

c 

0.1 

s: 
Q. 

a> 
o. 0.0 

12 16 

Time, t (us) 
3 6 9 

Time, t (us) 
12 

Fig.5. Plot of peripheral strain to time Fig.6. Plot of peripheral strain to time 
for the middle shell for the under shell 

There are several experimental conclusions in the light of our elementary analysis: 
1). Frequent anomalous vibration of the measured signal appears in every circuit. This 

phenomenon proves our theoretical prediction that stress waves in cylinder will have a great 
reflective and refractive effect on the inner surface of shell during the expanding process. It is found 
that the first stress wave is very considerable relative to the late waves, and the amplitude of 
vibration decreases from the shell's upper location to the shell's under location. 

2). There exists temporal lag between three circuit signals. The spreading velocity of detonation 
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wave along central tube can be calculated from the time delay. That is namely the explosive 
velocity important in explosive test. It is obtained formerly only by the estimation of the explosive's 
characteristic parameters. In our test it is about 10000 m/s or so. 

3). The disconnecting voltage and disconnecting moment both are different in each circuit. 
They decrease from the upper circuit to the under circuit. In the curves the critical strains and 
rupture moments of different locations are unlike with one another for it. Although the maximal 
expansion presents at the upper location, rupture first emerges at the under location where the 
expansion extent is minimum. This is really noticeable. 

4). In all curves the peripheral strain's values increase quickly at the beginning and very slowly 
at the later. It indicates that the cylindrical shell expands with an accelerative rate during the initial 
period and with a constant rate during the succedent period. This fact testifies that our proposed 
theoretical assumption [3] about the shell's expansion under inner explosive loading is rational. 

The reason that distinct differences exist among above curves is that the endplate's constraint 
brings about end effect to the side circuits. Moreover, ignition at the upper end results in the 
unsymmetrical loading. We have gotten the modified theoretical form by considering the end effect 
into the fracture criterion [3], and its results cope well with the test results. For example, we 
compared fracture parameters of the middle circuit with theoretical ones. The average critical strain 
in test is 0.160, while modified theoretical solution is 0.166. The error is 3.75 %. The rupture 
moment in test is 16 microseconds, theoretical solution is 17 microseconds. The error is 6.25 %. 
The comparison proves that the modified theoretical fracture criterion is generally consistent with 
the actual case of the expanding process at high strain rate. 

5. CONCLUSION 

One type of specific experiment model is introduced originally, then the experiment apparatus 
and experiment principle are presented in the paper. The experiment results and their discussion are 
listed. Altogether, the following conclusions can be known: i). The transformation from the 
measured parameter to the objective fracture parameters has been established successfully, ii). We 
have determined the peripheral strain's history from the arriving of the first explosive wave at the 
shell's inner wall to shell's entire bursting, and obtained some vital fracture parameters. The rupture 
moment provides the beneficial data for us to study the comparability of FAE devices, iii). Stress 
waves in a cylinder will give birth to a great reflective and refractive effect on the inner surface of 
shell during the expanding process. The fact explains the frequent damped vibration of expansion 
velocity in numerical simulation. 
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ABSTRACT 

Using the dynamic photoelastic experiment, to analyze stress distribution of isotropic/orthotropic 

bimaterial which the interfacial crack is propagated with constant velocity along the interface. The 

dynamic photoelastic experimental device, the dynamic physical properties, the dynamic 

photoelastic experimental model material for isotropic/orthotropic bimaterial, the dynamic stress 

component and stress analyzing method etc. are needed. In this research, the requirements of the 

dynamic photoelastic experimental method for isotropic/orthotropic bimaterials are studied. 

Edge crack should be located along the interface of the acute angle side of softer material in order 

that the interfacial crack is propagated along the interface of bimaterial with arbitrary slanted angle 

of crack. In this paper, the dynamic photoelastic experimental hybrid method for bimaterial under 

dynamic load is introduced. 

1. INTRODUCTION 

Most machine structures in the industrial fields are under the dynamic load. Bimaterial have 

been variously used in the industrial fields recently, because the bimaterial have a lot of merits 

which homogeneous materials cannot contain. In most bimaterial, the interface is very weak. 

Therefore most people are studying the debonding and delamination problem of bimaterial. In the 

bimaterial, many researches on the interfacial crack of isotropic/isotropic or orthotropic /orthotropic 

bimaterial have been doing when interfacial crack is propagated with constant velocity! 1], but in the 

isotropic/orthotropic bimaterial, any researchers have not been done. Therefore, the main purposes 

of this research are to develop the requirements of the dynamic photoelastic experiment for the 
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stress analysis of the isotropic/orthotropic bimaterial when the interfacial crack is propagated with 

constant velocity along the interface of bimaterial with arbitrary slanted angle of crack. 

2. STRESS COMPONENTS OF A PROPAGATING CRACK ALONG THE INTERFACE 

OF ISOTROPIC/ORTHOTROPIC BIMATERIALS AND DYNAMIC PHOTOELASTIC 
HYBRTO METHOD 

The near-field stresses of a propagating crack along the interface of isotropic/orthotropic 
bimaterial materials are given by eq. (1) [2] 

<r„t = ERe^^M,^--' + EnM2hlz~T + E2kMihtz^ + E2tMth,zZ~l)ß, 

°*> = fjRekfc.A/^z*--' + FnM2Jtr' + F2kM3h,z!f> + F2kMih, Zl')ßn\      (1) 

ff,u = E ^ P. (G,^,^,';-' + G.M^ S"' + G^M^z^-1 + G2*M4fcl z»' )ßn 

where 

Ga = -(1 - fa - a2)R)ßlk       G2k = -(l - (a, - a2)R)Mu 

where a6=2(a,-a2), a = atJ is defined in the plane stress and a = bv is defined in the plane strain. 

Mit are the root of characteristic equations and subscript k(=l,2) mean material. X„ is n-th 

eigenvalue. M^ (m=l,2,3,4) are the complex coefficients determined by material properties and 

crack propagating velocity and known quantities. zlk are the functions of the locations from the 

crack-tip. Therefore, the unknown variables in eqs. (1) are only the complex coefficient /?„ 's. 

Substituting eq. (1) into dynamic stress-optic law, eq. (2), gives eq. (3). 

D-- (f*»n -{au_a22y+4af2 (2) 

ö = {|Re[^(2£„zf.- +2EnM2jr+(E2l -F2>„„z<.- +(En -F^zty.} (3) 

+ 4{|Re[A„(G„z1^ +GnM21„?r' + G2KMlu,z^ +G2,M4l„zr )/?,| 

where /^ is dynamic stress fringe value, Nt the dynamic fringe order, t the thickness of 

specimen. Therefore, eq. (3) is function of only ß„. Applying the non-linear least square method of 

dynamic photoelastic experiment to the eq. (3), we can obtain ß„. Substituting ß„ into eq. (1), 
stress components are obtained. 

We can separate stress components from the only isochromatic data. Therefore, this method is 

called "the dynamic photoelastic experimental hybrid method for bimaterial". 
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3. DYNAMIC PHOTOELASTIC EXPERIMENTAL DEVICE AND SPECIMEN 

Fig. 1 shows the dynamic photoelastic experimental device. Controlling the oil valve, the loading 

device has the function which the biaxial or uniaxial dynamic and static load can be applied. The 

maximum strain rate of the device is 31.637 s"1, that is within the resonance of machine or structure. 

Dynamic photoelastic experimental device is composed of dynamic biaxial loading device and 

Cranz-Schardin pattern camera system. Spark time of Cranz-Schardin pattern camera system is 

controlled from 1 us to 9999 p.s. 
Specimens for isotropic material and orthotropic material are respectively made from the epoxy 

resin plate(material 1) and carbon fiber epoxy composite plate(material 2), the crack is molded from 

the teflon-molding method[2]. Specimen dimension is shown in Fig. 2. 

In the bimaterials manufactured by adhesive method, the residual stresses are not originated. 

Therefore we should make the photoelastic experimental specimen for the bimaterial using the 

adhesive method. Thickness of adhesive is less than 50 urn. To strengthen bonding force, surface 

roughness is produced on the bonding surface by using files and #200 sandpaper. After finishing the 

manufacturing, surfaces of two materials should be washed by distilled water. 

1. Dynamic biaxial loading frame 

2. Field lens & Polarizer & Quarter wave plate 

3. Multi-spark light source     4. Multi-spark control box 

5. Multi-camera     6. Load-cell      7. Accumulator 

8. Dynamic amplifier     9. Oscilloscope 

Fig. 1 Dynamic photoelastic experimental device 

ß: the slanted angle of crack,   0,(0:2): the acute(obtuse) angle of softer material 

Material 1: Epoxy resin(softer material),    Material: Al 6061 or Ca. F. E. C.(stiffer material) 

Fig.2 Dimension of the bimaterial specimen 

4. EXPERIMENTAL RESULTS AND DISCUSSIONS 

Fig. 3 and fig. 4 respectively show dynamic isochromatics of epoxy resin /Ca. F. E. C. bimaterial 
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with central crack when ß is 0° and 45° respectively. As shown in Fig. 4, the black point (point A: 

the lower crack tip of central crack) in the lower portion of the central crack is moved in the epoxy 

resin region. The upper crack tip of central crack is propagated along the interface. 

Fig. 5 shows the dynamic isochromatics of epoxy resin/aluminum bimaterial with lower edge 

crack when ß is 45°. In the epoxy resin/aluminum bimaterial, when the initial crack is located at the 

acute region of softer material in the bimaterial, crack is propagated along the interface. 

Fig. 6 and fig. 7 respectively show dynamic isochromatics of epoxy resin/Ca. F. E. C. bimaterial 

with lower edge crack when ß is 0° and 45° respectively. As shown in Fig. 6 and fig. 7, crack is 

propagated along the interface of bimaterial when the initial edge crack is located at the acute angle 

region of softer material. 

Fig. 8 indicates the dynamic isochromatics of epoxy/aluminum bimaterial with upper edge crack. 

As shown in Fig. 8, crack is propagated along the interface by a little, and then crack is deviated 

into the softer material from the interface when the edge crack is located at the obtuse angle region 
of softer material. 

Fig. 9 and fig. 10 respectively show the dynamic isochromatics of epoxy resin /Ca. F. E. C. 

bimaterial with upper edge crack when ß is 30° and 45° respectively. As shown in Fig. 9 and fig. 10, 

crack is propagated along the interface when the initial crack is located at the obtuse angle region of 

softer material. As shown in Fig. 8, fig. 9 and fig. 10, when the stiffer material is aluminum, crack is 

more or less propagated along the interface and deviated into the softer material from the interface. 

When the stiffer material is carbon fiber epoxy composite and the slanted angle of crack is less than 

1 \i sec 26 \x sec 

Fig. 3 Dynamic isochromatics of epoxy/ 

Ca.F.E.C. bimaterial(ß=0°, central crack) 

9 n sec 46 n sec 

Fig. 5 Dynamic isochromatics of epoxy/ 

Al 6061 bimaterial(ß=45°, lower edge crack) 

3 \x sec 32 \i sec 

Fig. 4 Dynamic isochromatics of epoxy/ 

Ca.F.E.C. bimaterial(ß=45°, central crack) 

2 u sec 29 |j. sec 

Fig. 6 Dynamic isochromatics of epoxy/ 

Ca.F.E.C. bimaterial(ß=0° , edge crack) 
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6 [x sec 42 ^ sec 

Fig. 7 Dynamic isochromatics of epoxy/ 

Ca.F.E.C. bimaterial(ß=45° , lower edge crack) 

9 \i sec 46 (i sec 

Fig. 9 Dynamic isochromatics of epoxy/ 

Ca.F.E.C. bimaterial(ß=30°, upper edge crack) 

ß=15°,72usec ß=30° , 72 usec 

ß=45°, 72 usec ß=60°, 72 usec 

Fig. 8 Dynamic isochromatics of epoxy/ 

Al 6061 bimaterial(upper edge crack) 

9 usec 56 u sec 

Fig. 10 Dynamic isochromatics of epoxy/ 

Ca.F.E.C. bimaterial(ß=45°, upper edge crack) 

30 upper edge crack 
45° upper edge crack 
0° edge crack 
15" lower edge crack 
30° lower edge crack 
45° lower edge crack 

Time [u sec] 

Fig. 11 Variations of crack propagating length 

with propagating time(epoxy/Ca.F.E.C.) 

30°, the initial crack in the obtuse angle of softer material is propagated along the interface, but 

when the stiffer material is carbon fiber epoxy composite, the microcracks are originated and very 

small when the slanted angle of crack is 30°, and they are more originated largely and main crack is 

deviated from the interface of bimaterial when the slanted angle of crack is 45°.These situations are 

produced due to the difference of adhesive force between epoxy resin and aluminum and between 

epoxy resin and carbon fiber epoxy composite. 
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Fig. 11 shows the variations of crack propagating length of epoxy resin/Ca. F. E. C. bimaterial 

with time. The crack propagating velocities are almost constant about 37.4 %~89.4 % of rayleigh 
wave velocity of epoxy resin. 

Until now, the stress components and displacement component in the vicinity of interfacial crack 

tip are derived when the crack propagating velocity is only constant and crack is only propagated 

along the interface. Therefore, to use them, the initial crack should be located at the acute angle 

region of softer material when bimaterial is epoxy resin/aluminum, that is, the bonding force is 

weak, the initial crack can be made at the acute angle region or at the obtuse angle region of softer 

material when bimaterial is epoxy resin/ Ca. F. E. C. But isochromatic fringe orders are produced 

more in the obtuse angle region than in the acute angle region of the softer material. 

5. CONCLUSION 

1. When interfacial crack is propagated with constant velocity along the interface of isotropic/ 

orthotropic bimaterials, the dynamic photoelastic experimental hybrid method for is suggested. 

2. When edge crack is located along the interface of the acute angle side of softer material in the 

bimaterial, interfacial edge crack is propagated with constant velocity along the interface of 
bimaterial with arbitrary stiffer material. 

3. When edge crack is located along the interface of the obtuse angle side of softer material in 

the bimaterial composed of epoxy and Ca. F. E. C, when the slanted angle of crack is less 

than or equal to 30°, the interfacial edge crack is propagated with constant velocity along the 

interface of bimaterial. When the slanted angle of crack is greater than 30°, the interfacial edge 

crack is propagated with constant velocity more or less along the interface of bimaterial with 

arbitrary stiffer material and deviated into the softer material from the interfacial crack. 

4. The crack propagating velocities of epoxy resin/Ca. F. E. C. bimaterials are almost constant 

and about 37.7 % -89.4 % of rayleigh wave velocity of epoxy resin. 

5. When the dynamic photoelastic experiment for bimaterial is done, edge crack should be 

located along the interface of the acute angle side of the softer material in the bimaterial. 
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ABSTRACT 

Dynamic performance of an in-laboratory constructed optical-fiber extensometer was examined 
under actual impact testing conditions for ductile specimens of high impact polystyrene (HIPS) 
using two well-known methods; strain gauge measurement and high-speed photography. Impact 
tests were carried out at a strain rate of 19 s"1. Strains determined by the three methods were 
compared. It has been shown that the dynamic strain of HIPS evaluated by the optical 
extensomenter is in a good agreement with the one by the strain gauge in an elastic region and that 
beyond the elastic limit the latter exhibits much smaller values and breakdowns halfway. 
High-speed photography provided strains in a good agreement with those by the optical 
extensometory up to a strain of around 13 % when fracture took place. High-speed photography 
also revealed that during impact there was little torsional rotation of the specimen which could have 
caused significant errors in the optical measurement. It is concluded that the optical-fiber 
extensometer can accurately measure large deformation under high-speed loading and that it can be 
an apparatus to calibrate performance of strain gauge measurements on soft materials like polymers. 

1. INTRODUCTION 

Mechanical properties of polymers strongly depend on time and temperature influenced by their 
viscoelasticity. As for the structural materials under high-rate loadings, it is important to know 
mechanical properties such as Young's modulus, strength, toughness, strain at fracture and fracture 
energy under dynamic situations. However, this is not easy because of a technical difficulty 
involved particularly in large dynamic deformation measurement. Use of strain gauge is a typical 
method for strain measurement of a material under impact loading. However, in most polymers, 
fracture initiates at an edge of gauge adhered on the specimen surface even if its strain at fracture is 
smaller because the gauge edges become stress-concentrated cites. Therefore, strain at fracture is 
mostly underestimated. When polymers are ductile and undergo large deformation under impact 
loading, problems are much significant with the strain gauge measurement. Deformation can go up 
to a region where the gauge can not operate any more. For this reason, use of non-contact devices is 
preferable for large strain measurement of polymers under not only static but also dynamic loading. 
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Recently Beguelin et al. [1] have developed an optical extensometer for quasi-non-contact 
measurement of deformation, where a distance between optical fibers slightly bonded on a 
specimen surface is monitored by a position sensing detector (PSD). The features of this 
extensometer are as follows: (1) effect of bonded fibers on mechanical properties of a material can 
be ignored because they are thin and light. Fracture does not occur at bonding points, (2) the 
extensometer can be used for large strain measurement under dynamic load. Frequency 
characteristics of the extensometer were explored by Mada et al. [2] utilizing the simulated optical 
source movement and it predicts that the electronic response is as high as 100 kHz. However, its 
actual feasibility has never been studied for evaluation of large strain under impact loading. 

In this paper, dynamic characteristics of the optical extensometer were examined on actual 
ductile polymer specimens using different methods; strain gauge measurement and high-speed 
photography. Effect of the fiber bonding on a specimen as well as the rotating movement of a 
specimen during dynamic loading was also explored. 

2. OPTICAL-FIBER EXTENSOMETER 

2.1. Tensile Impact Tests 
An in-laboratory constructed optical-fiber 

extensometer [2, 3] and a tensile impact 
apparatus [3] were used in the present study. 
Rubber-toughened polystyrene HIPS was 
employed as a specimen material. HIPS pellets 
were injection-molded to form dumbbell type 
specimens, as shown in Fig. 1. 

Fig. 2 shows a schematic diagram of a 
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Fig.l. Specimen geometry. 

falling weight type impact tensile test machine [3]. A falling striker, 10 kg in mass, impacts on a 
lower crosshead (the shaded portions in the Figure). The impacted lower crosshead applies a tensile 
load on a specimen at a high speed corresponding to the preset height of the mass. A piezo-electric 
load cell connected to an upper crosshead measures impact load. A rubber sheet of 8 mm thickness 
is placed on the impacted surface of the lower crosshead to reduce vibration noises. 

1: Striker 

2: Rubber sheet 

3: Piezo load cell 

4: Specimen 

Fig.2. Impact tensile test machine. Fig.3. Optical-fiber extensometer. 
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2.2. Optical-Fiber Extensometer 
A schematic diagram of an optical-fiber extensometer is shown in Fig. 3. Two fibers of diameter 

250 p.m are put on a gauged portion of a specimen with a thin adhesive tape. Laser light emitted 
from the end of fiber passes through a prism and is focused on each of PSDs. Details of the 
extensometer can be seen in Refs. 2 and 3. The distance between two fibers in advance of loading is 
25 mm. 

2.3. Strain Measurement 
Dynamic performance of the optical as well as load measurement for a HIPS specimen is shown 

in Fig. 4. The strain rate is 19 s"1. Displacements of the two fibers and load from the piezo-electric 
load cell are given as a function of time. It is noted that time derivative of the upper fiber 
displacement, i.e., velocity, greatly decreases around at the yielding point. In contrast, the velocity 
of the lower fiber exhibits only a small change. This is rational because plastic deformation is 
produced mostly in the gauge portion between the upper and lower fiber. Elongation is obtained by 
subtracting upper fiber displacement from lower fiber displacement. The four signals exhibit sudden 
changes around at t = 4 ms, when fracture occurred. 

Fig. 4. Simultaneous measurements of displacements of the fibers and 

load under a strain rate of 19 s"1. 

Fig. 5 shows a stress-strain curve derived from the result in Fig. 4. Mechanical properties of the 
material can be well estimated from this curve. Young's modulus, strength, strain at fracture and 
fracture energy are 2.3 GPa, 50 MPa, 0.17 and 3.6 J, respectively. The elastic limit is at a strain of 
0.025. Stress thereafter is almost constant. 

3. COMPARISON WITH STRAIN GAUGE MEASUREMENT 

Two optical fibers and a strain gauge of 5 mm in length are put on a HIPS specimen for 
simultaneous comparison of the strain measurement. A strain gauge amplifier used in this 
experiment has a frequency response of 200 kHz. According to a catalogue, the strain gauge is 
capable of measuring a strain up to 15 % under static loading. Fig. 6 shows strains obtained from 
the two methods together with the piezo output as a function of time. The strain rate is 19 s"1. Strain 
evaluated by the extensomenter is in a good agreement in an elastic region with the one by the 
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Fig. 5. Stress-strain curve obtained from the results in Fig. 4. 
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Fig. 6. Comparison of strain measurements using the optical-fiber 
extensometer and strain gauge. 

strain gauge. However, the difference becomes larger as deformation proceeds from the elastic limit 
due to lower estimation in the strain gauge measurement. This is considered mainly because an 
adhesive used to bond the strain gauge onto a specimen surface has a modulus higher than that of 
the specimen, which should put restraint upon specimen deformation underneath the gauge. It is 
noted therefore that this quasi-non-contact optical extensometer can be a calibration device to check 
performance of a strain gauge on polymeric materials if its performance is confirmed by high-speed 
photography. 

4. COMPARISON WITH MEASUREMENT BY HIGH-SPEED PHOTOGRAPHY 

4.1. High-Speed Photography 
For the above-mentioned reason, high-speed photography was carried out using a Cranz- 

Shardin type high-speed camera [4]. The camera is equipped with 30 spark gaps (see Fig. 7 (a)). 
Light rays from each gap are focused on a corresponding lens (see Fig. 7 (b)). An optical setup is 
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Concave reflector 

Lens 
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Fig. 7. Cranz-Shardin type high-speed camera: 

(a) Spark gaps, and (b) Lens box. 

Fig.   8.   Optical   setup   for   high-speed 

photography. 

shown in Fig. 8. A series of 30 frames can be taken through photography with an exposure time of 
450 ns (half width) for each spark. The time interval between adjacent frames is 80 us in this study. 

4.2. Simultaneous Measurement 
High-speed photography was carried out together with the strain measurement by the optical- 

fiber extensometer. Fig. 9 shows selected photographs from successive 30 ones for a HIPS 
specimen loaded under a strain rate of 19 s"1. Fibers on the specimen are visible. It is noted that 
there is little torsional rotation of the fibers during the impact and that fibers are fixed on the 

Before impact 0.08ms 0.48ms 0.88ms 

1.28ms 1.68ms 2.08ms 2.16ms 

Fig. 9. High-speed photographs of a HIPS specimen under strain rate of 19 s"1 (The 

arrows indicate ends of fibers where laser lights were emitted to PSD detectors). 
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specimen firmly. Strains are obtained by measuring the distance between the fibers on the 
photographs. Fig. 10 shows results of strain measurements by the two methods. They agree quite 
well with each other. The maximum strain of around 13 % is obtained from the extensometer and 
high-speed photography with a time to fracture of about 2.05 ms. Periodic noises on the strain 
signal from the extensometer are due to sparks of the camera and these can be a good time base in 
the comparison of deformation measurements. 

1.5 2 
Time (ms) 

Fig. 10. Comparison of strain measurements using the optical-fiber extensometer and high- 

speed photography (The open circles represent strains measured by high-speed photography). 

5. CONCLUSIONS 

Actual reliability of the optical-fiber extensometer was examined for HIPS tensile specimens 
under high-speed loading by comparing its performance with those of strain gauge measurement 
and high-speed photography. Results indicate that the extensometer functions satisfactory for 
measurement of large deformation under high-speed loading and that it can be used for calibration 
of strain gauge measurement on soft materials like polymers. 
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ABSTRACT 

Material damages after a low-velocity impact on a woven glass-fiber/epoxy PMC(polymer 
matrix composite) were investigated. The initial development, and the extent of induced material 
damages were measured after a variety of drop-weight impacts. The retained post-impact residual 
mechanical properties were evaluated. The mechanical properties were found to decrease gradually 
with the successive number of impacts. The ultrasonic flaw scanner results were analyzed with the 
measured mechanical properties. The material property degradation appeared to be initiated mostly 
by brittle matrix cracking followed by crack propagation. 

1. INTRODUCTION 

PMC(Polymer matrix composites) have many advantages over monolithic metal or polymers 
such as high specific strength, high specific stiffness and resistance to corrosion and fatigue[l,2]. 
PMC have been applied to many mechanical and automotive components including bumpers, 
autobody frames, and car-seats, requiring more sturdiness and lower weight than ever. 

Common types of reinforcement in PMC include unidirectional, angle ply, or woven fabric 
fibers in polymer matrix materials. The PMCs, unlike soft metals showing local plastic 
deformations at the surface, tend to dissipate impact energy by inducing material internal damages 
when impacted. The types of damage[2] include delamination, matrix cracking, fiber/matrix 
debonding, and/or fiber fracture. The impact damages usually occur within a short period of time, 
and the combined material damages are difficult to distinguish. 

In order to accomplish light-weight structure and components, materials need to be used 
minimally, and thus the dimensions of the material become smaller and thinner. As the strength of 
the PMCs becomes an important property to posess, the retained property of the composite after 
low-velocity impact[3,4,5] needs to be known thoroughly in order to provide safety and reliability 
for the use of the material. Especially, the impact on the composites is prone to be repetitive in 
nature before complete repair[6] and replacement can take place. 

Therefore, the present study investigates the mechanial properties retained after single and/or 
multiple impact loading on the composites selected. The retained elastic moduli of the composites 
were measured by the 4-point bending method. The data were analyzed as a function of impact 
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energy and impact times. Through observations of impact history and property change, the type of 
material damages were determined. 

2. EXPERIMENTAL PROCEDURE 
The Dynatup-impact testing machine was used in the present study, and is schematically shown 

in Fig. 1. The impactor was hemispherical with a diameter of 12.7mm. The set-up was composed of 
a stop block to avoid secondary impact, a fixture to hold the specimen by hydraulic pressure, and a 
guided post. The energy can be adjusted either by a change of drop-height or a change of drop- 
weight. The change of height was chosen in the present study. The impact force versus deflection 
curves during impact were obtained with piezoelectric sensor attached at the impactor tip, and the 
signal was sent to a PC, and processed with software provided by the Dynatup. 

HE 

Fig. 1. Schematic of experimental setup for the drop-weight impact test 

Figure 2. shows the schematic of the ultrasonic A and C-scan test to explore the internal 
damages of the composites after impact. The set up includes (1) a scanner with transducer, (2) a 
motion control drive module, (3) a motion-controlling PC to guide transducer's direction and 
velocity, (4) data acquisition and analysis PC. 

.1 W 

171 

l> 

M, 

Fig. 2. Schematic of ultrasonic material damage scanner 
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The fiber/matrix system used in the present study was a glass fiber woven/epoxy matrix 
supplied by the Korea-fiber company. The composite was sectioned to be 100 *100 mm for each 
impact test. The preliminary impact test indicated the composite was perforated after more than 32 
impact times under 6.5 joule. In order to provide comparisons among damages, three different 
levels of impact energy was predetermined to be 3.2, 5, and 6.5 joules. The composites were then 
impact damaged sequentially. 

In order to avoid any parasitic edge damage induced during sectioning, only a 50*50 mm area 
was examined under the ultrasonic tester. The averaged data with at least 3 times of measurement 
were taken as the final data. 

The ultrasonic A-scan provided an attenuation ratio for the impacted composites, reflecting the 
degree of internal damages with impact. The ultrasonic C-scan measured the impact damaged areas, 
and they were examined as compared with that for the virgin specimen. The retained moduli, 
indicating the stiffness change, were measured by the 4-point bending method under the crosshead 
speed of 1.5mm/min. The bending fixture was made based on ASTM D790-792, and the inner and 
outer span for the bending method were 25 and 76mm, respectively. 

3. RESULTS AND DISCUSSION 

3.1 Impact History 
Figure 3 shows the force versus time curve under 3 different levels of impact energies(3.2, 5 and 

6.5 Joules) under single impact. The higher impact force for 6.5J can be seen as compared to that 
for 3.2J. The curve obtained after the impact of 6.5J shows a conspicuous variation at the peak load, 
which is unseen for curves for 3.2J, which is considered to be an indication of substantial material 
damage such as brittle matrix cracking and/or delamination during impact. 
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Fig. 3. Force and time curves under different impact energy level 

Fig. 4 shows the force and time curves under 2 different impact levels up to 30 impacts. No 
prominent change among the curves can be seen for the impact energy of 3.2 Joule, illustrating the 
presence of an impact fatigue threshold. The accumulated impact damages under 3.2 Joule can be 
considered to be minimal based on the measurements. As the level of impact energy increased from 
3.2 to 6.5 Joule, the curves showed discrepancies with the successive number of impacts. In 
addition, the initial slope of the time versus force curves tends to be decreased, which can be 
considered as the progressive accumulation of material damages. The repetition of higher impact 
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energies also showed a larger reduction of the slope representing a larger accumulation of material 
damages. 

Time(ms) 

(a) 

3        4        5        6        7 

Time(ms) 

(b) 

Fig. 4. Force and time curves under repetitive impacts under 
(a) 3.2 J, (b) 6.5Joules 

3.2 Evaluation of Material damage by ultrasonic Test 
Figure 5 shows the attenuation change of the ultrasonic A-scan result under different levels of 

impact on the composites. The extent of cracking can be regarded with the increase of the 
attenuation ratio on the composites. The composites showed an almost linear increase of attenuation 
with the increase of impact energy. The increase of the attenuation ratio suggest that the density of 
the impact-induced brittle matrix-cracking tends to increase with the increase of impact energy 
levels. 

5 10 15 
Impact energy(J) 

20 

Fig. 5. Variation of attenuation ratio with increasing impact energy level 

Figure 6 shows a typical ultrasonic C-scan image measured for the composite after a single or 
multiple impacts. The internal circular core represents the damaged area as compared with the 
surrounding undamaged matrix area[7,8]. The circular damaged shape remained to be almost 
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circular with multiple impacts, with the proportional increase of the contact area. 

Fig. 6. Typical ultrasonic C-scan image showing internal material damage 

3.3 Retained Mechanical Property 
Figure 7 shows the change of the flexure modulus of composite materials, as compared with the 

baseline for the undamaged sample, after a single impact. The decrease of the flexural modulus with 
an increase of the impact energy indicates the increase of internal material damage with impacts. 
The modulus reduction of the composite impacted decreased gradually with the increase of impact 
energy. The change of reduction was smaller at lower impact energy levels, suggesting the impact 
fatigue threshold. The modulus of the composite after 6.5J decreased from 27.5GPa down to 25Gpa, 
which corresponded to nearly 10% from that of a virgin. The damage is considered to be severe 
matrix cracking and/or delamination[9] of the laminates. 

5 10 15 

Impact energy(J) 
20 

Fig. 7. Change of the flexural modulus with the change of impact energy 

4. CONCLUSIONS 
The following conclusions were drawn based on the impact tests on woven glass fiber/epoxy 

composites up to 30 times of multiple impact loading. The damages reflected by the retained 
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modulus for composites impacted under 3.2 Joule were neglible up to 30 times, indicating the 
presence of an impact fatigue threshold. As the level of impact is increased, the extent of the 
damage also increased and accumulated. The damages appeared to have been initiated by brittle 
matrix cracking followed by the increase of matrix crack density within the composite laminates. 
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ABSTRACT 

The shadow spots, which are obtained by using the optical method of caustics to experimentally 
determine dynamic stress intensity factors, are usually interpreted on the basis of an elastic model. 
In this paper, an attempt is made to consider the effect of crack-tip plastic field about the elastic- 
plastic materials, and dynamic fracture toughness of Y4 steel is measured by means of the reflective 
caustics using typical three point bending specimens. This method also is applied to determine the 
dynamic fracture toughness of cement blocks with some mix designs. 

1. INTRODUCTION 

The shadow spot method has been a powerful tool to experimentally determine dynamic 
fracture properties of materials, since expanded by Kalthoff and his colleagues [1] to the dynamic 
fracture process in 1976. Commonly the application of this method for measuring the intensity of 
stress fields around crack tip is underlying the field of linear elastic fracture mechanics. For cracks 
in ductile steels, elastic relations need to include the plastic effect near crack tip field. 

The plastic analysis about the elastic-plastic stress strain field around the crack-tip is 
complicated, because the elastic-plastic qualities of ductile materials are quite different. Theocaris 
[2] first introduces the corn region concept, in which the effect of the non-linear elastic or plastic 
zone surrounding the crack tip is included, and he solves the elastic-plastic fracture problems by 
this concept [3]. 

In this paper, by means of the reflective type of dynamic caustics, an attempt is made to 
evaluate the dynamic fracture toughness of high strength Y4 steel and some reinforced cement 
blocks. For a propagating crack, the experimental results show that the stress intensity factor and 
crack tip speed undergo abrupt changes during the growth process. Furthermore, the dynamic 
fracture toughness can be determined. If the heat processes of Y4 steel have a little difference, the 
material behaviors investigated by the shadow spot method will differ in the dynamic fracture 
toughness. To the reinforced cement blocks, we compare and analyze the influence of dynamic 
fracture toughness about the different mix designs under impact loading. 

2. STRESS INTENSITY FACTOR DETERMINED BY DYNAMIC CAUSTICS 

Consider a group of parallel light rays incident on the reflective surface of a pre-cracked 
opaque plate under tensile stress, due to the stress concentration at crack tip the thickness of the 



302 Fracture and Strength of Solids 

specimen is reduced, they are deflected outwards when they are reflected from the deformed surface. 
As a consequence, on a reference screen positioned parallel to the specimen surface and with a 
distance z0, a relatively dark region (the shadow spot) is observed which is bordered a bright curve 
(called caustic curve). According to geometrical optics, the position of image point on the screen 
will depend on the slope of the reflecting surface at corresponding point. The mapping relation is 
not invertible for those points lying on the caustic curve, and the Jacobian determinant of the 
transformation must vanish at the points that map into the caustic curve. The locus of these points 
on the object plane is defined as initial curve in which mapping onto the reference plane is caustic 
curve. 

For a mode I crack in static state, we can obtain that the initial curve is a circle with the radius 
r0 around the crack tip, and can determine the stress intensity factor by the maximum diameter of 
the caustic curve. 

For a stationary crack subjected to a dynamic loading, the stress distribution near crack tip 
field is the same as for a statically loaded crack, but the stress intensity factor becomes a function of 
time. For a propagating crack the near-field stress distribution differs from that stationary one due to 
inertia effects. However, Freund [4] has given the solution in this case with an instantaneous crack 
velocity, and SIF evaluation formula for mode I crack becomes 

KfO)     2^F 

3dz0\Cf\ 2K 
10 sin — 

5 

5/2 

(D(t)f2 (1) 

where d is the specimen thickness; Cf is the optical constant in reflective case; and D is the 

maximum diameter of the caustic curve. Eq.l for a propagating crack is the same as that for a 
stationary crack except for a correct factor F(v). This factor F as a function of crack velocity v 
can be accounted, and the result demonstrates that the factor F is less than 1, but for practically 
relevant crack velocities it is nearly equal to 1. 

The size of shadow spot is not only concerned in varying the external load, the optical and 
mechanical parameters of the experimental arrangement and the specimen, but also in varying the 
radius of the initial curve r0. Theocaris and Petron [3] indicate that the stress intensity factor 
measured by the shadow spot will be constant, when the initial curve position at a certain region on 
the plate surface, so it is accurate. If the initial curve is outside (or inside) this region, the value of 
SIF calculated by the caustic curve is larger (or smaller) than the accurate one. 

For elastic-plastic material, if the influences of the local plasticity and non-linear elasticity 
stress statement are considered, this is usually achieved by settling the optical arrangement for 
satisfying the initial curve outside the plastically deformed region. Rosakis and Freund [5] find that 
the error introduced through the neglect of plasticity effects in the analysis of caustic curve data will 
be small, as long as the distance r0 is more than about twice the plastic zone size. 

If we assume that the crack propagating onset at timer with a constant velocity v, there will be 
a group of stress wave spreading abroad instantly from crack tip during fracture process. Consider 
the dynamic properties of crack propagation, dynamic K control field at time t* will be established 
within the region around the crack tip with radius r [6], as follow 

r«(f*-r)(C,-v) = £ (2) 

where Cs is the shear wave velocity of material. 
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3. EXPERIMENTS 

The specimens used in this investigation are of the single edge crack configuration commonly 
known as the three-point bending beam of high intensity Y4 steel. The heat treatment of Y4-1 steel 
is performed by an' oil quench at 1100°C and a temper to 630°C +610°C, each step for 2 hours; and 
Y4-2 steel is treated similarly except for the oil quench at 1150°C and the temper to 650°C +630°C. 
The material behaviors determined experimentally under the same as impact loading for fracture are 
shown in Table 1. The final specimens of size 200x40x6mm with initial notches of 8mm are struck 
by a hammer of 15kg at a height of Im. An Al film of 0.03mm thickness is glued onto the specimen 
surface by a mirror transferring method for increasing the reflective index. In these experiments, we 
separately employed fifteen specimens for measuring the dynamic fracture toughness of Y4 steel 
under the same as drop weight loading. 

Table 1 Dynamic material constants of Y4 steel 

Material 
Elastic Modulus 

Ed (GPa) 
Poisson's Ratio Optical Constant 

Cf (xl0"10m2/N) 
Shear Wave Velocity 

C, (m/s) 

Y4-1 244.4 0.342 -0.0140 3434 
Y4-2 244.6 0.347 -0.0142 3424 

In these experiments, the optical arrangement shown in 
Fig.l is used in the dynamic method of shadow spot in 
reflective case for reducing the oblique angles of light rays. 
In order to photo the shadow spots clearly, the 16 sparks of 
Cranz-Shardin type camera are modified to point sources. 
Otherwise, the lenses of optical field and camera are also 
instead by longer focus length ones, so that the distance z0 

between the specimen and the reference plane can be 
changed in a large region. Here the distance z0 is set 700mm. 

The application of the shadow spot method for 
determining dynamic fracture properties of Y4 steel has been 
performed. The typical shadow spot patterns of Y4 steel 
recorded during dynamic fracture process are shown in Fig. 2 
and 3. From these shadow spot patterns, the dynamic stress 
intensity factor and the position of crack tip can be plotted as 
functions of time t in Fig. 4. The time x of crack onset 
measured from the a(t) curve in Fig. 4 is 47-5 8 |is for Y4-1 
steel and 67~85|is for Y4-2 steel. After the crack has become unstable, the crack velocity steadily 
increases up to a rather high value of 760~780m/s for Y4-1 steel and 740~800m/s for Y4-2 steel. 
The critical stress intensity factor at the onset of crack propagation, i.e. the dynamic fracture 
toughness Km, is about 18.6~21.7MPa-m1/2 for Y4-1 steel and 31.0~40.9MPa-m1/2 for Y4-2 steel. 

In addition, we also utilize the dynamic shadow spot method to determine the dynamic fracture 
toughness of cement blocks with some mix designs utilized in oil industry for improving mechanics 
behaviors. The mix designs and dynamic properties of reinforced cement blocks under impact 
loading are measured and shown in Table 2. 

Similarly, the cement block is machined into the three point bending beam of the single edge 
crack with a mirror surface, and is performed the dynamic caustic test underlying a drop loading. 

S: light source;   F: field lens; 
M: model;    H: half mirror; 
L: camera lens;   I: image 
R: reference plane; 

Fig. 1 Optical arrangement 
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The optical system is arranged to set the distance z0 of 600mm. From the shadow spot patterns 

recorded by the high-speed camera during the dynamic fracture process, K^ft) and a(t) curves 

can be calculated by Eq.l and plotted in Fig. 5 (for 3* material). The dynamic fracture toughness 
K,D obtained on an average of fifteen specimens for each material is shown in Table 2. 
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Fig. 4 K^O) and aft; curves of Y4 steel 

4. RESULTS AND DISCUSSION 

If rp indicates the size of the plastically deformed region, we measure rp within 0.08~0.20mm 

for Y4-1 steel and 0.20~0.40mm for Y4-2 steel after fracture process. Consider the time t' of 
spending lus after the crack onset, i.e. t* = r +1, the variable parameter £, can be evaluated about 
2.65~2.67mm for Y4-1 steel and 2.62~2.96mm for Y4-2 steel. According to the distance z0 set 
700mm, the initial curve will be settled to satisfy the condition as follow 

2^ < r0 < 4 
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So, the applicability of the shadow spot method for determining dynamic stress intensity factor has 
been demonstrated, and the experimental results are reliable and valid. 

Table 2 The mix designs and dynamic properties of cement blocks 

Material 
Number 

Mix Design Elastic 
Modulus 
Ed (GPa) 

Poisson's 
Ratio 

KID 

(MPam1/2) CF(%) JR(%) Asbestos(%) Sxy(%) 

1 0.2 19.72 0.196 0.1557 
2 1.0 0.5 22.42 0.234 0.3596 
3 0.7 15 0.5 10.76 0.207 0.5468 
4 0.7 20 0.5 8.17 0.236 0.5208 
5 1.0 20 0.5 10.38 0.215 0.5746 
6 5 2.5 17.26 0.193 0.5998 

Note: CF: carbon fiber; JR: jelly rubber; Sxy: scatter. 

From Table 1 we can notice that the mechanics properties of these two Y4 steels are quite 
similar, but the dynamic fracture behaviors have obvious difference. Compare to Y4-2 steel, the 
time of crack onset for Y4-1 is earlier and dynamic fracture toughness is lower, but the crack 
velocity is in agreement and all near constant. Otherwise, K^ (t) curves indicate that the peak of the 
curve of Y4-1 steel is occurred at the onset time of crack propagating, but the curve of Y4-2 steel 
will continue increasing. As a conclusion, the higher temperature of temper during the heat 
treatment is used, the better dynamic fracture toughness is. 

According to the results of Table 2, we find that the cement block reinforced by carbon fiber 
only can enhance the material intensity more obviously but not the fracture toughness. If the cement 
block at the same time reinforced by jelly rubber, the dynamic fracture toughness can be improved 
in company with the volume of jelly rubber increasing. Therefore, 5* material has very good 
mechanics properties. The other mix design is reinforced by asbestos, and the cement block has a 
good fracture behavior too. Consider the value of carbon fiber is expensive; the better mix design is 
6* material since asbestos is more cheaply. 
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ABSTRACT 

A specific experimental method, the Split Hopkinson Pressure Bar (SHPB) technique has been 
constructed to determine the dynamic stress-strain relationships for composite materials under the 
impact compressive loading conditions with strain-rate of the order of 103/s. The dynamic stress- 
strain behaviors are estimated by using the strain output from the gages attached on the incident and 
transmitted bars in the SHPB technique. Both the dynamic compressive maximum stresses and 
pseudo dynamic moduli of the tested composite materials are found to be highly sensitive to the 
strain rate. Furthermore, a bilinear relationship between the dynamic compressive maximum 
stresses and the log strain rate is noted. 

1. THEORY 

1.1 Basic Principle and Assumption 

Pochhanmmer and Chree solved the longitudinal and radial inertia effect[l,2] of a specimen 
perfectly contacted with the bars in SHPB experiment. An important character of the stress wave in 
the bar is that its longitudinal wave propagation velocity may be changed by its wavelength [3]. 

Even though the specimen deforms uniformly, errors by the longitudinal and radial inertia 
generated by the sudden particle acceleration in high strain rate have to be compensated by 
following equation [4,5]. 

o(t)=*m(t)+AL2/6-tf/q^        (i) 

Where, om, p, v and d are the measured stress, the specimen density, the Poisson's ratio, the 
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specimen length and the specimen diameter, respectively. From Eq. (1), L/D ratio of the specimen 
should be chosen by Eq. (2) to remove inertia effects on the measurable quantities. 

L_ 

D 

3v_ 
(2) 

1.2 The Stress-Strain Rate Determination by SHPB 

In the conventional SHPB, specimen is located in between the incident and the transmitted 
bars. When the striker bar of density, p0, impacts the incident bar with velocity, V, the magnitude 
of stress wave generated in the incident bar will be about poCV/2. By signals from strain gages 
bonded on the both bars and one-dimensional elastic wave propagation theory, time dependent load 
and strain rate can be determined. Fig. 1 shows a schematic diagram of a specimen and propagation 
behavior of elastic stress waves for the SHPB test. 

strain gage A strain gage B 
| specimen 

■        • a— 1 
striker        incident bar transmitted bar 

Si: incident strain, sR: reflected strain 
ST : transmitted strain 

Fig. 1 A schematic diagram of specimen and elastic stress waves for the SHPB test (the subscript I, 
R, and T refer to the incident, reflected and transmitted pulses, respectively). 

The stress pulse is assumed to be a non-dispersive elastic wave comparing the incident and 
transmitted pulse shapes. The stress and strain in the specimen can be obtained in terms of the 
recorded strains of the two bars as 

= E(—-)sT specimen -    \    . (3) 

specimen 'T^)*** (4) 

Where, E, A, and Co are the elastic modulus, the cross-sectional area and the longitudinal wave 
speed of the incident and transmitted bars, respectively. L and As are the length and the cross- 
sectional area of the specimen, respectively. 
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2. EXPERIMENT 

2.1 SHPB Facility 
In this study, the incident, transmitted and striker bar are made of SM45C whose yield stress is 

490MPa. The length and the diameter of the striker are 300mm and 16mm(same size as the incident 
and transmitted bars), SHPB apparatus and striker bars are shown in Photo. 1. 

Photo. 1 SHPB facility and Striker bars of length 300mm with 16mm diameter. 

2.1.1 Straight-Line Guider and Stopper 
One of the most important things of the apparatus is the straight-line guide so that the stress 

pulse can propagate in one dimension. After fine grinding an I-beam, the bars are setup on the beam 
by using the fine bearing system. 

2.1.2 Velocity and Wave Measurement System 
To measure the velocity, three photo sensors are located at the distance of 50mm in the end of the 

gun barrel. When the striker cuts the light of the photo sensors, an oscilloscope, Nicolet 410, gets 
electric signals. By the strain gages bonded on the middle of the bars, the stress pulse can be 
obtained. 

2.2 Specimen Material 
The specimen numbers 1001, 350 and 325 stand for Vinylester Resin, Isophtaric Resin and 

ORTHO Resin(G-type), respectively. The static mechanical properties of three Resin material 
specimens are HOMPa of bending strength and 63MPa of tensile strength at 20°C. The schematics 
of the specimen used for this study is shown in Fig. 2 
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Fig. 2 Specimen geometry (Woven state schematics). 
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3. EXPERIMENTAL RESULTS 
The typical signal outputs from strain gages attached on incident and transmitted bars are shown 

in Fig. 3. It is noted that the superposition of the reflected and transmitted waves are almost the 
same as the incident waves. 
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Fig. 3 A typical signal output from incident and transmitted bar in SHPB experiment. 

The velocities of the striker bar(300mm) impacting the incident bar are 15, 20 and 25m/s, 
respectively. The relationships between the strain rates and the maximum compressive stresses are 
shown in Fig. 4. It is also noted that the maximum stresses of the tested materials are highly 
dependent on the strain rates. 
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Fig. 4(a) Dynamic compressive maximum stress vs. log-strain rate for 1001P. 
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Fig. 4(b) Dynamic compressive maximum stress vs. log-strain rate for 325P. 
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Fig. 4(c) Dynamic compressive maximum stress vs. log-strain rate for 350P. 

Fig. 5 shows pseudo dynamic elastic moduli estimated by the initial slope (da /ds) of the 
experimentally determined dynamic stress-strain diagram. As a result, pseudo dynamic elastic 
moduli are found to be highly sensitive to the strain rate. In the figure, it is noted that 
325P(Isophtaric Resin) and 350P(ORTHO Resin) are more sensitive than 1001P (Vinylester Resin). 
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Fig. 5(a) Pseudo dynamic elastic modulus of 1001P under high strain rate loading conditions. 
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Fig. 5(b) Pseudo dynamic elastic modulus of 325P under high strain rate loading conditions. 
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Fig. 5(c) Pseudo dynamic elastic modulus of 350P under high strain rate loading conditions. 

4. CONCLUSIONS 

The dynamic deformation behaviors of the composite materials are estimated by using SHPB 
techniques and the results are obtained as follows; 

1. The dynamic deformation behaviors of tested composite materials are found to be very sensitive 
to the dynamic strain rate of the order of 103/sec. It is noted that a relationship between maximum 
compressive stresses and the log strain rate is bilinear as commonly appeared for engineering 
metallic materials. 

2. Pseudo dynamic elastic moduli of the tested composite materials are also found to be sensitive to 
the strain rate of the order of 103/sec. 
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ABSTRACT 
To investigate and visualize extremely fast transient dynamic fracture phenomena, the authors 

and coworkers have developed an experimental system together with an ultra-high speed camera 
system, synchronized laser systems, and various trigger systems. This paper presents the high- 
speed photography system, and experimental results for (i) mixed-mode impact fracture, (ii) impact 
interfacial fracture, and (iii) dynamic branching fracture. For each dynamic fracture phenomenon, a 
series of high-speed photographs, dynamic fracture histories, variations of fracture parameters such 
as the dynamic J integral and dynamic stress intensity factors are presented. Governing mechanisms 
of such dynamic fracture phenomena are also presented. 

1. INTRODUCTION 
Dynamic fracture can broadly be classified into "impact fracture" and "fast fracture". In any 

case, dynamic fracture phenomena are extremely fast transient. To investigate and visualize such 
transient phenomena, a high-speed photography system is needed. Understanding of the 
mechanisms governing various dynamic fracture phenomena is necessary for developing dynamic 
fracture mechanics aimed at sound design methodology assuring the integrity of structures. 

In dynamic fracture experiments, we sometimes observe curved cracks, kinked cracks, and 
branched cracks. Those types of cracks suggest an important role of mixed-mode state during 
various dynamic fracture processes. In those phenomena, the dynamic stress intensity factors may 
become the basic data for the prediction of fracture path. Those data are important for the 
assessment of structural integrity against the final overall failure of structures. The knowledge on 
the mechanism of dynamic crack growth may also become useful in the assessments of 
manufacturing controllability as well as of structural integrity for brittle materials, such as 
composite materials, ceramics, and rocks. 

Among the experimental techniques for the measurement of stress intensity factors, the method 
of caustics has many advantages, for example, the simplicity of equipment and measurement, and 
applicability to static and dynamic crack problems. This method can also be applied to opaque 
materials such as metals. For the above reasons, the method of caustic has been used to measure 
static and dynamic stress intensity factors in many cases (see, Theocaris [1], and Beinert and 
Kalthoff [2]). Nishioka and Kittaka [3] have established an exact theory and proposed a new 
procedure for the determination of mixed-mode dynamic stress intensity factors from the overall 
dimensions of the caustic pattern. 

This paper provides a summary of recent experimental studies on various dynamic fracture 
phenomena, using the high-speed photography system. 
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CAMERA 
CONTROLLER 

Fig. 1 Optical system for transmitted caustics 

2. HIGH-SPEED PHOTOGRAPHY SYSTEM 
In the present experiments, high-speed 

photographs of the caustic patterns were taken by a 
laser caustic method which can be quickly 
synchronized to the onset of brittle fast fracture. A 
typical optical setup is shown in Fig.l. An Argon 
laser was used as the light source of the caustics. 

Since dynamic fracture and impact fracture are 
extremely fast transient phenomena, two types of 
trigger system for the optical system were devised. 
For brittle dynamic fracture under a static loading, 
a conductive paint line is placed around the initial 
crack tip. When the conductive paint line is broken 
due to the initiation of crack propagation, the trigger signal is 
sent to the acoustic optical modulator (see Fig.l). Contrary to 
this, for impact fracture under an impact loading, a trigger laser 
beam is set just above the site of impact loading. When the 
trigger beam line is intercepted by the impact rod, the trigger 
signal is sent to the acoustic optical modulator. 

Then, the direction of the laser beam is changed in an 
extremely short time. The laser beam reaches an ultra-high speed 
camera,   passing   through   the   specimen   (see   Fig.l).   The    Fig.2 Ultra-high speed camera 
photograph of ultra-high speed camera is shown in Fig.2. This camera is capable of taking 80 high- 
speed photographs with the maximum framing rate of two million frames per second. 

3. EXPERIMENTAL EVALUATION OF DYNAMIC FRACTURE PARAMETES 
In order to determine a dynamic fracture parameter such as the dynamic J integral [4] by the 

caustic patterns, the crack velocity must be evaluated first since the caustic pattern depends on the 
crack velocity. The crack velocity can be determined by a series of high-speed photographs. Thus 
we have to determine the crack-tip locations within the dark spots. We 
have devised an accurate procedure for determining the crack-tip 
locations within the caustic patterns [3,5]. 

The crack-tip location measured from the extreme point A (see Fig.3) 
in the x' direction is denoted by Wx 

max. Then this can be related to the 
maximum diameter D in the y' direction [3], and to the size of D; in the 
x' direction (Äw) as follows: 

W?ax = kD (1) 
Wj?" = k/Pi (2) 

where k and k, are crack-tip location factors. The values of the crack-tip 
location factors are listed in Table 1, for the 

Fig.3 Mixed-mode 
caustic pattern 

Table 1 Crack-tip location factors (mode D normalized crack velocity by the shear wave 
velocity Cs. It is seen that the k, remains 
almost constant for all range of crack velocity. 
This is extremely convenient in determining 
the  histories   of crack   length  and   crack 
velocity. For a mixed-mode caustic pattern, the crack tip location factor k slightly depends on the 
crack velocity, and is independent of the state of mixed-mode [3]. 

The stress intensity factors can be expressed by the characteristic dimensions, D and Df18*. 

ß=c/cs 0.0 0.2 0.4 0.6 0.8 
k 0.526 0.525 0.523 0.520 0.515 
k, 0.562 0.562 0.562 0.562 0.563 

k,/k 1.068 1.070 1.075 1.081 1.093 

Ki _21 
-3/2 

3N    / 1+0^ 
(D/6XC)}

; 5/2 
or Ki: .2L -3/2 

3N i 1+nr 
: {üf1** / 8/(C)}5/2,and KTT = <xK, (3.a,b,c) 
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where N=Co-h-z0-(2JC)"05, X is the magnification of the optical system, Co is the elasto-optical 
constant, and h is the thickness of the specimen- The parameters a 5 and 5; in the above equations 
can be determined by the sizes of caustic pattern D, DjFn, Df1^ and the crack velocity [3,5]. For 
the mode I case, 8(C) and 8^C) can be expressed in a polynomial series: 

5(C) = 3.1702 + 0.0964 ß - 0.1443 F + 1.4994 ß3 and 8<C) = (k/k,) 8(C). (4.a,b) 
Then the dynamic J integral components with respect to the crack-axis coordinates can be 

determined for the dynamic crack, as in [4,5]: 
J' ° = (l/2^){Ai(C)K? + An(C)Kfi} and J1 ° = - (l/u)Aiv(C)KiKn, (5.a,b) 

where Ai, An, and Aiv are functions of the crack velocity [4]. 

4. EXPERIMENTAL RESULTS 
Using the ultra-high speed photography system, Nishioka and coworkers have conducted 

experimental studies on various dynamic fracture phenomena. However, due to the page limitation, 
the following studies are not included in this paper. These are (a) three-dimensional dynamic 
fracture [6], (b) fast curving fracture [7,8], and (c) nonlinear (elasto-plastic) impact fracture [9]. 

4.1 Mixed-Mode Impact Fracture 
Three-point bend specimens of PMMA (Polymethyl methacrylate) were used for mixed-mode 

impact fracture test. The initial crack was placed along the center of the specimen. The impact load 
by a dropping rod (14.7 Kg) was applied at the off-center point, to induced a mix-mode state at the 
initial crack tip. The impact velocity of the rod was set as 5m/s. The loading eccentricity is defined 
as e=//(S/2) where / is the distance between the loading point and the centerline of the specimen, 
and S is the span of the supports of the specimen. 

The high-speed photographs of dynamically fracturing specimen under the loading eccentricity 
of e=0.1 are shown in Fig.4. In the photographs at t=123.7Hs to 143.7Us, the caustic patterns of the 
mode II (in-plane shearing mode) dominated type can be seen. At t=148.8Hs, the crack had already 
propagated for a short distance. Immediately after the fracture initiation, the caustic pattern rapidly 
changed to mode I dominated type. Then, the crack propagated toward the impact loading point. 

The caustic patterns due to the impact loading are always seen under the impact rod. This 
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Fig.4 High-speed photographs of mixed-mode impact fracture 
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implies that the specimen was always pushed after the impact 
loading. Thus the loading rod was in contact with the specimen 
throughout the fracture test. Crack propagation histories were 
measured by the caustics in the high-speed photographs. The 
maximum crack velocity observed was about 300 m/s. 

Figure 5 shows the variations of the stress intensity factors. 
In this case, the compressive longitudinal wave obliquely 
impinges to the crack tip at about 30Rs. After that, the Kn starts 
to manifest itself. The impact fracture occurred under shear- 
dominated condition. After the onset of dynamic fracture, the Kn 

values are almost completely zero. 
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Fig. 5 Stress intensity factors of 
mixed-mode impact fracture 

4.2 Impact Interfacial Fracture 
Most studies on interfacial fracture mechanics have been done under 

static conditions. Thus the establishment of dynamic interfacial fracture 
mechanics is one of the most important issues in the field of fracture 

mechanics. 
Figure 6 shows high-speed photographs for dynamic 

interfacial fracture in a bimaterial specimen consisting of 
aluminum and epoxy resin under impact loading. The crack 
started propagating at 63.3M-S. 

In most photographs for the propagating crack, narrow 
band shapes of caustic pattern are seen. One of these is 
magnified in Fig.7.  We believe that this  is the first 

Fig.7 Transonic caustic 
X = 0.46   ZO = 5.0m 
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Fig. 8 Simulated transonic caustic 
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Fig.6 High-speed photographs of dynamic interfacial fracture 
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observation of caustic pattern for a transonically propagating 
crack tip. To verify it, the formation of caustic pattern was 
simulated using a moving finite element method developed 
for transonic interfacial crack propagation [10,11]. The 
simulated caustic pattern is shown in Fig.8. The transonically 
propagating crack emanates the Mach shock wave from its 
tip, as shown in Fig.9. The angles of Mach shock waves in 
Figs.7 and 8 agree excellently. Figure 10 shows comparison 
of crack velocities inversely estimated by the caustic angle, 
with those estimated by the crack-tip position. From this figure it 
can be concluded that the crack propagated in transonic regime. 

Shear wave front 
Singular line 

■^.._    I Crack tip (t=to+dl) 

Fig.9 Mach shock wave and caustic 

4.3 Dynamic Branching Fracture 
Branched cracks are often observed in brittle materials and 

structures. Many researchers have attempted to clarify the 
mechanism of crack branching (or crack bifurcation). However, 
the governing condition of dynamic crack bifurcation had not 
been fully clarified until our recent experimental studies [12,13]. 

1' 
'8 

O :estimated from caustic angle 

D :estimated from crack-tip position 

20      40      60      80     100    120    140 
Time (us) 

Fig. 10 Crack velocity history 
Thus, dynamic crack bifurcation had remained as one of the most important unsolved problems in 
dynamic fracture mechanics. 

Two sets of loads were applied to a Homalite 911 specimen through two pairs of loading pins. 
First the lower loading system was applied and held constant. Then the upper loading system was 
applied until dynamic crack propagation occurs. The lower loading produces a strong tensile stress 

(134.5 ns)      (139.6ns)       (144.6ns)       (149.6ns)      (154.6ns)       (159.6ns) 
Fig.l 1 High-speed photographs of dynamically branching fracture 
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field to accelerate the propagating crack and to supply enough 
energy into the propagating crack for crack branching. 

Figure 11 shows photographs for dynamically branching 
fracture in the specimen. The crack bifurcated at the line of the 
lower loading system (see the photograph of 79.4[J.s). 

The sizes of caustic patterns in the high-speed photographs 
were converted to the dynamic J values by using Eqs.(3) and (5). 
The dynamic J integral values at dynamic crack branching are 
plotted in Fig. 12 against the crack velocity. It is seen that 
dynamic crack branching does not occur either at a particular 

value of the dynamic J integral or at a particular crack velocity. 
The total energy flux at dynamic crack branching are 

evaluated by <E>,otei= J' • C, and plotted in Fig. 13. The total energy 
flux into the tip of a branching crack is constant for various crack 
velocities at the instance of dynamic crack branching. Thus, it can i 
be concluded that dynamic bifurcation occurs when the total 
energy flux <&,0tai into the process zone or into the tip of a 
propagating crack reaches a critical material resistance. 

■ branched (Plate A) 
• branched (Plate B) 
o   not branched (Plate B) 

HOMALTIE-911 

400     420    440    460     480     500     520     540 
crack velocity C (m/s) 

Fig. 12 Energy flow rates at crack 
branching 
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• 
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■ 

branched (Place A) 
branched (Plate B) 
not branched (Plate B) 

HOMAUTE-911 

460     480     500 
crack velocity C (m/s) 

Fig. 13 Energy flux at crack 
branching 

5. CONCLUDING REMARKS 
Recent experimental  studies on various dynamic fracture 

phenomena were summarized. In all cases presented here, the high-speed photographs for caustic 
patterns were presented. The experimental results revealed the mechanisms of their processes. 
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ABSTRACT 

The regular separate of metallic material is very common in use in engineering. Explosion is a 
typical shock loading and it can produce a large amount of energy. The principle of fracture design 
is led into the regular separation of framed plate in this paper. The framed plate is simplified into a 
shear specimen with double cracks at first. The actual two level finite element method, then, is used 
to evaluate the dynamic stress intensity factor. And, after that, the experimental research was 
conducted for the fracture of framed plate under explosion loading. 

1. INTRODUCTION 

Fracture, corrosion, and wearing are the three inactivation forms in machine parts and 
engineering structural units. Fracture is a kind of "breakout disaster" and causes usually heavy 
losses of life and property. The fractures include the brittle failure caused by the destabilizing 
propagation of macroscopic flaw or crack and the fatigue failure. All engineering structures have 
inevitably flaw similar to crack, which is either intrinsic in material or produced in the process of 
manufacturing or caused in the exploitation process. The supporting capacity of the structure would 
be reduced or even totally lost if the flaws or cracks existed in structure. The purpose of fracture 
mechanics is just the safety design to prevent it from happening. 

The history of exploiting the flaw to achieve the fracture is much more remote than the history 
of fracture mechanics. In fact, making primitive tools by using the process of fracture are the one of 
major starting point of human civilization. One can turn the disastrous character of crack into 
profitable effect and exploit low-stress brittle fracture to separate solid materials. This technique has 
been applied to blanking of machine work [1-3] and explosive engineering [4] at present. 

The gas cutting and other methods are commonly used to separate the solid material at present. 
These methods are both of low efficiency and with high waste of processed materials. It is an urgent 
task to explore the effective and economic method for separating solid materials. The principle of 
fracture design is led into the regular separating of thin plate of metallic materials. The explosive 
loading for separation of thin metallic plate is investigated experimentally. The fracture problem is 
simplified to a shearing model with double cracks at first. Then actual two level finite element 
method is used to evaluate the dynamic stress intensity factor. And, finally, we make an experiment 
to separate the framed plate by means of explosive loading and analyze the experimental results. 
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2. ACTUAL TWO LEVEL FINITE ELEMENT METHOD AND IT'S FORMULATION 

The infinite series formulas of dynamic plane crack problem can be written as follows [5]: 

"x = Yj~{Cj (0 [ip + i + (-1)')cos{0-{cos(i-2)0} 

+ C'j (0[(* + i- (-IY )sinie -ism(i - 2)ö] 

w  _y'2 
M,=Z^7fe(0[(^-i-(-l)y)siniö + isin(i-2)ö] 

-C;(0[(^-| + (-iy)cos^ + icos(f-2)ö] (1) 

where   C) (t) and  C) (t) are coefficients to be determined after loads and other boundary 

conditions being imposed. It should be noted that the terms of/=0 denote the rigid body translations 
and the terms of j=\ in equation (1) contain a factor in itself which accounts for the singular 
behavior at the crack tip. Therefore, the relationship between dynamic stress intensity factor and 
coefficients C, (t) becomes 

K, (0 - iKa (0 = V27[C* (0 - iC; (0] (2) 

In order to clarify the effect of a crack on the plane elastic problem, an area Q is taken and 
divided around the crack tip whose outmost boundary is polygon Lx and, then, a super element for 
dealing with the singularity is established as shown in Fig. 1. The thickness ratio of the neighboring 
layer is c<l. 

Fig. 1. Similar shape element configuration 

Equation (1) can be rewritten as following matrix form 

{«} = [T]{C} 

For the similar shape elements in Fig. 1, we have following equations 

[K];=[KJ;+1 

(3) 

(4) 
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[D];=[D];+1/c2 

[M]J=[M]J+1/c2 

(5) 

(6) 

2.1 Transition Formulation of First Layer 
Let the nodes on the boundary polygon L\ be master nodes and those on other inner polygons 

slave nodes. For solving the problem linking with other elements outside Q,, only the degrees of 
freedom of slave nodes need to be transformed. The stiffness, damp, and mass matrices of the first 

layer after being transformed can be written as 

[K'] = 

[D'] = 

[M'] = 

M„ MmsT' 

(T')rMsm    <T')rM11T' 

D„ D„„T / 

(TOrDsra    <T')rD11T' 

Mmm MmsT' 

(TOrMsm    (T')rMssT' 

(7) 

(8) 

(9) 

where [Tf] is the transition matrix of the first layer. 

2.2 Transition Formulation of Other Layers 
All degrees of freedom of the inner nodes need to be transformed. The stiffness, damp, and 

mass matrices of inner layers after being transformed can be written as 

(10) 

(11) 

(12) 

where 

k = 

K" = c(m +* ("-1)/2{r;}r[K]I{T;} 

D\ = c[(ra+* 
+4](n-l)/2+2 jji | T rjj-i   rj,s | 

Mn = c[(m+*+4](„-l)+2 |X/> »"[»I], {T*} 

(i-l)/2 for           i = odd 

(i-2)/2 for           i = even 
and   z>0 (13) 

It can been found from equations (10)-(12) that Kt], Q and My of different inner layers form 

geometric progressions. Therefore, we have 

R. 

.=■> 1-A„t 

ZA"=T7?-{TI*}
,
"[D]1{T;} 

(14) 

(15) 
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n=1 1       <J»t 

where 

Rmk=c> 

s
mk =c 

_c(m+t)/2  <j 

(m +t +4J/2+2       -I 

m,k>\ 

m,k>\ 

(16) 

(17) 

(18) 

By using equations (7)~(9) and equations (14)~(16), the global stiffness, damp, and mass 
matrices for domain Q can be assembled. Adding the global matrices to the stiffness, damp, and 
mass matrices of other elements, the general stiffness, damp, and mass matrices can be obtained. 
Solving the equation, the column matrix {C} and the dynamic stress intensity factor can be 
obtained directly. 

3. STRESS INTENSITY FACTOR OF SHEARING MODEL WITH DOUBLE CRACKSIN 
EXPLOSIVE LOADING 

For dynamic fracture problem, the normalized dynamic stress intensity factors are defined as [5] 

Kt=K,{t)IKs 

Kn=K„{t)/Kn (19) 

where KIS and KIIS are static stress intensity factors of mode I and II cracks, respectively. For the 
pure shearing model shown in Fig. 2, KIS is zero and K](t) isn't always zero because the effect of 
stress wave. Therefore, the first of equation (19) is meaningless. For the convenience of problem 
analysis, the normalized dynamic stress intensity factors are defined as 

Fig. 2. Shearing model with double 

K,=K,(<t)IK1IS 

Kn =Kn(t)lKns (20) 

The explosive shock loading can be expressed as 
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(21) 
F{f) = tFmltf t<tf 

F{t) = {tm-t)FmJ(tm-tf)       t>tf 

where tm » 4tf and tf «lOOws. The curves of normalized dynamic stress intensity factors with 

a I b = 0.3   are shown in Fig. 3. 

50 100 

Time(wj) 

150 200 

Fig. 3. Curves of normalized dynamic stress intensity factors 

4. EXPERIMENT OF FRAMED PLATE UNDER EXPLOSIVE LOADING 

A fracture experiment of framed plate is performed under explosive loading. The experimental 
model was welded one making use of 1008 steel plate with thickness of 8mm. The dimensions of 
the experimental model are 800 x800 x800 mm. A 700x700mm square V-notch was made on one 
plate surface of the model. The geometric parameters of the V-notch are: field angle o=30°, notch 
depth a=2mm, and tip radius 7=0.05mm. The experimental model and the disposition of dynamite 
are shown in Fig. 4. For testing and verifying the effect of the external factor on the fracture, two 
water bags were laid up on two opposite side of the square V-notch. The dynamite TNT is used in 
the experiment. 

Fig. 5 is the framed plate after being fractured. The experimental result shows that the fracture 
faces are regular and neat on the sides without water bags and the fracture effect is good. The 
fracture faces are irregular and rough on the sides with water bags laid aside. The bad effect is 

» 

'   J 

% * 

Fig.4. The model and explosive position Fig. 5. The fractured model 
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caused by the fact that water bags take the shock of explosive loading and there are forces acting on 
both two boundaries of notch. Therefore, the force near welding joint is increased greatly and 
makes the experimental model of framed plate broken due to tension fracture alone welding joint. It 
is feasible that the dynamite is laid beside the notch in the fracture of framed plate. 

5.   THE DISCUSSION AND CONCLUSIONS 

The framed plate with double cracks can be simplified to mode II crack problem if there are 
loading near boundary of notches. The propagation of mode II crack under static loading is the 
typical plastic fracture and the fracture face has clear slip characteristic of plastic metal like 1008 
steel. The metallographical photograph of fracture shows that the fracture surface of 1008 steel 
under explosive loading is that of typical cleavage fracture as shown in Fig. 6. If there are external 

Fig. 6. Metallographical photograph of 

regular fracture face 
Fig. 7. Metallographical photograph of 

irregular fracture face 

force interference near the notch, the fracture surface is also cleavage fracture surface as shown in 
Fig. 7 and quasi-cleavage fracture appear in some places. The above mentioned result shows that 
multidirectional and instable stress state appear in the process of fracture. The propagation of mode 
I crack plays a leading role for the framed plate with double cracks under explosive loading. Both 
the speed effect of explosive loading and the stress wave play an important role in the process of 
fracture. It is feasible that the principle of fracture design is led into the regular separation of framed 
plate and the regular separation can be achieved by explosive loading. 
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ABSTRACT 

The stress field around the dynamically propagating interface crack tip under a mixed mode 
loading condition has been studied by using a hybrid experimental method. The variation of 
dynamic stress field around the dynamic interfacial crack tip is photographed by the Cranz- 
Shardin type camera having 106 fps rate. The dynamic interfacial crack propagating velocities and 
the shapes of isochromatic fringe loop are characterized for varying mixed load conditions in 
double cantilever beam (DCB) specimen. The dynamic interfacial crack tip complex stress intensity 
factors, Ki and K2, are extracted by using the overdeterministic least square method. In addition, it 
is found that the dynamic interface crack propagating velocities under the mixed mode loading 
conditions are significantly small compared to those obtained under the mode I impact loading 
conditions by Shukla and Rosakis in the USA. 

1. INTRODUCTION 

During the last few decades many interesting problems pertaining to dynamic crack propagation 
and arrest phenomena have been investigated by many researchers throughout the world [1,2,3]. In 
recent years, there has been considerable interest in the study of dynamic bimaterial interface crack 
propagation from both theoretical and experimental viewpoints [4]. Even though the majority of 
these studies have been either analytical or numerical in nature, a few experimental studies on the 
dynamic interfacial fracture have been appeared in the Technical Journals from 1991. Rosakis 
group at California Institute of Technology and Shukla group at University of Rhode Island are the 
representatives among others. This study is motivated by the need to establish procedures and 
investigate the applicability of dynamic photoelasticity to study interface failure under mixed mode 
loading condition [5]. Thus, this paper attempts to develop the framework for employing 
photoelasticity to observe and investigate the phenomena of dynamic interface failure. The initial 
failure was obtained by subjecting the bimaterial specimen to dynamic mixed mode loading. The 
dynamic isochromatic fringe patterns surrounding a crack tip propagating along a bimaterial 
interface are photographed and characterized. A parametric investigation has been carried out to 
study the influence of arying fracture parameters on these   isochromatic   fringe   patterns.   The 
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primary relevant fracture parameters of interest include the crack tip velocity and the complex stress 
intensity factors. The complex stress intensity factors for the stress field surrounding the dynamic 
interface crack tip are extracted by using a hybrid-experimental technique. 

2. THEORETICAL 

2.1 Stress field and dynamic stress intensity factors at the dynamic interface crack tip 

xx 

Material (T) 

m x 
Material @) 

moving crack tip 
Fig. 1 A coordinate system and stress component for a small element around crack tip 

The stress field shown in Fig. 1 at the dynamic interface crack tip developed by Deng [4] are 
rearranged to fit the photoelastic analysis conducted in this study in polar coordinate system. 
Combining the stress-optics law, with rm=Nfal It we can relate the experimental results with the 
theoretical stress field as the below. 

(.^L)2=(2Tmf=(axx-ay+(2ay (2.1) 

where N = the experimental fringe order of the dynamic isochromatic. 
/CT=dynamic fringe constant of the materials(6.7KN/m-fringe for polycarbonate). 
t = specimen thickness (4.5mm). 

2.2 Characterization of isochromatic fringe loops at the dynamic interface crack tip 

The Newton-Raphson method and over-deterministic least square method(OLSM) are used to 
extract the complex stress intensity factors, Kj and K2 implicitly appeared in Eq. (2.1) for the 
dynamic interface crack tip stress field. To determine the stress intensity factor Ki and K2 we 
should take experimental data at the vicinity of the crack tip to reduce boundary effect. However, it 
is difficult to distinguish the experimental isochromatics data due to concentrated fringe and local 
plastic zone at the vicinity of the crack tip. Therefore a multi-functional determination procedure 
should be used to extract the more precise stress intensity factors. 

2.3 Theoretical dynamic isochromatic fringes 
Substituting the Ki and K2 determineded by the above procedure into Eq. (2-1), we can generate 

theoretical dynamic isochromatic fringe patterns and compare the generated fringes with 
experimental results. By this final check process, we can confirm the appropriate values of Ki and 
K2. 
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3. EXPERIMENTAL 

3.1 Multi-spark camera system 
The dynamic photoelasticity method consisted of the Cranz-Shardin camera system with a multi- 

spark camera set, a dynamic photoelastic apparatus, a loading equipment, field lens and controllers 
is used in this study. 

3.2 Specimen and loading 
Revealing the dynamic interface crack propagation phenomena and the dynamic stress field 

surrounding the rapidly propagating interfacial crack tip under the mixed mode loading condition, 
we manufactured the specimens using polycarbonate(PC) and aluminum(Al). The residual stress 
along the interface was checked to be negligible by using a photoelastic setup. The specimen 
configuration is shown in Fig. 2. 

Aluminum tape 

interface 

"x    free crack 
•\ 

2.5miii 
3mm 

\   2-4 9 HOLES 

Fig. 2 Configuration of test specimen (thickness : 4.5mm) 

The mechanical and physical properties of PC and Al-7075 are listed in table 1. 

Table 1 Material and physical properties of Polycarbonate and Aluminum 

———._______^ Material 
Property           "   ——_______^ Polycarbonate Aluminum 

Poisson's ratio 0.38 0.33 

Young's modulus, E(Gpa) 2.72 71.0 

Material stress optics fringe 
value(Mpa-mm/fr) 6.7 

- 

Shear modulus(Gpa) 0.98 - 
Density(g/cmJ) 1.196 2.80 

Dilatational wave speed(m/s) 1960 6320 

Distortional wave speed(nVs) 910 3100 
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4. RESULTS AND CONSIDERATION 

Fig. 3 Various mixtures of applied loads 

Figure. 3 shows the varying directions of mixed mode loadings which changes the load mixture 
ratio of y/x (vertical/horizontal) value. Three different y/x ratios such as 3.7(=F), 1.3(=F') and 0.75 
(=F") were applied in the present study. 

1 usec 2001 usec 3001 usec 
Fig. 4 Dynamic isochromatic fringe patterns in PC for a crack dynamically propagating along the 
interface by initial load F (crack runs left to right, scale: 4/1) 
(usec = time after break,      ►: propagating crack tip position) 

2001 usec 3501 usec 4501 usec 
Fig. 5 Dynamic isochromatic fringe patterns in PC for a crack dynamically propagating along the 
interface by initial load F' (crack runs left to right, scale: 4/1) 
(usec = time after break,      ^.: propagating crack tip position) 

1 usec 1001 usec 2501 usec 
Fig. 6 Dynamic isochromatic fringe patterns in PC for a crack dynamically propagating along the 
interface by initial load F" (crack runs left to right, scale: 4/1) 
(usec = time after break,      ^.: propagating crack tip position) 
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Figures 4, 5 and 6 show the dynamic stress field at the vicinity of the interface crack tip with 
varying loading condition such as F, F' and F", respectively. It is interesting to note that the initially 
mixed loading condition considerably affects the characteristics of isochromatic loop. 

Comparing the crack propagating velocities for three different loads, we found that the crack 
propagating velocities decreases as y/x values become smaller ranging from 3.7 to 0.75. This means 
that the maximum crack propagating velocity becomes faster when mode I load increases as we 
expected from the experimental results for the isotropic materials. The more study about 
geometrical shape, thickness, the bonding strength of the interface, the direction of mixed load and 
etc has to be needed. The crack velocities for the dynamic interface cracks are found to be very low 
comparing to other investigator's experimental results appeared in literatures [3] which was 
obtained under mode I loading condition. 

1 usec 2001 (xsec 3001 usec 
Fig. 7 Theoretical isochromatic fringe patterns for a crack propagating along the interface by initial 
loadF 
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2001 usec 3501 usec 4501 usec 

Fig. 8 Theoretical isochromatic fringe patterns for a crack propagating along the interface by initial 
load F' 

./UK^.    '-,       VV- 
t f- 

1 jasec 1001 usec 2501 u.sec 
Fig. 9 Theoretical isochromatic fringe patterns for a crack propagating along the interface by initial 
load F" 

Figures 7, 8 and 9 show the comparison between the theoretical isochromatics and the 
experimental fringes in the quantitative aspect. The fringes are similar around the crack tip. It is 
found that Ki and K2 increase as y/x decreases as shown in Fig. 10. The fringes are similar at 
vicinity of the crack tip. However, the errors are getting bigger as we take data far from the crack tip 
where we need to add higher order coefficients. 
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Fig. 10 Stress intensity factor vs. crack tip location by initial load F, F'and F" 

5. CONCLUSIONS 

In this study, the dynamic mixed mode crack propagation behavior for structural bonded 
joints(interfaces) are investigated by using the hybrid-experimental methods with the aid of 
dynamic photoelastic methodology. The results obtained are as follows. 

(1) The propagating interface crack velocities in the DCB specimens under initially mixed mode 
loading condition are found to be about 7% of Rayleigh wave velocitiy of polycarbonate. These are 
significantly small compared to those obtained under the mode I impact loading conditions by 
Shukla [2] and Rosakis [3] in the USA. We need to have more detailed experimental studies about 
the effect of geometrical shape, interface thickness, the bonding strength of the interface, and the 
ratio of mixture of the load in structural joints(interfaces) on dynamic interface crack propagation 
velocities. 

(2) We utilize a hybrid experimental-theoretical method to find good agreements between the 
theoretical dynamic interface stress fields and experimental ones. 
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Foundation made in the program of 1997. 
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ABSTRACT 

An analytical model is developed for a functionally gradient interface layer between two 
dissimilar elastic solids. The interface layer with material properties varying continuously in an 
arbitrary manner is modeled as a multi-layered medium with the elastic modulus varying linearly in 
each sub-layer and continuous on the sub-interfaces. With this new multi-layered model, we analyze 
the both static and dynamic problems of a crack in the interface layer. The transfer matrix method 
and Fourier integral transform technique are used to reduce the mixed boundary-value problem to a 
Cauchy singular integral equation. The stress intensity factors are calculated. 

1. INTRODUCTION 

Interface plays an important role in composite materials. Usually the discrepancies in mechanical 
and thermal properties between the component materials cause the strength problems of the 
interface and therefore influence the strength of the whole material. In an attempt to solve such 
problem, the Functionally Gradient Materials (FGMs) are used as the interface layer between two 
component materials. The FGMs are devised in such a manner that material composition is 
continuously varied spatially in order to smooth the strain discontinuity between different materials. 
The fracture analysis of the FGM interface layer has received considerable attention in recent years. 
However, it is noted that all of published works assume that the material properties vary in an 
exponential manner [1-3] or a power manner [4,5]. This, we argue, is of little use to the design of 
the FGMs. The analysis should allow the material properties to vary in arbitrary manner. In this 
paper, we develop an analytical model for the FGM interface layer with continuously varying 
elastic properties and solve the problem of a crack in the interface layer subjected to a static or 
harmonic dynamic anti-plane shearing load. The method is based on the fact that an arbitrary curve 
can be approached by a continuous broken line. Therefore we model the FGM interface layer as a 
multi-layered medium with the linearly varying elastic modulus which is continuous on the sub- 
interfaces. The Fourier integral transform technique and singular integral equation method are 
employed to solve the mixed boundary-value problem. The stress intensity factors are presented. 
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2. PROBLEM FORMULATION 

2.1. A New Multi-Layered Model for a Functionally Gradient Interface Layer 
Consider a Griffith crack on the interface between two bonded dissimilar elastic homogeneous 

half-spaces, with the shear moduli u, (x* and mass densities p, p*, which are loaded by remote 
anti-plane shearing traction. Here the interface is not the "mathematical interface" with zero 
thickness, but an interfacial region with finite thickness h0, as shown in Fig. la. The crack is 
located in the interfacial region. This interface layer is made of the FGMs with material constants 
{ u(j>), POO} continuously varying from {u,p}to{|a*,p*}. Generally, \i(y) and p(y) may be 
of arbitrary forms. However, considering the fact that an arbitrary curve can be approached by a 
continuous broken line, we develop a new multi-layered model as shown in Fig. lb. The interfacial 
region (/i0,0) is divided into N sub-layers {hj_x,hj), {j = \,2,---,N;hN = 0). The crack is on 
the kth sub-interface (k may be any integer number from 0 to N). The shear modulus in each sub- 
layer varies linearly with the form: 

HOO * »j 00 = JT, (flj + bjy),       hj<y< Ay_,,   j = 1,2, -,N 

and is equal to the real values on the sub-interfaces,   y = h,.   This leads to 

(1) 

 >    o,=- 

7-1 h„-hj 
(2) 

with   \ij = ]i.{hj).  The mass density in each sub-layer is assumed to have the similar form so that 

\i.j (y) I Pj (y)   is a constant, i.e. 

P00* P,00 = Pj(Oj + bjy),       hj<y<hJ_x,   j = l,2, — ,N 

where   p .  is determined by 

(3) 

/ 

©       © 
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Fig.l Two dissimilar half-spaces bonded through a FGM interface layer (a); 
and the new multi-layered model of the FGM interface layer (b) 
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J'Vi _   r*,--i 
p(y)dy=pj     (aj+bjy)dy 

h, Jh: 
(4) 

which ensures that the averaged mass density in each sub-layer remains unchanged. It is noted that 
the mass density is discontinuous on the sub-interfaces. But it is known that the discontinuity of the 
mass density causes less influence on the strain discrepancy. 

2.2. Transfer Matrix and Dual Integral Equations 
We consider the harmonic dynamic loading case. The only non-zero displacement component is 

W(x, y, t) = Wj (x, y)e'°"  along the z-axis, which satisfies the following wave equation: 

d2w,    d(   ,   faA      ,   , s 

dx1     dy { dy ) (5) 

where co  is frequency and y' = l,2,---,A/\ Substituting Eqs.l and 2 into the above equation and 
applying Fourier integral transform with respect to x, we obtain 

dlWj dw 

dy      aj+bjy dy 

where   "~"   indicates the Fourier transform, and 

^-ßj^.=0 (6) 

with   Reß  >0,lmß  <0. The solution ofEq.6 can be written as 

{Sjy^lTjMUAj},   j = \,2,-,N 

with  {Sj }=[wj .f^ f, {Aj} = K,, A2j f, and 

(7) 

(8) 

[Tj(y)] = 

where the prime indicates the differentiation; K0() and /„() are modified Bessel functions; and 
yt = b'j (aj + bjy).  The solutions for the homogeneous half-spaces are 

{S0} = [T0(y)]{B}Aw,   {V,} = [LW]fflV 

where    {B} = {\,0}T,{X} = {0,l}r,   and 

-P.vtiJ' 

(9) 

Pi 001 = 
-ufV~ 

[TN+I(y)] = u'ß^e-^"    u'ß^e^ 

The subscripts   "0"   and   "N+1"   correspond, respectively, to the upper and lower half-spaces. On 
the interfaces we have the following relations 
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{^}-{5J+,} = {A5J5,.,   y = hj,   j = 0,l,2-,N GO) 

where {ASk} = {Awk, 0}T, and 8^ is Kronecker delta. Eq.10 is a recurrence relation which, on 

substitution of Eqs.8 and 9, may yields the expression of {Cj}   in terms of   {AS^}, 

{Cj} = ([LJk] + [KJk]H(j-k-mASk},   j = l,2,-,N (11) 

where [LJk ] and [KJk ] may be easily obtained and will not be given here because of limited 

space. Substituting Eq.ll into Eq.8 and taking the inverse Fourier transform, we have 

{Wj'x>zj}T = h £[Mjk]{ASk}e'ISXds' j=]'2''"'N (12) 

where WJk] = [TJ(y)]{[Ljk] + [KJk'\H{j-k-\)) is the transfer matrix of the multiple layered 

medium with an interface cracks. Suppose the stress caused by the remote loading in the medium 

without crack is x^(x,y). Then the free traction condition on the crack faces and the 

displacement single-valued condition yield a set of dual integral equations: 

^-^mk(s)Awk(s)e-'-ds = ^L
yz(x,hk),   \x\<c <13) 

J   Awk (s)e'iKXds = 0 ,   | x |> c (14) 

where mk = {0,1} [MJk \y__hk ]{1,0}T (j = k or k -1). 

2.3. Cauchy Singular Integral Equation 
By introducing the dislocation density function of the crack, 

^k(x)=^-[Aw(x)],   \x\<c 05) 
ax 

Eqs.13 and 14 reduce to 

j- [f'rfik{s)^Jk(u)eis^duds = -xL
y2(x,hk),   \x\<c (16) 

§k{u)du = 0 (17) 

Considering the asymptotic behavior of K0 () and I0 () for large arguments, one may prove 

lims'Jfnk(s)=+[ik/2 (18) 
S-»±00 

Then Eq.16 can be converted into a Cauchy singular integral equation, 

£*- f^W r^(M)p>,x)rfW=^oa,), \x\<c (i9) 
Ziz   J~c u ~ X J-c 
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where we have denoted 

Pt{u,x) = -- n s-lmk{s) + -\i.k sm[s(u-x)\ds (20) 

Eq.19, together with Eq.17, can be solved numerically by the method of Erdogan and Gupta [6]. It 
should be noticed in evaluating the semi-infinite integral in Eq.20 that the integrand, in some cases, 

may involve simple poles along the integral path. These poles correspond to the general type of 
Love-waves. To overcome this difficulty, we use the method developed by Kundu [7] to express the 
integral as the sum of a Cauchy principal integral and residues of the integrand, see [7] for details. 

3. NUMERICAL RESULTS AND DISCUSSION 

The above formulas are derived for the harmonic dynamic loading case. The results for static 
loading case can be obtained by setting the frequency to ->0. Furthermore, if we replace K0(z) 
and I0(z) with, respectively, exp(-z) and exp(z), we have the solution for the traditional piece- 
wise multi-layered model. In this section we present some numerical examples. Special attention is 
devoted to the Stress Intensity Factors (SIFs) which are defined as 

Numerical results are given by 

where   F,(n)=4>t(cr|)(l-Ti2)"2. 

Kfa = lirn V2|x + c^(*A) (21) 

^,=(frt/2)^(±l) (22) 

We consider two different elastic half-spaces bonded through a FGM interface layer of thickness 
h0. A Griffith crack of length 2c is located on the center line (y = \ I2) of the layer. The crack 
faces are subjected to the uniform anti-plane shearing traction T0. The mass density of the layer is 
supposed to vary linearly from p to p *. Here we take p * / p = 0.8. The shear modulus p( v) is 
approximated by a two-piece broken line, that is, the interface layer is divided into two sub-layers. 

Fig. 2 presents the static SIFs versus h0lc for some selected values of p.: u, : p.* [where 
H, = n(Ä„ /2)]. It is shown that the SIFs increase as h0/c decreases. The solid and dot-dashed 
lines are for the case with p.(v) varying linearly in the whole interface layer. It is seen that the 
larger the value of u / u * is, the higher the SIFs are. For a fixed value of p. / \i', a bigger value of 
p., can also cause the higher SIFs (Compare the dashed, solid and dotted lines which show the 
results for p/p.* =9). Fig. 3 shows the dynamic SIFs versus normalized frequency, k0c, of the 
load for some selected values of p., with p/p* = 9 and h0 Ic = 1. At lower frequencies, the SIFs 
are higher for larger p.,. But it is not the case at higher frequencies. The influences of h0I c and 
p. / p.* on the dynamic SIFs are shown in Figs. 4 and 5 for the case with p(v) varying linearly in 
the whole interface layer. The smaller value of h0 Ic and/or the larger value of u7u* may cause 
higher SIFs at lower frequencies. Here in Fig. 4, we take p. / p.* = 9, and in Fig. 5, h0 Ic = 1. 

Generally, for a crack with fixed length, the decrease of interface layer thickness and/or the 
increase of the difference between shear moduli of the two half-spaces may result in higher SIFs 
due to rapid change of the modulus in the layer. But the decrease of the value of the modulus on the 
crack surface may reduce the SIFs. 
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ABSTRACT 

Experiments have been conducted to investigate a fundamental relationship between stress waves and 

photoelastic fringes under condition of applied impact pulse loads to testing objects. The testing objects are 

made of DAP plastic plates with 15,30,45,60 and 90 mm of width. Impact stresses were applied to the one 

side ofthe plates by air-gun. The stress wave propagation speed was determined by observation ofphotoelastic 

fringes in the test pieces. The fringe position was determined by means of image processing technique and the 

photoelastic data were compared with those obtained by the measured impact pulse wave forming with strain 

gauges under the same conditions to raise the reliability of photoelastic measurement. 

The impact stress wave propagation speed decreased with a distance from the initial loading point, and took 

a minimum at a distance of about 1.2 times of plate width, then it increased and became constant at a distance 

ofover2 or3 times of plate width. For the test piece with smallest width, 15mm, the constant wave speed 

was approximately equal to the theoretical ones calculated for a thin rod. For the other test pieces, the 

constant wave speed decreased with increase ofthe plate width and they were different from any theoretical 

values for a thin rod and an infinite flat plate. 

1. INTRODUCTION 

Since the dynamic photoelastic method was introduced into impact problems in the earlier studies on mate- 

rial science, many investigations have been preformed for the dynamic stress conditions including quasi-static 

conditions. In practice, it is difficult to distinguish the both stresses in stress analysis and the most of loading 

impact stresses are quasi-static state. However, we have still no sufficient information about details of impact 

stress behavior in materials and there are many unknown factors to use the dynamic photoelastic method for 

impact problems. 
In the present study, an air-gun was employed to give impact stresses to testing objects and a Crantz- 

Schardin type stroboscopic camera was used for analysis of stress wave propagation. The testing objects 
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were made ofDAP (diallyphotalate polymer) plastic plates with 15,30,45,60 and 90mm of width. The present 

study gives a relationship between stress wave and photoelastic fringes and a dynamic stress wave behavior 

in homogeneous materials as an example of fundamental treatments for impact problems by means of the 
dynamic photoelastic method. 

2. DYNAMIC PHOTOELASTIC EXPERIMENT 

2.1. Cranz-Schardin type stroboscopic camera 

Fig.1 shows the optical system of a 300 <t> m/m photoelastic equipment with Cranz-Schardin type 

stroboscopic and impact equipment. The dynamic photoelastic microflash with 9 built-in flashbulbs is 

adjusted and the dynamic photoelastic camera with 9 built-in camera lenses is also focussed. It is 

coming to be sent out by each flashbulb after flash time delay was set up in each flashbulb with the 

dynamic photoelastic microflash source and the time when a signal from the input device set up in the 

outside was caught and set up passed. Then flashlight is gathered to camera lenses, placed diagonally, 

and dynamic fringe pattern is shot on film. The other flashlights are gathered to each diagonal camera 

lens so that there is never a double exposure of the dynamic fringe pattern. 

Shutter speed to record impact stress should be determined in consideration of the propagation speed. 

In theory, dynamic stress wave propagation speed is determined by the following equations. 
The speed of the longitudinal wave in a narrow strip 

C--4T (2-1) 

The speed of the longitudinal wave in a plate of infinite width 

r       EJEZ (2"2) 

E; Young's modulus  p; density   V; Poisson's ratio 

The speed in the test pieces made of DAP used in this experiment is calculated from these equations. The 

result gives about 1500 to 2000m/s. So the exposure time should be within 1.3 ß s to control the fringe 
width to 2mm. 

2.2. Impact stress load equipment 

In the dynamic photoelastic experiment, the occurrence of the impact power itself influences the 

results of the experiment directly. To apply an impact pulse load, it is necessary to arrange for an 

object with a small mass and high energy to collide with the test piece. In experimental stress analysis, 

stress waves are created in many ways, e.g. the drop-weight method, the explosion method, the airgun 

method, and the electromagnetic repulsion method. We chose the airgun method, because it makes 

improvement of reenactment easier than the other ways. 
2.2.1. Striker 

It is known that the material and length of the striker effect the peak and the continuity of the stress 

waves. In this report, the striker is made of acryl resin, and it is formed accurately to fit the size of the 

gun barrel. The tip of the striker is also formed into a hemisphere. The striker is 30mmlong and weighs 
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lgram, because a short striker makes the continuity of the stress wave shorter than a long one, but a 

short striker can also be used for the discharge. 

2.2.2. Air pressure at discharge 
Air pressure at discharge of the striker effects the impact energy. A low pressure gives a low impact 

energy, and a high pressure causes the destruction of the test pieces. In this report, the pressure is fixed 

at 9.807 x 104Pa because it gives an impact energy worth examining and little possibility of the de- 

struction of the test pieces. 

2.2.3. Distance that striker is pushed into gun barrel 
The distance that the striker is pushed into the barrel effects the impact energy. The grater the distance, 

the higher the impact energy is. With a distance of 100mm, the impact load is worth examining. So the 

length is fixed at 100mm. 

2.3. Test pieces 
In this report, test pieces are made of DAP plastic plate, 15(30,45,60, and 90) mm-wide. Two strain 

gauges are set on a 15mm-wide test piece to checic the wave and to measure the dynamic Young's 

modulus. The distance between one gauge and an the impact end is 75mm. And the other is 175mm. 

Fig.2 shows the experimental system to defermine stress wave. 
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C Dynamic  photoelastic camera 
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Fig. 1 Optical system for the dynamic photoelastic experiment 

175 „ 
 — 7 

Str Lker 

=T=V- 

Wheastone Bridge Box 

Preamplifier 

Storagescope 

Air Gun 

Air Compressor 

Fig.2 Experimental system to find the stress wave 
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3.RESURT 

In this report, 5 types test pieces (15,30,45,60 and 90mm-wide) are used in the dynamic photoelastic 

experiment Fig.3,4,5 show photoelastic fringe patterns of 30mm-wide and 90mm-wide test pieces as 
an example. 

The dynamic Young's modulus is determined as E=4.461 x 109GPa by measurement with strain 
gauges. 

4.CONCLUSION 

Distribution of dynamic stress wave propagation speed are shown for each test pieces in the series of Fig.6 

D' Fig. 10. In the figures, the vertical axis indicates distance from the initial point of dynamic stress wave and 

the horizontal axis indicates distance from the initial point of applied impact stress. The dynamic stress wave 

propagation speed decreases and takes a minimum at a distance of about 1.2 times of plate width from the 

initial point, then it increases and becomes constant at a distance of over 2 or 3 times of plate width as soon 

from the figures. Also stationary dynamic stress wave speeds are 1839m/s in the 15mm-wide test piece, 

1698m/s in the 30mm-wide test piece, 1615m/s in the 45mm-wide test piece, 1550m/s in the 60mm-wide 

test piece and 1480m/s in the 90mm-wide test piece. The wider test piece is, the slower the dynamic stress 

wave speed is. In our report of last year, we make the hypothesis that the stationary speed is based on the 

theory of dynamic stress waves in a narrow strip and that the pre-stationary speed is based on the theory of 

dynamic stress waves in plates of infinite width. So we compared stationary speeds, changing the test piece 
width. 

As a result, the narrow test piece is closer to the theoritical speed of the stress wave than the wide one. And 

the speed in the 1 Omm-wide test piece corresponds to the theoritical speed. The speed of the wide test piece 

is much slower than the theoritical speed. The precise wave speed could not obtained at close range of the 

initial point in the present study. The lowest wave speed indicated about 1.2 times of plate width from the 

initial point is approximately equal to a theoretical value given by Rayleigh wave. According to the experimen- 

tal results, it is considered that not only longitudinal wave but also transversal wave and Rayleigh wave give an 

effect on the dynamic stress wave propagation speed It is also thought that the stress wave reflects at the 

impact end of the test piece because the fringe formed change from ellfisal to circular, the fringe speed after the 

deceleration accelerates until constant at a point 2 or 3 times as far from the impact end as the widthof there 

test piece and the shape becomes" <" because the fringe speed spread on the impact end side is fast and the 

speed spread on the extension line or the impact end is slow. 
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Fig.3 30mm-wide test piece 

(Pre-stationary) 

Fig.4 30mm-wide test piece 

(Stationary) 
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1 

Fig.5 90mm-wide test piece (Pre-stationary) 
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ABSTRACT 

The high-speed shadowgraph technique was used in visualization of the shock wave moving, 
damage formation and development in the glass specimen. It is found that failure wave formed at 
the shocked surface and inner interface, and propagated into specimen following the shock wave. It 
is concluded that formation of failure wave was connected with the surface of glass-specimen, and 
it is a moving fractured front. The work finished here will be helpful to understand the mechanism 
of failure wave. 

1. Introduction 

When Rasorenov and G.I.Kanelfl] researched the dynamic response of K19 glass specimen under 
shock loading by detonation in 1991, they found that there exists a small recompression signal in 
the record of rear free-surface velocity of the specimen using VISAR. They conjectured that there 
must have been a moving front at the velocity of 1.5-2.5 Km/s following compressive wave to 
propagate into the specimen, behind which the material is comminuted, and has a lower impedance 
and no tensile strength. This moving front was called by them as failure wave. Many researchers 
devoted their much efforts to this subject in recent years. But until now, failure wave was only 
observed in glass-like brittle materials with higher compressive strength and lower density than 
metals, and its mechanism is far from clear. Kanel[l], He Hongling[2] and Zhang Guanren[3] 
speculated on that the mechanism of failure wave connected with the micro-cracks on the surface of 
specimen. The experiments of different impact surface roughness can be used to test this 
speculation correct or not. Unfortunately, There are contrary experimental results about this topic 
from two independent experiments[4,5]. R.J.Clifton[6] presented a phase transformation model, 
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attempting to explain the mechanism of governing the generation and propagation of failure wave. 
This model can explain many experimental phenomena, but until now , no experiments can testify 
the relation between failure wave and phase transformation. Grady[7] put forwarded a shear failure 
model, his model also meet disputable points in contrary to explain the experimental observation. In 
this paper, we attempted to visualized the failure wave formation at the shocked surface and 
inner-interface of K9 glass specimens, and attempt to understand the mechanism of failure wave 
formation. 

2. Experiment setup 
Fig.l shows the experimental setup. The detonation device of planar wave consist of detonator 10 , 
booster 11 and planar wave lensl2. In the experiment, it takes only 1.42 /1.45 us to detonate the 
detonator 10. It is very important to control the synchronization of the system. The pressure behind 
the detonation wave is 10.78GPa before detonation wave arrive at the end of the planar wave lens. 
Copper plate 13 is used to let loading stress in K9 glass specimen smaller than its Hugoniot elastic 
limits(HEL). Table 1 shows experimental conditions. 

Fig. 1     Experimental   setup 
1.    Xenon discharge tube,   2. light aperture,   3. illuminating  lens,   4^  5. mirror 

6. First object lens 7. graticule, 8. fi rst group of second object lenses. 9. first frame 
aperture of camera, 10. detonator, 11.   Booster,   12 planar wave  lens 

13.   attenuation plate,   14.   K9 glass specimen,   15,   VISAR probe,   16.   laser,   17.VISAR 

;2-l Loading condition 
No. Thickness of 

copper plate /nim 
Loading 

stress in K9 
glass/ GPa 

Thickness of 
K9 specimen 

/mm 
1 Cu 19 8.26 24 
2 PMMA(10)+ Cu(18) 5.89 6. 5+24 
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The K9 glass specimen was cut from 24 mm or 6.5 mm thick sheets into 120X120 mm , each 
surface of specimen was polished. The density of K9 glass is 2.52 g/cm2, Young's modulus £=47.14 
GPa, HEL is 8.4-9.16 GPa, Poisson rate v=0.209, and the longitudional sound velocity is C; =6.06 
km/s. 
The optical path of shadowgraph 1-9 used in experiment is shown in Fig. 1. Xenon discharge tube is 
located at the focus of illuminating lens 3. When the light from Xenon discharge tube 1 pass 
through light aperture 2 and lens 3, it will be parallel to illuminate the specimen 14. The specimen 
14 is first imaged at the graticule 7 by lens 6. The grating of the graticule can be used to 
quantificationally analyze. The graticule 7 is imaged on negative by lens 8 and framing lens of 
high-speed camera. When the refractive index in the specimen under shock loading change, it will 
induced the light through the specimen deflection, and lead to change of intensity of illumination on 
the negative. This is the working principle of shadowgraph technique. 
The high-speed camera used in the experiments was FJZ 250. Its exposure time for each frame is 
100ns, interframe time is 400ns, and forty frames can be recorded. The magnification of the 
shadowgraph system is 0.28. The field of view of this system is 74x54 mm2. Its spatial resolution is 
about 24 lp/mm. The most of the parameters in this system is better than Boume's[8]. 

3.   Experimental results and analysis 

(2)   1.2/ß (3)  3.6/tf 

2 Framing camera pictures of K9 glass specimen 24mm thick 
under detonation loading 

Fig.2 shows the experimental records of No.l. The figure 2(1) is the frame in which shock wave 
still not propagate into glass specimen. We can found the surfaces of the specimen. The black area 
at the left of this frame is one part of copper plate. From Fig2(2) and (3), it is found a black shadow 
move into the specimen, and divided into two parts. One moves more quickly than another, and the 
velocity of the faster one is 5.8±0.2 mm/|is. Its front is obviously shock wave. The front of the 
second shadow area is irregular, Bourne[8] speculated the irregular front is caused by cracks. It can 
deduced its average velocity is about 1.8+0.5 mm/|is based its position in each frame and interframe 
time. Figure 3 shows the relation of velocity of rear free surface of 8.1mm thick K9 glass specimen 
vs. time under the same loading condition as No.l. It is obviously failure wave formed in K9 glass 
specimen 8.1 mm thick because there is a small velocity increase on this profile, and its velocity is 
1.342 mm/us. This slow moving front of shadow in fig.2 is so called failure wave, because its 
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velocity is almost same as that failure wave got by VISAR in Fig.3 , It is found there are irregular 
shadow stripes behind the shock wave front. They appear in the frame, and disappear or change in 
the next frame. These stripes are caused by the triangle spatial profile of pressure behind shock 
front. When the pressure behind shock wave changed, and lead to variety of refractive index . 

lp"»VvW'«*-v»»Ttfn 

Recompression 
signal 

1.0 1.5 2.0 

Time /us 
2.5 3.0 

Figure 3 The velocity of rear free-surface of 8.1mm K9 glass specimen 
vs. time under detonation loading 

Figure 4 shows the frames of double glass specimens under detonation loading. Specimen A is 6.5 
mm thick, Specimen B is 24 mm. Both of these specimens are clung together. The maximum stress 
in specimen is 5.89 GPa in No.2 experiment. In fig.4(2), the shadow moved into specimen A from 
left at 0.4 us, and is also divided into two parts in figure4(3) at 0.8 |is, which is same as that of 
figure 2. It is of course the first one is shock wave, and the second one is failure wave. In fig.3 (4) 
we can find another black region form at the inner interface between the two specimen at 16 |as. 
This black region developed, and moving with velocity 1.6±0.5'mm/jis behind shock front in the 
next frames, and its front is same as that of the failure wave in specimen A. This indicates the front 
of this black region is another failure wave, which formed at the interface of two specimens. It is 
difficult to say the mechanism of failure wave contacted with the micro-cracks on the surface of 
specimen or phase-transformation on the base of the failure wave formed at the impacted surface. 
But it can be concluded that failure wave contacted with the surface of glass specimen according to 
the experimental frame that another failure wave formed at the inner-interface of two glass 
specimens. Because if failure wave is phase-transformation wave, it ought to propagated into 
specimen from impacted surface into specimen, how to explain the second phase-transformation 
wave form at the inner-interface in the front of the first one at the same loading condition for same 
material. That authors reckon the formation of failure wave is contacted with the special structure of 
surface of glass specimen are on the base of following reasons. (1) Because the failure wave is 
formed at surface and inner-interface of specimens under shock wave loading, the failure wave 
must contacted with the surface of glass specimen. (2) The structure of surface is different from the 
inner for glass specimen. (3) Each surface of glass specimen has hundreds or thousands of 
micro-cracks per square centimeter when they were polished, even for the optical surface. The exist 
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of these micro-cracks lower the strength of surface of glass specimen. These micro-cracks were 
activated and developed into the specimen when the pressure is higher enough. When they 
propagated into specimen, their front is the failure wave because dynamic impedance behind of this 
front is lower than that in front of this front due to material comminuted. 

■interface . 

- , specimen A , 

& «.specimen B j 

Eg s rear surface—. 
(£#:■■ ■ 
ffi JErfronl surfac 

copper j 
rrgjuascplate 

11 
m: ir"'"* 

WA*--- 
RjrFfep- •- i»i 

M 'A 

(1) o jus (2) 0.4^ (3) 0.8^ 

(4) 1.6^ 

>$r "i,v'<'"''''3 M 
Jk&-~ 

- 

-F2 

1 >     ' ! 

(5) 2.0 jo (6) 6.4^ 

(Fl-Failure wave 1, F2~Failure wave 2, S-Shock wave, R-release wave) 

Fig. 4 Framing camera pictures of double specimens of K9 glass 

under detonation loading 

4 Conclusion 

Failure wave is a moving comminuted front. Its formation is connected with special 

structure of glass specimen and the micro-cracks on the surface. 
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ABSTRACT 

The analysis of dynamic fracture of ships and it's response by shock wave caused by the non- 
contact underwater explosion is very important in the design of reliable marine vessels. 

In this study, a dynamic fracture analysis of a ring-stiffened cylinder subjected to a strong 
acoustic wave is carried out by two steps ; the macro analysis and micro analysis. In macro analysis, 
the dynamic response of the structure is investigated. In micro analysis, the dynamic stress intensity 
factor of a pre-cracked ring stiffener is determined by the pressure time history of load which is 
obtained in the macro analysis. Three numerical methods determining the dynamic stress intensity 
factors are proposed and discussed. To check the validity of numerical analysis, numerically 
calculated stress intensity factors are compared with the theoretical and experimental results 
decided by the dynamic photoelasticity method. 

1. INTRODUCTION 

To improve the structural hardness of marine vessels against the shock, a clear understanding of 
the modes of failure and their causes is highly required. In the past, the data necessary for failure 
modes and the physics to failure have been obtained through process of underwater shock tests. 
However, this process is very costly and extremely limited to certain conditions. Therefore it is 
strongly recommended to develop an accurate numerical simulation technique. Recently researchers 
have applied commercial software to perform shock response analysis of structure subject to 
underwater explosion loads[l, 2]. But the numerical study on the dynamic fracture of the structural 
members by underwater explosion loads is rarely performed, because of the large numerical model 
size and lengthy computational time. 

To investigate the dynamic fracture of a ring-stiffened cylinder under a strong acoustic wave, the 
two procedures are applied such as the macro and micro analyses. To confirm the validity of the 
analyses the stress intensity factor determined by the numerical approaches is compared with the 
theoretical value[3]. The dynamic stress intensity factors for I-form stiffener with inclined crack are 
numerically calculated and compared with the dynamic photoelasticity method. 
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2. THE COMPARISON OF THEORETICAL ANALYSIS 

To confirm the validity of numerical calculation of dynamic stress intensity factor, the cracked 
rectangular plate by the plane step load is 

Imn p(t) selected since the problem has the analytic 
solutions[3]. To calculate the dynamic stress 
field of the cracked plate, the MSC/NASTRAN 

'■3E5 Pa is applied. The mode I dynamic stress intensity 
factors Ki at the crack tip are calculated using 
by the numerically simulated caustic method[4], 

 1   the stress gradient method[5] and the CRAD2D 
599mm of MSC/NASTRAN. 

Fig. 1 Model geometry and loading history 

Fig. 2 shows numerically simulated caustics. The dynamic stress intensity factors are shown in 
Fig. 3. The dynamic stress intensity factors calculated by numerical caustic method and stress 
gradient method agree well with theoretical result. But the Revalues obtained by CRAC2D are 
lower than the others. 
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Fig. 2 Simulated caustic curve[110u sec] 
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3 Comparison of dynamic 
stress intensity factor 

The dynamic stress intensity factor was calculated by numerical analysis for the inclined crack in 
I-form stiffener subject to free fall impact loading. The Ki-values are compared with the dynamic 
photoelastic method. 

h 
Fig. 4 Experiment model 

^ 1SS9 

TIME [fisec] 

Fig. 5 Free fall loading 

The analyzed model geometry and free fall loading are shown in Figs. 4 and 5.  The 
polycarbonate was used as specimen material. 
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3.1. The dynamic photoelasticity method 
The dynamic photoelasticity method is applied which consisted of the Cranz-Shardin camera 

system with a multi-spark camera set, a dynamic photoelastic apparatus, a loading equipment,field 
lens and controllers. 

Fig. 6 shows a typical stress field at the around of the dynamically loaded crack tip in the 
specimen shown in Fig. 4. 

Fig. 6 Dynamic isochromatics     Fig. 7 Experimental(dotted) and theoretical isochromatics loops 

The Newton-Raphson method and over-deterministic least square method(OLSM) are applied to 
extract the dynamic stress intensity factors. The isochromatics are generated with the extracted 
dynamic stress intensity factors as shown in Fig.7. 

3.2. Comparison numerical analysis with experiment 
The dynamic stress fields of I-form stiffener were numerically analyzed by using 

MSC/NASTRAN. To compare with the experiment, the identical geometry, material properties, 
dynamic loading history were adapted. The analyzed stress fields were used to calculate dynamic 
stress intensity factors. The numerical caustic curve is shown in Fig.8. Because this model has a 
inclined crack from the free fall load, under the tensile and shear loadings to crack tip the numerical 
caustic reveals the mixed shape. 
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Fig. 8 Numerical caustics curve [91u sec] Fig. 9 The comparison of dynamic 
stress intensity factors 

From numerical caustics curve, it is confirmed that loading state is mixed mode condition[6]. 
Fig. 9 shows comparison of dynamic stress intensity factors. The numerical results are similar to 

each other except the results by CRAC2D element of MSC/NASTRAN. The experiment is shows 
somehow larger values than others. It seems that the free fall tup applied to the specimen incorrectly 
to experiment may cause some error. 
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4. DYNAMIC FRACTURE ANALYSIS OF STIFFENED CYLINDER 

4.1. Macro analysis 
In the shock response analysis of ring-stiffened cylinder subject to spherical acoustic wave was 

carried out by the MSC/DYTRAN. This hydrocode has been also utilized in underwater explosion 
problems which yields a good agreement with analytic and experimental results[7, 8]. The model 
geometry and size of the ring-stiffened cylinder are as shown in Fig. 10 and Table 1. The ring- 
stiffened model is under a side-on explosion of 1kg TNT And the standoff distance is 7m. The 
cylinder and the end plate have been modelled with Lagrangian quad shell elements. The ring 
stiffeners are attached to the beam element by adjusting sectional properties of the beam. Since the 
general coupling technique is used for fluid-structure interaction, dummy elements have been used 
for wrapping around the cylinder which is placed inside the Eulerian mesh. Because the charge is 
located at the middle of the cylinder over the centerline, a quarter symmetry can be used. The model 
of the macro analysis is introduced in Fig. 11. The material properties of cylinder are p 
=7840kg/m3, v=0.32, and E=200e9. 

Tal 3le 1 Model size 
Radius of 
Cylinder 

Length of 
Cylinder 

Thickness of 
Cylinder 

King 
Frame 

Ordinary 
Frame 

Frame space 
(King/Ordinary) 

3m 15m 20 mm 500x12/200x30 180x12/90x20 5000mm/500mm 

Fig. 10 Model geometry Fig. 11 Stiffened cylinder model 

The results of the macro analysis are presented in Fig. 12 and Fig. 13. The shock wave produced 
by underwater explosion is transmitted through the water medium and attact the cylinder. Fig. 12 is 
the fringe illustration of the position of the shock wave at 4.2msec. The shock wave impacts the 
cylinder and it causes local deformation and stress wave at side of the cylinder. Fringe plot of 
effective stress at 4.2msec is seen from Fig. 12. Fig. 13 shows the propagation of stress wave 
through the cylinder. 

Fig. 12 Computed shock wave at 4.2 [ms] Fig. 13 Effective stress at 4.2 [ms] 
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4.2. Micro analysis 
In the micro analysis, a dynamic stress intensity factor was numerically calculated in a cracked I- 

form ring stiffener under impact loading obtained from the macro analysis. The model geometry 
and loading profile were shown in Fig. 14. 
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Fig. 14 Cracked I-form stiffener and impact loading as results of macro analysis 

As a result, isochromatic fringe plotted of the maximum shear stress and numerically simulated 
caustics curve is shown in Fig. 15. The stress wave is propagated through stiffener and as 
compressive wave encounters free surface, it reflects back as a tensile wave. The compressive wave 
and tensile wave are superposed in the time-step shown in Fig. 15 

The numerically simulated caustic curve revealed mode I loading condition by tensile wave and 
the isochromatic fringe showed as the butterfly shape at the crack tip. 

Fig. 15 Isochromatic fringe and 
numerical caustic curve [160u sec] 
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Fig. 16 Comparison of dynamic stress 
intensity factor 

The comparison of dynamic stress intensity factor is shown Fig. 16. The results show a good 
agreement. 

However, the output by CRAC2D of MSC/NASTRAN indicate little lower than others. 
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6. CONCLUSION 

Dynamic fracture analysis of stiffened cylinder subjected to underwater explosion was 
investigated by two steps ; the macro and micro analyses. In the macro analysis, a shock response 
analysis of ring-stiffened cylinder subjected to spherical acoustic wave was carried out using 
MSC/DYTRAN. In the micro analysis, a dynamic stress intensity factor was numerically calculated 
for the cracked I-form ring stiffener under the impact load. In order to verify of numerical analysis, 
theoretical and experiment results were compared with those by numerical analysis. 

The dynamic stress intensity factor is calculated by the numerical simulated caustics, stress 
gradient method and CRAC2D element of MSC/NASTRAN. The numerical results were similar to 
experiment and theoretical results. 

It is observed in the study that the simulation from the CRAC2D element of MSC/NASTRAN 
indicate consistently lower magnitude of the dynamic stress intensity factor than other approaches. 
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ABSTRACT 

In this paper, an equation for sampling point modification is derived which can correct the 
stiffness stiffening phenomena in a composite plate. This stiffening phenomena is corrected by 
modifying Gauss sampling points in the numerical integration of stiffness matrix. The stiffness is 
assumed to be a quadratic function, thereby enabling the prediction of the errors caused by reduced 
integration. This assumption is confirmed through a comparison of the predicted and actual errors. 

1. INTRODUCTION 

A 16-node solid element exhibits a relative stiffening effect with respect to 20-node element 
in bending problems. The stiffening effect can be resolved by using modified sampling points in a 
numerical quadrature. A modified 16-node solid element which uses translated Gauss sampling 
points is considered. The Gauss sampling points of 16-node element are modified in thickness 
direction that produces an accuracy very close to that of a 20-node element. To accomplish this 
object, modification equations of 16-node solid elements for composite plates are derived. Various 
examples are used to confirm the validity of these modification equations. 

2. MODIFICATION OF GAUSS SAMPLING POINTS 

To derive the modification equation of 16-node elements modeling a composite laminate, the 
2-D bending deformation of 8-node element in x-z plane is considered as in Fig.l. This state is 
assumed to be in a plane stress condition. Thereafter, the stress-strain relation can be obtained as 
inEq.l. 
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Fig.2 6-node composite plane stress 
element under pure bending 

Equivalent nodal forces of the 8-node element in pure bending deformation are expressed as in 
Eq.2. 

W« = E I I  KF [D] [Ba] [Ul -J Wkl Wkj hkbkl h (2) 

Where, N = the order of integration, k = the layer number, NL = the number of layers, hk = the 

thickness of the kth layer, bk = the width of the kth layer, Wki or Wkj = the weight factor of the Gauss 

sampling point, {U8} denotes the displacement vector. 

By using stress and displacement vector, Eq.2 can be rearranged to Eq.3. 

NL    N  1 

ft}« = ES;[^ B~A B A B ~A B ° ° ° -™ ° ° ° -2ß]7'4 J%KKih 

A = 9DU    -2wDn,  B = 20D2l -4wD22 (3) 

Here, tkj is the sampling point of the kth layer, 6 = the rotation angle, J is the Jacobian determinant, 
and w represents the vertical deflection of node 7 or 8. In a case of pure bending, the z- 
directional nodal forces should be zero. Therefore, the relation, 26>£>21 - 4wD22 = 0 should be 
satisfied, so w = 8D2XI (2D22). By inserting this value into Eq.3, one can obtain Eq.4. 

NL     N   I 

W}« = Z Yr^6C ° -0C °   6C ° -0C 0 0 0 0 0 0 0 0 0 ]7'^ J Wkj hkbkl h 
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C = Du- Du D2] I D22 (4) 

Meanwhile,  the  equivalent  nodal  forces  of the  6-node  element  in  a  pure  bending 
deformation( Fig.2) can be expressed as in Eq.5. 

NL        N        N 

{^L-, = E   Z   I    [B6Y [D] [B6] [u\JWk, Wkjhkbkl h (5) 
*=i    ;=!    j=i 

Eq.5 can be rearranged into Eq.6. 

NL       N   1   r          I 

{%-.-  = I  ZiK   ° ~9Dn   0 0DU 0 -6Dn 0 0 0 0 0 jT t%JWkjhkbk I h (6) 

For equal deformation energies for the bending of the 6-node and 8-node elements in the x-z plane, 
the following force equilibrium must be satisfied. 

te}'x-, = foh-, (?) 

Here, {F6}'x.2 is {F6}x.z, the dimension of which is expanded to the size of {F8}x.r From the 
equilibrium in Eq.7, one can obtain the modification of the Gauss sampling points as in Eq.8, where 
tkl6j and tk20j denote the sampling points of the kth layer of a 16-node element and that of 20-node 
element, respectively. 

.'*,«,='«.,[!   -   Dn D2J{DU D12)}>" (8) 

To recover the wrong effect on torsional mode, an additional modification equation, Eq.9, is 
needed along with Eq.8. 

^(16)12* = G(20)iat/[i-A2 A, /(A, D22)] (9) 

Here, G(16)I2k denotes the modified shear modulus of the kth layer in the 1-2 plane used in a 16-node 
element, and G(20)12k denotes the original shear modulus of the kth layer in the 1-2 plane used in a 
20-node element. 

3. REDUCTION OF THE QUADRATURE IN LAMINATED COMPOSITE PLATES 

One of the authors of this paper has already shown1'1 that part of the stiffness [KNL] can be 
evaluated by an order 1 quadrature in the thickness direction. Accordingly, it is assumed that the 
remaining part of the stiffness, [KL] varies quadratically in the thickness direction. When an 
orthogonally layered composite(0/90...)s is considered, the integrand is assumed to be F(x) 
= aEkX

l.   Then the analytical result can be given as in Eq. 10. 
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r*'2 1 1 
j    F(x)dx =   —W1aEi.h

3  + —W2aE2h
3 

~hn 12 12 
(10) 

Where, W„ W2 are weight factor depending upon specific layering scheme, E, and E2 are elastic 
coefficients of the kth layer. The relative error of reduced integration for [KL] of a composite 
laminate can be obtained as follows. 

errorJ W^h'117) + W2{E^ lYl) -ffcEtf 1 /  {wt [E^ l\l)+W2{E2h
3 111)} (11) 

4. NUMERICAL EXAMPLES AND DISCUSSIONS 

4.1. Static Analyses of Pure Bending Isotropie Plate121 

The length to thickness ratio of the plate(Fig.3) was 100, and the linear and geometrically 
nonlinear analyses were performed using 5 elements of a 16-node or 20-node element. The results 
are plotted in Fig.4. In this case, the Poisson's ratio was 0.2 and the quantity of modification was 
2.0%. The results for the conventional element had 4.1% linear errors and 3.8% nonlinear errors. 
Meanwhile, the results for the modified elements had only 0.13% linear errors and 0.16% nonlinear 
errors. 

4.2. Static Analyses of Four-Layer Composite Plate 
The material properties of each lamina are given in Table 1 and the stacking sequences are 

shown in Table 2. The dimension is 300x50x3.2( mm ), and it is subjected to a tip load. The 
plate is discretized into 10 elements. In Table 2, the results of the conventional 16-node and 
modified 16-node element models are compared with those of the 20-node element model. 

b= 1.29E-3m 
h = 6.35E-5m 
L = 6.35E-3m        2 

E = 8.2737E+7 N/m 

V 

Tl kb^ 
"i    r T 

Fig. 3 Finite element model of pure 
bending plate under end load 

_ L.L 20-node 
12 — 

D L.L 16-node(modified) 
+ L.L 16-node(conventional) 
- N.L 20-node                             J 
O N.L 16-node(modified)     JJ 

o 0.8- X N.L 16-node                JQ 
8 u (conventional)     jf 

§ .0.6- 

0.4- 

a 0.2 - JrL.L : Linear Analysis 
r         N.L : Non-linear Analysis 

C ) 
1 '      1      '      1      '      1     ' 
2 4            6            8           1 

Load parameter K  (=PLVEI) 

Fig.4 Static linear and nonlinear 
deflection of cantilever plate 
under end load     (L/h =100) 

For the unidirectional lamina, some case( 0/90 )s needed almost no modification, whereas 
others ( 90/90 )s definitely needed modification, depending on the stacking sequences. For the 
woven lamina, the orthogonally woven in-plane fibers resulted in quasi-isotropy and small 
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quantities of modification. Thus, the modification is not necessary, in essence. The case of braided 
composite is quite similar to isotropic case, and modification is inevitable to produce reasonable 
results. 

Table 1 Material properties of composite laminae in static analysis 

~~~~~^~-^^_Properties 
Lamina         ~—■— 

E„(Gpa) E22(Gpa) E33(Gpa) G12(Gpa) G13(Gpa) G23(Gpa) «12 

A Unidirectional 132.4 10.8 10.8 5.7 5.7 3.6 0.24 
B Woven 132.4 132.4 10.8 55.2 5.7 5.7 0.20 
C Braided 120.0 120.0 120.0 48.0 48.0 48.0 0.25 

Table 2 Comparison of the deflections of modified and conventional 16-node models with the result 
of 20-node models 

Type of Layer 
\Element 

Layer    >v 

Displacements 

20-Node Model 
Conv. 16-Node 

(Error %) 
Mod. 16-Node 

(Error %) 

Unidirectional 
Lamina 

(0/90)s 0.4896 0.4837(1.2) 0.4879 (.34) 

(90/0)s 2.0959 1.9011(9.3) 2.1022 (.30) 

(45/-45)s 2.4280 2.2910 (5.6) 2.4590 (1.3) 

(90/90)s 4.4390 3.6220(18.) 4.4380(016) 

Woven Lamina 

(0/0)s 0.4320 0.4297 (.51) 0.4317(042) 

(45/45)s 0.4319 0.4297 (.51) 0.4317(042) 

(0/90)s 0.4319 0.4297 (.51) 0.4317(042) 

Braided Lamina (0/0)s 2.6620 2.4820 (6.8) 2.6460 (.61) 

15-! 

X o^ 10- 

Theoretical Error 
Actual Error 

Number of layer (N) 

Fig. 5 Integration errors(order 1) of 
isotropic composite plates in 
mode analysis 

O 

10- 

Theoretical error 
Actual error 

10 

Number of layer (N) 

Fig.6 Integration errors (order 1) of 
orthotropic composite plates in 
mode analysis 
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5. REDUCTION OF ORDER OF QUADRATURE IN MULTILAYERED COMPOSITES 

The predicted errors based on this assumption were then compared with the actual errors in 
Fig.5 for isotropic plates, and in Fig.6 for orthotropic composite plates. 
The material properties of these laminae were given in Table 1. The actual errors are calculated 
from the results of an order 1 reduced integration and an order 3 full integration, in the thickness 
direction. For both the isotropic and orthotropic mode analyses, the predicted errors agreed well 
with the actual ones. 

5.1. Verification of Modification Equations in Mode Analyses 
To verify the two modification equations, a 3-layered(90/0/90) model cantilever plate of 

300x50x3.2( mm ) was discretized into 10 elements and analyzed. The material properties are EM 

= 172.7Gpa, E22 = E33 = 7.20Gpa, G12 = G13 = 3.76Gpa, v12 = v13 = 0.30, v23 = 0.50, p = 1551 kg/m3. 

Table 3 Comparison of the results of 16-node elements with the results of 20-node element 

Mode Number 
Element(Error %) 

20-Node Conv. 16-Node Mod. 16-Node 
Eq.8 

Mod. 16-Node 
Eq.8,9 

1st 107.7 116.8(8.5) 107.8(.09) 107.8(.09) 
2nd 300.3 325.0(8.2) 291.4(3.0) 300.2(.03) 

3rd(torsional) 333.3 333.7(.12) 300.2(9.9) 333.5(.06) 
4th 600.0 647.0(7.8) 598.0(.33) 598.1(.34) 

5th(torsional) 683.0 686.3(.48) 601.1(12.) 683.4(.06) 

In Table 3, the results of conventional 16-node element showed a substantial error in the 1st, 
2nd, and 4th mode, and the modified 16-node element( modification of Gauss sampling points 
only) showed a substantial error in the torsional( 2nd mode and 3rd ) mode. The results of the 16- 
node element which applied the modification equation and material properties showed a very close 
result to that of the 20-node element. 

6. CONCLUSIONS 

1) The modification equation of the Gauss sampling points was derived for the 3-dimensional 
16-node element of a composite plate. The effectiveness was verified by comparing the 
static and mode analysis results of 20-node element those of the modified and conventional 
16-node element. 

2) In the static and mode analyses of composite plates, the errors in the stiffness evaluation 
that resulted from the reduced integration could be predicted as a function of the number of 
layers. 
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ABSTRACT 

Growth-strain method was used for general two and three dimensional shape optimization. It 

was verified in previous papers that the growth-strain method is very effective for shape 

optimization of structures with only one free surface to be deformed. However, it could not provide 

reasonable optimized shape for structures with two or more free surfaces such as structures with 

holes inside. Problems occurred, as the growth-strain method was applied to structures with two or 

more free surfaces, were investigated. Accordingly, an improved method was suggested. The 

effectiveness and practicality of the improved method was verified by some examples. 

1. INTRODUCTION 

The optimization techniques can be classified into three categories, namely sizing [1,2], shape 

[3,4] and topology [5,6] according to the characteristics of the design variables and formulation. 

Most of the optimization techniques which have been reported regarding the shape optimization are 

based on the mathematical programming method. The optimization techniques perform the 

optimization by boundary parameterization and design sensitivity analysis. Therefore, many 

calculations and a large memory for optimization are inevitable. 

Recently, the growth-strain method [7,8], whic.i is not based on the mathematical programming 

method, has been proposed. Hence, the shape of the maximum strength or the maximum stiffness 

can be designed by the method without boundary parameterization and sensitivity analysis. The 

growth-strain method has successfully been applied to shape optimization of two or three- 

dimensional structures without a hole inside or with only one deformable free surface even though 

there is a hole inside. But when this method is applied to structures with two or more deformable 

free surfaces, a valid optimal shape, such as the shape obtained by the mathematical programming 
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method, cannot be obtained. 

In this paper, the problems occurred, as the growth-strain method was applied to structures with 

two or more deformable free surfaces, were examined. Accordingly, an improved method was 

suggested. The validity and the practicability of the improvement of the method for a structure with 

two or more deformable free surfaces were also verified. 

2. THE GROWTH-STRAIN METHOD 

The growth-strain method optimizes a shape by generating the bulk strain to make the 

distributed parameters uniform. The optimization consists of a two-step iteration. The first step is a 

standard stress analysis to estimate the distributed parameter under mechanical conditions. The 

second step is a growth analysis to calculate the growth displacement or the shape modification 

based on the generation law of the bulk strain under shape constraint conditions. Analysis at each 

step is performed by the finite element method. 

If the distributed parameter is defined as quantity per unit volume or area such as Von Mises 

stress, the distributed parameter generally has the property of decreasing with the increase in 

volume in a local infinitesimal volume. Therefore, the bulk strain is generated as a function of the 

distributed parameter due to the following growth law of equation (1) to modify the shape so that 

the distributed parameters are uniform. The contracting bulk strain is generated where a is less 

than a, while the expanding bulk strain is generated where a  is greater than a  in all elements. 

*;=—*,* a) 

where, sfj is the bulk strain, a is the distributed parameter(Von Mises stress), a is the 

basic value (for example, the average stress or the maximum stress) of the parameter, 8tj is the 

Kronecker delta    and   h   is the growth rate, which adjusts the magnitude of the growth 
deformation 
and is an arbitrary coefficient to be h «1. 

Assuming that a material is a thermal isotropy, the thermal strain generated is a bulk strain 

without shearing components. Hence, the thermal strain can be defined with the similar eq. (2) to 

that of the growth analysis. 

sl=aM8u (2) 

When a designer establishes the objective volume, eq. (3) modified the growth law of eq. (1) by 

applying the PID control theory. When a designer establishes the objective stress, eq. (5) is applied. 

Therefore, volume and stress can be controlled effectively by eqs. (3)-(5), respectively. 
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where (n) is the number of the nth iteration, ^, AT,, KD are proportional constants, ve is 

the volume of each element, ae is the representative stress of each element, Vobj is the objective 

volume, F'"'means the total volume of the nth iteration, aobJ is the objective stress, and <r^ is 

the maximum stress of the nth iteration. 

3. IMPROVEMENT OF THE GROWTH-STRAIN METHOD 

The Growth-strain method has successfully been applied for shape optimization of structures 

without a hole inside or with only one deformable free surface, but cannot obtain a valid optimal 

shape for the structures with two or more deformable free surfaces by the growth-strain method as it 

is. 
In the case of a structure with two or more free surfaces, the bulk strain occurs by the growth 

law of equation (1) between the two or more free surfaces. This causes an optimized shape to be far 

from the initial shape. Therefore, in order to maintain the initial shape it is necessary that an 

additional constraint should be given, and by doing so, a problem with two or more free surfaces is 

replaced by that with only one free surface. In this paper, the additional constraint was given by the 

type of a line connected with the points where the bulk strains are zeros. 

For example, consider a two-dimensional bracket with a hole. In the case that both the internal 

hole and the outer surface are deformable, the optimized shape by the growth-strain method is 

obtained as shown in Fig. 1. It is a shape far from the initial shape, because the shape has been 

changed with the growth law by thermal deformation between the hole and the outer surface as 

mentioned before. 
In order to apply the growth-strain method to the problems which occur in the structures with 

two or more deformable free surfaces, an additional constraint between the two free surfaces should 

be given, as shown in Fig. 2. The constraint is given by a line connected with the points having the 

strains of zero, that is, where the bulk strain is not occurred. By doing so, the two deformable free 
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surfaces are deformed by the growth law based on the given line constraints. Then, this problem has 

been replaced by a problem with two only one free surface. As a result, the final optimized shape 

can be obtained a reasonable shape, similar to the shape optimized by the mathematical 

programming method. 

Fig.l. Shape optimized by the growth-strain method 

for a bracket with a hole 
Fig.2. A bracket with an additional 

boundary condition around a hole 

4. APPLICATION EXAMPLES 

4.1 A two-dimensional bracket 

A shape optimization was accomplished by stress control for a two-dimensional bracket as 

shown in Fig. 3. The objective volume was established at 50% of initial volume of the bracket. 

The values of KP, K, and KD were 0.05 and 0.5, 0.1, 0.0, respectively. These values were 

obtained from a previous study [9]. The changes of the volume (area) to the initial volume and the 

Von Mises stress to the Maximum Mises stress are shown in Fig. 4. And the optimized shape is 

shown in Fig. 5. The volume of the optimized shape was converged to the established volume, 

50% of the initial volume. And the Maximum Mises stress was converged to 1.1 times the initial 
Maximum Mises stress. 

—•— Volume 

■    Stress 

Iteration Number 

Fig.3. Initial shape of a 2-D bracket Fig.4. History of iteration by volume control 
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Fig. 5. Optimal Shape of a 2-D bracket by volume control 

4.2 A three-dimensional bracket 
A shape optimization was accomplished by volume control for a three-dimensional bracket as 

shown in Fig. 6. The objective volume was established at 70% of the initial volume of the bracket. 

The values of KP, K, and KD were 0.05 and 0.5, 0.1, 0.0, respectively. And the optimized 

shape is shown in Fig. 7. The final volume was reduced to about 70% of the initial volume. There 

was no problem to carry out shape optimization for the three-dimensional bracket when the growth- 

strain method was applied. But the optimal shape is not practical, so that it is better to accomplish 

shape optimization for making three-dimensional structure two-dimensional structure by imposing 

some constraints considering producing. 

Fig.6. Initial shape of a 3-D bracket Fig.7. Optimal shape of a 3-D bracket 

5. CONCLUSIONS 

In this paper, the growth-strain method was improved by giving additional constraints at the 

points or lines with the strains of zero, which was verified for general two-dimensional structures 

with two or more deformable free surfaces. There was no problem for general three-dimensional 

structures in the shape optimization point of view, but it is not practical to produce an obtained 
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optimal shape. It is better to carry out shape optimization for making three-dimensional structure 

two-dimensional structure by imposing some constraints considering producing. The shape 

optimization by the improved growth-strain method could be much more effective than the 

mathematical programming method for complicated three-dimensional structures. 
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ABSTRACT 
Crack growth and creep fracture resulting from the initial defects are studied by a multicrack growth model. 

The percolated crack patterns and the number of steps to percolation are examined by Monte Carlo simulation 

on a square lattice. Effects of stress and grain size on creep fracture process are then discussed. The stress 

and grain size dependence of the number of steps to percolation in the simulation is similar to that of 

grain-boundary sliding in an austenitic heat-resisting steel, which controls the growth of grain-boundary cracks. 

The fractal dimension of the percolation crack is also correlated with that of the fracture surface in the steel. 

1. INTRODUCTION 
The initiation and growth of grain-boundary cracks at high temperatures, which are governed by 

grain-boundary sliding, lead to the formation of complex grain-boundary fracture patterns. The fractal 

geometry proposed by B.B. Mandelbrot [1] has been successfully applied to the quantitative description of creep 

fracture patterns by the fractal dimension [2,3]. The fracture patterns may be affected not only by characteristic 

microstructures of materials such as grain size but also by creep conditions [4]. However, the relationship 

between the creep-fracture process and the resulting fracture patterns has not sufficiently been known from the 

view point of damage mechanics. In this study, a Monte Carlo simulation is made using a multicrack growth 

model, which is similar to that proposed by Nishimura et al. [5]. The crack growth and creep fracture pattern is 

examined and is compared with the experimental results of the austenitic 21Cr-4Ni-9Mn steel. 

2. SIMULATION METHOD 

2.1. Multicrack Growth Model 
Growth of grain-boundary cracks with two crack tips from randomly located initial defects is simulated in a 

personal computer using a multicrack growth model, which is similar to that proposed by Nishimura et al. [5]. 

In the Monte Carlo simulation using this model, a growth point of a crack may reach an adjacent crack (crack 

linkage), may reach an edge of the lattice (edge relaxation), may be trapped in its own cluster (self-trap), or may 

stop to grow (crack arrest) on the square lattice. One step length in the lattice corresponds to one 

grain-boundary length in the specimens. In this study, simulation was made five times to percolation under the 

same condition. Percolation in the lattice corresponds to fracture of materials. The fractal dimension of the 

percolation cluster was determined by the box-counting method [1,6] in the scale length range larger than one 
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Fig.1. An example of Ihe simulation carried out 

on square lattices (N=50 and IDI>=0.0127). 

step length of the lattice. Figure 1 shows an example 

of the simulation carried out on a square lattice with the 

system size N=50 (the initial defect density (BOD) is 

0.0127). Solid circles in the lattice show the initial 

defects. Percolation cluster (percolation crack) is 

formed in the horizontal and vertical directions (shown 

in bold line) in this case. The stress direction to the 

growing cracks is not specified in the simulation, 

although creep cracks usually tend to grow in the 

direction normal to the tensile stress. The magnitude of 

tensile creep stress is indirectly taken into the simulation 

through tiie value of HDD. Clusters tiiat are not linked 

to percolation cluster are considered to be isolated 

cracks. Clusters are hereafter referred to as "cracks" in 
this paper. 

12. Preliminary Simulation 

Figure 2 shows the system size (N) 

dependence of the number of steps to 

percolation (NSP). Ihe value of NSP 

increases as the system size (N) increases and 

the value is larger at the larger initial defect 

density. For a lattice with the system size N, 

the value of NSP divided by (N+l)2 may give a 

value of NSP per nodal point of the lattice. 

1.00 

0.80 

0.60 

i 0.40 

0.20 
Crack linkage occurs for all datum points 

except solid marks 

40 
N 

80 

Fig.3. The relationshp between the value of 

NSP/fN+1)2 and the system size (N). 

Q. 

2 

10' 

103 

102 

10 

Crack linkage occurs in all cases 

10 50 100 

Fig.2. The system size (N) dependence of the 

number of steps to percolation (NSP). 

Figure 3 shows tiie relationslup between the value of 

NSP/tN+1)2 and the system size (N). The value of 

NSP/^+l)2 increases as the system size increases, but 

becomes almost constant when the system size (N) is 

equal to or larger than about 50. Thus, there is a kind 

of "size effect" in the small lattices of the muMcrack 

growth model used in this study. This may indicate 

that the effect of grain size on the creep fracture should 

be examined using the lattices with sufficiently large 

system size (N). In this study, the following 

simulations are all carried out on the lattices with the 
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system size N=50 and with different values of IDD. The ratios of the system size (n) for the specimens with 

the grain sizes (d), 8.4,24,99,180, and 310 are 595,208,51,28 and 16, respectively. The value ofNSP for the 

system of the ratio n was calculated using the value of NSP for N=50, nsp, by NSP=(nsp){(n+iy52}2 in this 

study. 

23. Determination of Initial Defect Density (IDD) 

Creep-rupture experiments were carried out using 

specimens of the austenitic 21Cr-4Ni-9Mn heat-resisting 

steel with various grain sizes (d). The details of the 

chemical composition, the heat treatments and the creep 

mechanism of the steel are shown in the reference [7J. 

Figure 4 shows examples of the grain-boundary fracture 

surface profiles of the 21Cr-4Ni-9Mn steel (973 K, 196 

MPa). Grain-boundary microcracks linked to the fracture 

surface can be observed in these specimens. Table 1 shows 

the change in the fraction of cracked grain-boundaries linked 

to the fracture surface, f, with grain size in the ruptured 

specimens of the 21Cr-4Ni-9Mn steel. The value of f 

increases as the grain size (d) decreases. Table 2 shows the 

change in the fraction of the cracked grain-boundaries, fj with 

creep stress in the specimens (grain size, d=99 ß m) 

ruptured at 973 K, 196 MPa. The fraction of the cracked 

grain boundaries also increases with decreasing creep stress. 

The initial defect density (TDD) is a two-dimensional 

quantity, and is assumed to be f2 in the simulation in Ulis 

study. The initial defect density may reflect Ihe grain size 

and   stress   dependence   of the creep fracture process. 

300^ m.. 

Fig.4. Examples of the grain-boundary 

fracture surface profiles of the 21Cr-4Ni- 

9Mn steel (973 K, 196 MPa). ad=8.4/zm 

b.d=99/xm   c.d=310Mm   (d:grainsize) 

Table 1. The change in the fraction of cracked grain-boundaries linked to the fracture surface, 

f, with grain size (d) in the ruptured specimens of the 21Cr-4Ni-9Mn steel. 

d   (Mm) 
8.4 24 99 180 310 

Fraction   of  cracked   grain 
boundaries, f 0.313 0.273 0.194 0.152 0.118 

Initial defect density (IDD), f2 0.0977 0.0744 0.0375 0.0230 0.0138 

Table 2. The change in the fraction of the cracked grain-boundaries, f, with creep stress 

(a)mthespecimens(d=99 jum) ruptured at 973 K, 196 MP& 
a (MPa.) 

176 1% 245 294 323 
Fraction   of  cracked   grain 
boundaries, f 0242 0.194 0.161 0.129 0.113 

Initial defect density (IDD), f2 0.0585 0.0375 0.0260 0.0166 0.0127 
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The initial defects were allotted to arbitrarily chosen nodal points in the lattice in the simulation. The fiactal 

dimension of the fracture surface in the raptured specimens of Ihe 21Cr4Ni-9Mn steel, which is estimated in the 

scale length range larger than one grain-boundary length, is ched from previous study [4]. 

3. RESULTS AND DISCUSSION 

3.1. Effect of Grain Size on Creep Fracture 

Figure 5 shows the relationship between the number of steps to percolation (NSP) in the simulation, the 

rupture life (tr) of the 21Cr-4Ni-9Mn steel at 973 K, 196 MPa and the grain size (d). The value of IDD listed in 

Table 1 was used in the simulation.   Simulation is carried out using square lattices of the same size (N=50), as 

described in the section 22. The value of 

NSP is proportional to d"214. As grain- 

boundary sliding drives the growth of grain- 

boundary cracks, the number of steps in the 

simulation corresponds to grain-boundary 

sliding in creep fracture. The value of NSP 

approximately corresponds to the number of 

grain boundaries on which the amount of 

grain-boundary sliding reached a critical 

value for crack growth The grain size (d) 

dependence of the rupture life (tr) at 973 K, 
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Fig.5. The relationship between the value of NSP in 

the simulation, the rupture life (tr) of the 21Cr-4Ni- 

9Mn steel at 973 K, 196 MPa, and the grain size (d). 

196 MPa is expressed as fr oc d 032. As 

reported by Kobayashi et al. [8], if the crack 

geometry does not significantly change 

during crack growth, the increase in the crack 

length is proportional to the amount of grain- 

boundary sliding. The critical amount of 

gram-boundary sliding, u, necessary for 

growth ofa grain-boundary crack, may be proportional to the grain boundary length or the grain size (d), 

uK4 although the sliding grain boundaries are not specified in the present model. The total amount of 

grain-boundary sliding to the percolation crack formation, U, is expressed by the product of NSP and u as U 

= (NSP)u oc d~114. The grain size dependence of the crack growth period (fc) is not known in this study, but 

if the value oftt is proportional to the value of tr, the strain rate due to gram-rxÄmdary sliding,^:, can be given by 

k =U/(tcL) oc TJ/(trL) oc d" (1) 

where L is the side length of the lattice and corresponds to the gauge length of the specimens. The grain size 

(d) dependence of e in Eq. 1 lies between that of the grain-boundary sliding model proposed by Langdon (£ 

ocd"1) [9] and that of the model proposed by Gifkins (£ ocd"2) [10]. In Langdon's model, grain-boundary 

sliding is accommodated by the opening of grain-boundary cracks and cavities, while the formation of folds 

accommodate the grain-boundary sliding process in Gifkins'model. The present results may indicate that both 

mechanisms operate for accommodation of the grain-boundary sliding process. Figure 6 shows the grain size 

(d) dependence of the fractal dimension of the fracture surface in the 21Cr-4Ni-9Mn steel (973 K, 196 MPa) [4] 
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and that of the fractal dimension of the percolation 

crack in the simulation. Both fractal dimensions 

increase with decreasing grain size, but the fractal 

dimension of the fracture surface is smaller lhan that 

of the percolation crack at the same grain size. The 

present simulation was carried out on the square 

lattice different from actual grain shape, and Ihe effect 

of stress direction is not taken into account Further, 

the length of grain-boundaiy microcracks linked to 

the fracture surface seems to decrease with increasing 

grain size, since the amount of grain-boundary 

precptates that is larger in the specimens with the 

smaller grain sizes [7] may affect the crack growth 

(Fig. 4). These may lead to the difference in the 

values of the fractal dimension between the 

experiment and the simulation. However, the 

simulation reproduces Ihe principal features of the 

creep fracture. 

1.8 

1.6 

Q  1.4 

1.2 
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Fig.6. The grain size (d) dependence of the 

fractal dimension (D) of the fracture surface in 

the 21Cr4Ni-9Mn steel (973 K, 196 MPa) [4] 

and that of the percolation crack in the 

simulation. 
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32. Effect of Stress on Creep Fracture 
The change in Ihe fracture patterns with 

the creep stress was simulated on Ihe lattices 

with the system size N=50. The value of 

IDD for the ruptured specimens with the 

grain size of 99 ß m was used in the 

simulation (Table 1). In the previous study 

[11], the amount of grain-boundary sliding in 

creep was examined on the ruptured 

specimens of the 21Cr-4Ni-9Mn steel with 

die same grain size and the similar 

microstructures(Ihespecimenswithd=99 ß 

m and with straight grain boundaries). The 

average amount of grain-boundary sliding 

was examined at different creep stresses, 

since the amount of grain-boundary sliding 

generally depends on the orientation of grain boundaries [11,12]. Figure 7 shows the relationsliq) between the 

value of NSP in the simulation for N=50, the average amount of grain-boundary sliding, ua, in the ruptured 

specimens at 973 K and the creep stress, a. to the simulation, the value ofNSP decreases as the creep stress 

(a ) increases, and is proportional to a"085. The vahieofua also decreases with increasing creep stress, and is 

proportional to a _1° in the specimens.     The values of Ihe stress exponent are close to each other (—0.85 

Fig.7. The relationship between the value of NSP in 

the simulation and the value of ua in the ruptured 

specimens at 973 K [11] and the creep stress, a. 
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and —1.0).   Thus, Ihe value of NSP is again correlated to the critical amount of grain-boundary sliding for 

crack growth.   Figure 8 shows the stress dependence ( a ) of Ihe fractal dimension of the fiacture surface in the 

ruptured specimens at 973 K [4] and that of the percolation crack in the simulation.   The stress dependence of 

these fractal dimensions is similar, and the feature of the fracture patterns is also reproduced by the present 

simulation, although the fractal dimension of the fracture surface is a little smaller than that of the percolation 

crack   As described in the chapters 2 and 4, the 

simulation is performed on the square lattices and 

simplifies the creep crack growth process.   Those 

may affect the results of simulation.   Nevertheless, 

the results of the present simulation shows that the 

stress and grain size dependence of fracture 

patterns in creep is correlated to the amount of 

grain-boundary sliding that controls the growth of 

grain-boundary cracks. 

1.8 

1.6 

1.4 

4. CONCLUSIONS 

The simulation based on the muMcrack growth 

model reproduced the principal features of the 

crack growth and creep fracture. The results of 

simulation explained Ihe stress and grain size 

dependence of creep-fracture patterns in the 21Cr- 

4Ni-9Mn steel. The stress and grain size 

dependence of fracture patterns in creep was 

correlated by the simulation with the amount of 

grain-boundary sliding that controls the growth of 

grain-boundary cracks. 
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Fig.8. The stress (a) dependence of the fractal 

dimension of the fracture surface in the ruptured 

specimens at 973 K [4] and that of the percolation 

crack in the simulation. 
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ABSTRACT 

Functionally graded materials (FGM) includes a dual-phase graded layer in which two different 
constituents are mixed continuously and functionally according to a given volume fraction. For the 
analysis of their thermo-mechanical response, conventional overall (averaged, global or 
homogenized) methods have been widely employed in order to estimate equivalent material 
properties of the graded layer. However, such overall estimations are insufficient to accurately 
predict the local behavior. We in this paper intend to compare the thermo-elastic behaviors 
predicted by several overall material-property estimation techniques with those by discrete analysis 
models utilizing the finite element method, for various volume fractions and loading conditions. 

1. INTRODUCTION 

As is well known, classical laminated composites (CLC) exhibit abrupt kinks in thermo- 
mechanical behavior at layer interfaces owing to the inherent material-property discontinuity at 
such interfaces. In order to minimize this problem, the NKK Corporation in Japan introduced a 
functionally graded material (FGM) in 1989 [1]. The basic idea of this new composite is to enforce 
the material-property continuity at layer interfaces by inserting a dual-phase graded layer in which 
the volume fractions of two constituents vary continuously from one interface to the other [2]. 

Besides a remedy of the critical kinks at interfaces, FGMs with the best performance under a 
given loading condition can be produced by optimally tailoring the volume fraction and the relative 
thickness of the inserted graded layer [3]. However, since the graded layer is a dual-phase 
composite, an appropriate estimation of corresponding material properties becomes an important 
step for the successful analysis and design. 

From the beginning of introduction of FGMs, conventional homogenization approaches such as 
the rules of mixtures [4], the mean-field micromechanics models [5,6], the unit cell model [7] and 
so on for usual dual-phase composites have been employed. Even though these models provide 
reasonable overall prediction of thermo-mechanical behavior, these may fail to describe the reliable 
local behavior owing to the assumptions involved in them. 
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In reality, the material properties of phase composites are function of shape and size, orientation 
and dispersion structure of constituents and the loading and boundary conditions. Therefore, in 
order to predict the reliable local behavior of FGMs, one needs sort of discrete (or local) material- 
property estimation techniques. Recently, the discrete local analysis approaches utilizing the finite 
element method have been proposed by several investigators. Grujicic and Zhang [8] presented a 
numerical technique for predicting the local elastic behavior of FGMs by utilizing the Voronoi Cell 
Finite Element Method (VCFEM) proposed originally by Ghosh et al. [9]. Dvorak et al. [10] 
proposed a discrete micromechanical model by replacing each inclusion with a planar hexagonal 
cell and carried out the comparative numerical experiments for an assessment of the Mori-Tanaka 
model [5] and the self-consistent method for several dispersion structures. 

In this paper, we first describe FGM briefly and make a discussion on the representative overall 
and discrete methods for the thermo-mechanical properties and behavior. Next, we present the 
numerical results illustrating the comparison between overall and discrete analysis modes, 
respectively, for three volume fractions under three loading conditions. 

2. FUNCTIONALLY GRADED COMPOSITES 

Fig. 1 depicts a two-dimensional ceramic-metal functionally graded composite, where 2d and 
2dG are the thicknesses of the composite and the graded layer, respectively. The upper layer is 
100% ceramic while the lower layer 100% metal. The volume fractions of ceramic and metal 
constituents in the graded layer vary continuously through the thickness satisfying 100% ceramic at 
the upper surface and 100% metal at the lower one. For a given loading circumstance, thermo- 
mechanical behavior of FGMs is strongly influenced by two parameters being defined. 

Thermal Stress Thermal Stress 
,, i 

\ 
3 
1 

'S 

s 
/ \ 

/ \ 
\ 

(1) (2) 0) (3) (2) 

(CLC) (FGM) 

Fig. 1. A functionally graded composite (a) and thermal stress characteristics (b). 

Letting Vm(z) and Vc(z) be the volume fractions of metal and ceramic, respectively, we have 

Vc (z) + Vm (z) = 1 and V0 (z), Vm (z) < 1,   for |z| < d (1) 
and 

Vm(z) = l, 

Vm(z) = 

-d<z<-dr. 
NN 

v. 2d0 j 
H<dc 

Vm(z) = 0, dn <z<d 

(2) 

where N are non-negative real numbers specifying the metal volume fraction. Referring to Fig. 2, 
the graded layer becomes metal-dominated as N tends to 0 while ceramic-dominated as N 
approaches + co. These two limit cases display the behavior of classical laminated composites, thus 
we denote the former case by the metal-layer-extended CLC (m-CLC) while the other ceramic- 
layer-dominated CLC (c-CLC), respectively [3]. 
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Fig. 2. Metal volume fractions (a) and ceramic- and metal-layer-extended CLCs (b). 

The relative thickness S of the graded layer with respect to the composite thickness is defined 
by 

9 = dG/d, 0<9<1 (3) 

As & tends to 0, FGMs approach CLCs, while the graded layer extends to the entire composite 
region as 9 increases to 1 (fully FGMs). 

3. ANALYSIS MODELS FOR THE DUAL-PHASE GRADED LAYER 

3.1 Overall Prediction Methods 
A large number of papers on the thermo-mechanical response and the estimation of material 

properties for phase composites have been published, and they can be classified broadly into 
theoretical and experimental categories. In addition, the theoretical approaches are split into 
microscopic- and continuum-level (i.e. overall) studies. As is described in [6], the prediction 
methods of the overall material properties are generally classified into three: (a) direct, (b) 
variational and (c) approximation approaches. 

The direct method seeks closed-form analytic solutions, so a rigorous mathematical treatment 
becomes troublesome. [11] On the other hand, the variational method such as the Hashin- 
Shtrikman's bounds [12] does not specify the details in the phase geometry but rather provides the 
upper and lower bounds for the overall properties. Therefore, one requires some additional 
approximations to obtain corresponding closed-form estimates. 

In the approximation approach, the self-consistent models by Hill [11] and others, the mean- 
field micromechanics models by Mori and Tanaka [5] and Wakashima and Tsukamoto [6], the linear 
and modified rules of mixtures by Tamura et al. [4] and the unit cell model by Ravichandran [7] are 
widely-employed overall estimates. These overall models are simple and convenient to predict the 
overall thermo-mechanical response and material properties. We here briefly describe three 
considering models, the Wakashima-Tsukamoto estimates, the linear rule of mixtures and the 
modified rule of mixtures, together with the remarkable assessment made on them. 

As is well known, the linear rule of mixtures is the simplest estimate in which any material 
property p(x) at the point x in dual-phase composites is approximated by a linear combination of 
volume fractions and the properties of two composing constituents A and B: 

p(x) = VA (x)pA (x) + VB (x)pB (x) (4) 

Because this estimate does not account for the detailed constituent geometry and dispersion 
structure, its accuracy is highly questionable. 

The Wakashima-Tsukamoto estimate is derived upon the modified Eshelby's equivalent 
inclusion method by incorporating the Mori-Tanaka concept, wherein the overall macromechanical 
properties  E are defined by 
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<°)«Bi:W..  0-=|5fU><w (5) 
where Q. refers to a representative volume element (RVE) and (-)n the overall quantities. In the 
paper [6], they presented the comparative numerical results with the Hashin-Shtrikman's bounds for 
validating their work, together with the detailed formula. However, the Mori-Tanaka estimates are 
derived with randomly oriented and uniformly dispersed ellipsoidals in an infinite matrix. Therefore, 
the Wakashima-Tsukamoto estimate leads to generally stiffer mechanical response, and further it 
becomes increasingly more inaccurate as a macrostructure tends to microstructure size. 

In 1976, Tamura et al. [4] proposed the modified rule of mixtures illustrated in Fig. 3(a), for 
Young's modulus of dual-phase composites, which has been subsequently adopted by other 
investigators. This estimate treats each sublayer in the graded layer as an isotropic one for which 
uniaxial stress o and strain s are expressed in terms of the average stresses and strains of 
constituents and the volume fractions 

° = aAVA+rjBVB)   s = sAVA+eBVB (6) 
together with 

q = (aA-o-B)/(EA-eB) (7) 

Where, q is defined as the stress-strain transfer ratio determined by experiments. According to 
numerous experiments, the value q of 4.5GPa has been justified to be appropriate for most dual- 
phase composites within a wide range of volume fractions and loading conditions. 

graded layer 

metal 

•V« :• •   ••. 
'..'Kf.'fii 

• 

i 
• • 

Fig. 3. Schematic representations; the modified rule of mixtures (a), the Voronoi cell finite element 
method (VCFEM) (b) and the discrete micromechanical model (c). 

3.2 Discrete Analysis Models 
In order for the more accurate local behavior as well as the assessment of the conventional 

homogenized methods by taking account for the profound influence of a stochastic dispersion of 
heterogeneities, recently new numerical techniques utilizing the finite element method are being 
increasingly studied. Two remarkable techniques are the Voronoi cell finite element method 
(VCFEM) by Grujicic and Zhang [8] and the discrete micromechanical model by Dvorak et al. [10]. 

Referring to Fig. 3(b), the former generates a network of Voronoi polygons by Dirichlet 
tessellation of the composite domain, in which each polygon containing one inclusion at most is 
treated as a finite element. Then, according to the Pian-Ghosh's assumed stress hybrid FEM [9], the 
global and local stress and deformation fields as well as the effective material properties are 
analyzed. This method provides more reliable local response and material properties for randomly 
dispersed dual-phase composites, but the stresses are overestimated with a coarse mesh. 
Furthermore, it does not include the macro-micro scale effects that it is limited to composites of 
rather low volume fractions. 

In the latter method, a distribution of inclusions is generated by allocating planar hexagonal 
cells of equal size according to a specified volume fraction, as shown in Fig. 3(c). Differing from 
VCFEM, each cell is subdivided into several finite elements, and further usual standard FEM is 
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directly employed. The dispersion of hexagonal cells is manually preformed so that arbitrary 
dispersion structure is possible. This numerical technique serves as a reference tool for! the 
assessment of conventional homogenized methods, but it requires fine hexagonal cells and finite 
elements for accurate approximations that it involves painstaking computational efforts. 

4. NUMERICAL EXPERIMENTS 

For the numerical experiments, we consider a half of simply supported FGM beam shown in Fig. 
1(a) with geometry data: L=50mm, 2d=10mm and 2dG =8mm (i.e. S = 0.8). A^203 and Ni are 
selected for ceramic and metal respectively, and their material properties are: E=393Gpa, v = 0.25, 
a = 7.4xl(T6/K and K = 30.1W/m-K for A^203 while E=199.5Gpa, v = 0.3, a = 15.4xl0"6/K 
and  K = 90.7W/m-K forNi. 

In order to generate discrete numerical models, we subdivide the beam into 100x70 uniform 
rectangular cells (100 in the x-axis and 70 in the z-axis). Four-node rectangular finite elements are 
then assigned to each cell as similar to the Dvorak's micromechanical model. Here three volume 
fractions N of 0.5, 1 and 5 are considered, and the resulting numerical models are shown in Fig. 
4(a). A specified volume fraction is achieved in a manner that cells in the same row are assigned to 
hi 203 or Ni in proportion to the volume fractions (black cells for Ni and white cells for A£ 203). 

- Linear Rule 
-Wakashima N=5 
- Modified Ruts 
- DiMfwte Mod»! 

^■aeiÄJ^a^ aesfc^Atafegaa 
Vertical coordinate z (mm) 

Fig. 4. Micromechanical models with three different volume fractions (a) and thickness-wise axial 
stress distributions for the loading case I (b). 

As loading condition, we consider three cases; (I) uniform axial displacement ux = 0.02mm 
along the right-end side, (II) uniform temperature increase AT of 200K for the entire beam and 
(III) non-uniform temperature increase AT of 300K at the lower surface and 500K at the upper 
surface. For two steady thermal loading cases (II and III), the beam is initially at room temperature. 

Except for the region in the vicinity of the right end showing the edge effect, the three loading 
cases produce x-independent thermo-mechanical behavior. However, since micromechanical 
models exhibit abrupt changes in axial stress across cell interfaces, we average 80 nodal values of 
cells located within  0 < x < 40mm in the same row. 

The vertical distributions of axial stress for the loading case I are compared in Fig. 4(b). We 
note here that three material properties for the graded layer except for Young's modulus for the 
modified rule of mixtures are computed according to the linear rule of mixtures. From the plots, we 
first observe that the difference between analysis models is considerable at transition zones in the 
dispersion structure. In addition, for three volume fractions the linear rule of mixtures produces the 
highest stresses while the modified rule of mixtures the lowest values. For this loading case, the 
behavior obtained by the discrete micromechanical model is between those by linear rule of 
mixtures and the Wakashima-Tsukamoto estimate. 

Comparative results of axial stress for the thermal loading cases II and III are provided in Fig. 
5(a) and (b), respectively. Compared to the loading case I, considerably larger differences between 
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the homogenized and the discrete models are shown in the transition zones. In addition, such 
remarkable differences are also observed in two isotropic layers for some volume fractions. This 
tells us that the overall methods become more inaccurate as the loading condition becomes complex. 
Also, we notice that the well ordered stress distributions in the loading case I are disarranged. The 
reason is because the first loading case produces a pure tensile deformation but these two do 
bending-dominated deformation. For these loading cases, the Wakashima-Tsukamoto estimate 
provides closer prediction to the discrete model, if we insist on estimating three overall methods. 

»=Sj^ 
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Fig. 5. Thickness-wise axial stress distributions; (a) the loading case II and (b) the loading case III. 

5. CONCLUSION 

With an introduction of FGM composites, we first presented a brief description on the major 
conventional overall methods and the newly proposed discrete numerical models for the thermo- 
mechanical response and the material-property estimation of phase materials. In order to compare 
and assess three representative overall methods by employing the discrete micromechanical models 
with uniform rectangular cells, we carried out numerical experiments for three volume fractions and 
three loading conditions. From the numerical results, we observed that the difference between the 
overall methods and the discrete models is considerable in the transition zone, and further its 
magnitude increases when the loading condition is complex. Therefore, one has to carefully choose 
an appropriate overall estimation method by considering the dispersion structure and loading 
condition, for the reliable local response of FGMs. 
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ABSTRACT 

The purpose of this study was to develop a new element removal method for ESO (Evolutionary 

Structural Optimization), which is one of the topology optimization methods. ESO starts with the 

maximum allowable design space and the optimal topology emerges by a process of removal of 

lowly stressed elements. The element removal ratio of ESO is fixed throughout topology 

optimization at 1 or 2%. In this paper, a new element removal method for ESO was developed for 

improvement of the convergence rate. Then it was applied to a short cantilever with overall stiffness 

constraints. From the results, it was verified that the convergence rate was significantly improved 

and the optimal design structures were obtained very similar to the results of ESO with the fixed 

element removal ratio of 1%. 

1. INTRODUCTION 

An important development in topology optimization was made by Bendsoe and Kikuchi [1] who 

proposed the homogenization method, in which a material with an infinite number of microscale 

voids is introduced and the optimization problem is defined by seeking the optimal porosity of a 

porous medium using an optimality criterion. Some of the results of the homogenization method 

can be found in the references [2-4]. Mlejnek et al. [5] accomplished shape and topology 

optimization using a simple energy method and a special type of function, that is, Kreisselmeier- 

Steinhauser function [6] for calculating effective properties. 

Recently, a simple method for shape and topology optimization, called ESO (Evolutionary 

Structural Optimization), has been proposed by Chu [7] and Xie and Steven [8,9] which is based on 

the concept of gradually removing redundant elements of the low stressed part of the material from 
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a structure to achieve an optimal design. Since ESO is accomplished by the fixed element removal 

ratio of 1 or 2%, the convergence rate may become very slow until an optimum is reached. And 

BESO (bidirectional ESO) was suggested by Querin [10] for generating the optimum shaped 

structures. The structural domain has regions which are heavily under-stressed and regions which 

are heavily over-stressed. Elements are removed from the under-stressed regions and added to the 

over-stressed regions. But since the element removal ratio and the inclusion ratio of BESO are still 

small, the convergence rate is very slow. 

In this study, a new element removal method for ESO is developed to improve the convergence 

rate and obtain an optimized design. It is an algorithm to determine the removing redundant 

elements of the low stressed part of a structure, started with the maximum allowable design space. 

It will be explained in the next section in detail. The validity and efficiency of the improved element 

removal method (IERM) is verified by comparing the optimized designs for some of the classical 
optimization problems. 

2. THE IMPROVED ELEMENT REMOVAL METHOD (IERM) 

The detailed ESO procedure can be found in the work of Xie and Steven [7] and a brief 

explanation is given in this paper. The strain energy of a structure, which is defined as 

C=l-{P)T{u} (1) 

where, {p} is the nodal load vector and {u} is the global nodal displacement vector. It is commonly 

used as the inverse measure of the overall stiffness of the structure. It is obvious that maximizing 

the overall stiffness is equivalent to minimizing the strain energy. The sensitivity number is defined 

a,=±{u'}T [K']{u'} (i = l,„) (2) 

where, [K] is the global stiffness matrix. It indicates the change in the strain energy due to the 
removal of the ith element It should be noted that at is the element strain energy. It is obviously 

most effective to remove the element which has the lowest value of a, so that the increase in C is 

minimum. 

Generally, a structure is not sensitive at the initial stage and becomes sensitive as the number of 

the removed elements is increased. But, since the removal ratio of ESO is fixed throughout 

topology optimization at 1 or 2%, it has no flexibility for various types of structures and the 

convergence rate may not be efficient. In order to improve the convergence rate, it is necessary to 

increase the element removal ratio at the initial stage and gradually reduce the ratio as the number 

of the removed elements is increased. 
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Also, since an optimized design of a structure is highly dependent on the history of element 

removal, an optimized design is also changed if the removal ratio is changed. But an optimized 

design should be obtained similarly regardless the element removal ratio. 

In order to overcome above two problems, IERM is developed in this study. As mentioned above, 

when an element is removed the stiffness of a structure reduces and correspondingly the strain 

energy increases. In the process of ESO, when some elements were removed, the decrease of strain 

energy often occurred in the next iteration. It means that the removed elements were not properly 

selected. Thus, before going the next iteration the removed elements from the structure should be 

determined in order to make the element strain energy increase in the subsequent iteration. 

The procedures of IERM are as follows. To start with a piece of material which is large enough to 

cover the area of the final design of a structure is discretized into a fine mesh of finite elements. 

Given constraints are applied and a stress analysis is performed. Then the sensitivity numbers are 

calculated for each element. 

In order to determine which elements should be removed from the original structure, the 

following steps are necessary. First, the numbers of elements with the lowest sensitivity numbers 

are listed by a flexible element removal ratio of about 7% larger than the 1 or 2% in ESO. Second, 

the sensitivity numbers are recalculated by another stress analysis for the structure after the listed 

elements are removed. Third, the numbers of elements having sensitivity numbers which are 

smaller than the largest sensitivity number of the elements listed at the first step, are listed. Fourth, 

if the number of the elements listed at the third step is smaller than that at the first step, the elements 

to be removed from the original structure should be all of the elements listed at the third step and 

the elements with the lowest sensitivity numbers at the first step. Fig. 1 explains this procedure. 
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Fig.l. The procedure of the IERM 
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If the number of the elements listed at the third step, is larger than that at the first step, the 

removal ratio should be reduced by 1% and return to the original structure whenever this situation 

occurs. Here, the removal ratio should be at least 2%. In order to satisfy the required mass of the 

optimal design, the removal ratio can be reduced to 1 or 2% near the last iteration, if necessary. 

By using IERM as explained above, a removal ratio of about 7%, which is empirically 

determined, can be used. Thus, the convergence rate is improved to about 70% and also the optimal 

designed structures are obtained very similarly to the known optimal design for the examples given 

in the next section. 

3. Application of the IERM 

The IERM was applied to the same example problems as those published previously in order 

to verify the validity and the effectiveness of it. 

3.1 A Short Cantilever 1 

The IERM is applied to the structures with overall stiffness constraints. It is applied to a short 

cantilever as shown in Fig. 2. The short cantilever is subject to a concentrated force of 300 kN at 

the center of free end, and the maximum deflection is limited to 0.75 mm. The rectangular design 

domain is discretized into 32 x 20 quadrilateral elements and a fixed element removal ratio of 1% 

is applied. Then, the IERM with a flexible removal ratio of about 7% is applied to the same short 

cantilever. The results obtained by the two methods are compared to each other. 

I_x = 0.16 m 

t = 0.001 m 
E = 207 GPa 
v = 0.3 

l_y = 0.10 m 

Fig.2. Initial conditions of a short cantilever 

The optimal designs by the fixed removal ratio of 1% and by the IERM are shown in Fig. 3(a) 

and (b), respectively. For the optimal design by the fixed removal ratio of 1%, the call number of 

finite element analysis is 66, the maximum Mises stress is 8.28E+5 MPa and the reduction ratio to 

the original structure is 62%. For the optimal design by the IERM, the call number of finite 

element analysis is 20, the maximum Mises stress is 7.89E+5 MPa and the reduction ratio to the 

original structure is 61.6%. Therefore, the convergence rate is improved to 69.6% and a better 

optimal design is obtained under the conditions of the same displacement limit. 
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(a) (b) 

Fig.3. Optimal topology obtained by (a) the fixed element removal ratio of 1% and (b) the IERM 

3.2. A Short Cantilever 2 

The IERM is applied to the same problem as above. In this case, the short cantilever is 

subjected to a concentrated force of 3 kN at the bottom of the right free end. The final volume is 

limited to 24% of the original volume. A fixed element removal ratio of 1% is first applied, and 

then the IERM with a flexible removal ratio of about 7% is applied to the same short cantilever. 

The results obtained by the two methods are compared to each other. 

The optimal topologies by the fixed removal ratio of 1% and by the IERM are shown in Fig. 

4(a) and (b), respectively. For the optimal topology by the fixed removal ratio of 1%, the call 

number of finite element analysis is 76, and the maximum Mises stress is 1.84 Gpa. The 

displacement at the load point is 1.16 mm. For the optimal design by the IERM, the call number of 

finite element analysis is 21, and the maximum Mises stress is the same as the case of the fixed 

removal ratio of 1%. The displacement is 1.21 mm. The obtained topologies are very similar to each 

other. Therefore, the convergence rate is improved to 72.3% under the conditions of the same 

reduction ratio limit of 24% of the original structure. 

(a) (b) 

Fig.4. Optimal topology by (a) the fixed element removal ration of 1% and (b) the IERM 
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4. CONCLUSIONS 

In this study, the IERM was developed in order to improve the convergence rate and the 

optimal shaped structures. By using the developed IERM, a removal ratio of about 7% larger than 

the fixed element removal ratio of 1 or 2% in ESO can be used. Thus, the convergence rate is 

improved to about 70% and also similar or better optimal design structures are obtained compared 

with the results of ESO with the fixed element removal ratio of 1% for some examples in this 
paper. 
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ABSTRACT 

With application of fracture mechanics, propagation rules of cracks with different length and dip 
on the selected typical cross section of shiplock of Three Gorges Project are numerical simulated. 
Different reinforcement schemes including designed, constructed in actual, and without any anchor 
are compared. It indicated clearly that deformation of the isolated mound is mainly due to open of 
cracks while deformation of rockmass itself is very small. Reinforcement of anchor ropes can 
restrain effectively open of cracks and their propagation toward deep rockmass. Upper mouth of 
anchor ropes has better restraining effectiveness on open of cracks and their propagation toward 
deep rockmass than that of its waist and bottom. When long and short cracks both occurred, long 
cracks and the cracks close to sidewall of isolated rockmass have bigger open displacement and 
cracking length than that of cracks at the middle of isolated rockmass. It is necessary to reinforce 
the long and big cracks which are close to sidewall of isolated rockmass and the cracks parallel to 
axial of shiplock. 

1. INTRODUCTION 

Shiplock in Three Gorges Project has five-class double line shiplock room with high and steep 
slopes in both sidewall and an isolated rockmass with 50-70 m height. It consists of hard jointed 
rock existing tensile stress zone after excavation of shiplock room. Some results indicate that 
rockmass has unloaded in three dimensions, some are unloaded in four dimensions after excavation 
of shiplock room. It is clear that the rockmass experienced tensile state from change of compressive 
state and that cracks experienced tensile-shear changed from compressive-shear. Therefore, it is 
possible to have open and elongation of cracks. 

The results from the field investigation indicated that concrete constructed on top surface of the 
isolated rockmass in the second and third shiplock room was getting cracking. The maximum open 



386 Fracture and Strength of Solids 

displacement is 20 mm. Therefore, it is important to know how cracks are open and elongated 
toward deep rockmass and effectiveness of rockbolt and anchor ropes to control these open and 
elongation. 

With application of fracture mechanics, several typical cross sections at the second and third 
shiplock room have been numerically simulated. Several cracks with different length and dip with 
designed, constructed in actual or without reinforcement have been analyzed. The results are 
compared. Also, mechanisms of crack open and elongation and their control measured are discussed. 
These results provide theoretical support for construction. 

2. CRACK OPEN STABILITY ANALYSIS 

For a plane problem, crack open and elongation have two typical schemes: Type I (for open 
crack) and II (for shear crack). Open and elongation of cracks in engineering rockmass are not 
located in these two schemes. It often includes both of them or composite scheme of types I and II. 
It is clear to see from rockmass near excavation face of slope and top of the isolated mound exists 
tensile stress zone that crack open and elongation have a composite of type I and II. 

From reference [1,2], criteria for open and elongation of crack in little new rockmass at shiplock 
zone can be described as 

KlIKIC+\mKIIIKIcf=\ (1) 

The fracture toughness for this rockmass is KIC = 1.75 lMPaVm. 
The stress intensity K{ and Kn for tip of cracks are shown in reference [1,2]. The tensile state is 

referred to positive, and shear is referred to negative. If AT, is negative and Ku exists, then it belongs 
to composite shear scheme of types I and II. If Kx is positive and Kn exits and then it belongs to 
composite tensile-shear scheme of types I and II. After AT, and Kn are computed, the formula (1) can 
be used to appraise stability of crack open and elongation. The left part at the formula (1) is less 
than 1, equals to 1 or is greater than 1, corresponding to stable, critical and unstable open of cracks 
respectively. 

Direction of crack elongation can be determined using maximum tensile strain theory. If a crack 
is elongated a unit length will be added in the direction of elongation of crack and then this analysis 
will be repeated. And so on, a complete path of crack elongation can be obtained and whether the 
crack continues to elongate or stops propagating can be estimated. Therefore, the formula can be 
used to analyze the little new isolated rockmass. 

3. COMPUTATIONAL PRINCIPLE 

According to elastic fracture mechanics, the structure with cracks loaded, stress and strain at tip 
of crack has singular point of rm. For a plane problem, the stress intensity Kt and Kn can be 
calculated by 

K, = lim 
r-»0 

K„ = lim 
r->0 

■JlJlE        U, 
4(1-//)2   ^ 

■JlivE      V, 
4(1- nf   ^ 

(2) 

(3) 

Where E, /i are elastic modulus and Poisson ratio of rock mass, respectively. U, ,Vt are displacement 
at the direction of the point / of crack being vertical and parallel to crack plane, respectively, r, is 
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distance between the point i and tip of crack. An extrapolation algorithm is used to calculate stress 
intensity of n points on unit crack. The stress intensity K} and KB at tip of crack can be obtained by 
using linear regression method. 

4.   GEOLOGICAL CONDITION AND SIMPLIFIED CRACK MODEL 

Rockmass at shiplock of Three Gorge Project is mainly plagioclase granite with layer of schist 
capture and small amount of close grained granite dyke, germination dyke, diabase dyke and quartz 
dyke. It has NNW, NE-NEE, NNE, NW-NWW faults. The top surface of the isolated rockmass 
mound is 159.75 m high from sea level. There are 2954 cracks on the tope surface and south and 
north sidewalls of the isolated rockmass mound. According to its strike direction, these cracks can 
be divided into NNW, NE-NEE, NNE, NW~NWW groups. At one place there is only 1 or 2 
ascendant group cracks. At non-weathered rockmass, there is mainly hard and steep dip 
discontinuous weak plane with a little roughness. Its length is greater than 10 m with 60% at 
number of total weak planes. The joints with little dip are not so much, with 10% of total amount. 

Up to June 1999, the shiplock excavation is almost finished. Four main cracks have been 
selected for analysis of the typical cross section of the third shiplock room. Their lengths are 6m, 
10m, 8m, and 15m respectively. Their dips are 75°, 66°, 60°, 74°. A fault f5 is also considered 
during analysis (see Fig.l). 

159.75 Sro,10fri|gn], 159.75 J 

Fig. 1.   A simplified crack model 

5.   CONDITION OF CALCULATION 

5.1. Mesh Generation and Calculation Parameters 
The finite meshes are automatically generated based on geological conditions, excavation 

process and joint distribution at the selected cross section. Quadrangle with 8 nodes and equal- 
parameter element with 6 nodes are adopted. There are total 2889 elements with node number of 
8240. Physical parameters for full weathered, strong weathered, little weathered, and non-weathered 
strata are listed in reference [1]. The load comes from initial stress. The different formulas are used 
to calculate initial stress field for different zone and weathered grade. 

5.2. Excavation and Reinforcement Simulation 
Actual excavation process is simulated. Only few excavation steps at a height above sea level and 

time are simplified. Effectiveness of anchor ropes is simulated as concentrated load. The 
reinforcement force for an anchor rope that both ends are reinforced is designed to be 3MN. 
Excavation and reinforcement are completed on total 17 steps, which is closed to the actual cases. 

5.3. Calculation Schemes 
There are three calculation schemes shown in Table 1. The stress intensity KY and Ku are 
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calculated for without excavation and each excavation step. 

Table 1    Calculation schemes 

The selected cross 
section for calculation 

Calculation 
scheme no. 

Reinforcement system and (m) 

Mouth of the third 
shiplock room 

SI Without reinforcement 

S2 Anchor rope: V151.5, V138.5, V136.5,V133,V130.5 

S3 Anchor rope: V156.6, V151.5, V146,V138.5,V136.5,V133 ,V 130.5 

6.  RESULTS AND DISCUSSIONS 

Figs 2 and 3 are comparison of elongation length and open width of each crack under without 
reinforcement and different reinforcement schemes. Fig.4 shows deformation of slope after 
finishing excavation under calculation scheme 1. 

Crack 1   Crack 2   Crack 3   Crack 4 

Fig.2. Comparison of elongation length of cracks 

Crack 1   Crack 2   Crack 3   Crack 4 

Fig.3. Comparison of open width of cracks 

6.1. Deformation and Stress 
(1) There is a good agreement on state and 

value of deformation and stress for the 
rockmass without crack with the results given 
by other authors. However, the results in our 
simulation indicate that there is stress 
concentration at tip of crack. The maximum 
tensile stress on tip of the longest crack (crack 
4) exceeds 50MPa, while the minimum tensile 
stress at tip of the shortest crack (crack 1) is 
less than 4MPa. The maximum tensile stress 
on tip of the shortest crack (crack 1) on sidewall 
is still at 30~40MPa. When crack elongates 
the stress concentration releases. When long 
cracks occur together with short cracks in the isolated mound, tensile stress of the longer crack and 
the shorter crack on sidewall exceed that of short crack at middle of the isolated mound. 

(2) For the without reinforcement (SI), the maximum open widths of the four cracks on top of 
the isolated mound after finishing excavation are 6.29mm, 3.38mm, 1.36mm, and 31.55mm. Its 
total open width is 42.58mm. The displacement of top of the straight wall at south and north sides 

Fig. 4.   Deformation of slope after finishing 
excavation under SI 
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(toward to shiplock room) are 29.06mm and 14.15mm respectively, with the relative displacement 
is 43.21mm. Therefore, the deformation of the isolated mound comes from mainly cracking. Open 
displacement of the longer crack and the shorter crack on sidewall are greater than that short crack 
at middle of the isolated mound. 

(3) Compared to SI (without reinforcement), deformation of four cracks reduces at amount with 
a type of reinforcement of S2. Deformation of crack 4 reduces by 8.79mm while the relative 
deformation of top of north and south sidewall reduces by 11.36mm. 

(4) Compared to S2, S3 by adding 2 rows of anchor ropes. Open width of four cracks in the 
isolated mound become smaller, particularly on cracks on sidewalls. 

6.2. Crack Elongation Analysis 
(l)When without reinforcement is included, lengths of four main cracks after finishing 

excavation of shiplock are 6.5~7.0 mm, 4.5~5.0mm, <1.0mm, 7.0~8.0mm, respectively. Therefore, 
when long and middle long cracks occurred in the isolated mound, elongation length of long crack 
and crack close to side wall is greater than that of cracks occurred in middle of the isolated mound. 

(2)When the S2 (with reinforcement) is adopted, lengths of four cracks after finishing 
excavation of shiplock are 3.5-4.0 mm, 3.5~4.0mm, <1.0mm, 6.0-7.0 mm, respectively, that is 
smaller than that in the S1. 

(3)When the S3 (with reinforcement adding another two row anchor ropes) is adopted, 
elongation lengths for all four cracks are smaller than that in the S2. Upper mouth reinforcement of 
anchor ropes takes good effect to control elongation of cracks (particularly cracks occurred in 
middle wall of the isolated mound). 

6.3. Comparison with the Field Monitored Results 
(1) Comparison on open width and depth of cracks 
At the first of 1997, cracks occurred firstly in north and south top surfaces of the second 

shiplock room with beginning of excavation of shiplock room. On June 1998, some cracks occurred 
on top surface of the isolated mound from the second shiplock room to the fourth room. It is more 
serious on top surface of the isolated mound from the second shiplock room to the third room. Up to 
February 1999, total 140 cracks occurred in this area. Open width of cracks are measured to be 3.0 
~ 5.0 mm (70% of total cracks). Little is 5 - 10 mm. There are four cracks (3% of total cracks) 
whose open width is greater than 10 mm. The widest open is 23 mm. The crack down to rockmass 
has normal depth of 10 m, little is 10 - 20m, and the maximum value is 20 m. 

The results from calculation indicates that open width of cracks 1 and 4 are greater than 5 mm, 
and their open width are less than 5 mm if without reinforcement. If reinforcement is used this case 
would be changed at somewhere. For reinforcement scheme 2 close to the actual case, open width 
of cracks 1, 2 and 3 are greater than 5 mm and 22.76 mm for crack 4. These results are close to 
measured values. 

After shiplock room excavation is finished lengths of four main cracks including initial and 
elongated lengths are 13m, 15m, 9m, 23m, respectively, for the Sl(without reinforcement). If the S2 
is adopted, these cases would be improved, i.e., these values would reduce to 10m, 14m, 9m, 22m, 
respectively. These are greater than the measured values because initial lengths for four cracks are 
longer than these in actual. 

(2) Comparison on rockmass deformation 
For the monitoring sections 13-13, 15-15, and 17-17, several monitoring points have been 

constructed on north and south top surface. Up to May 1999, the north monitoring point on the 
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section 13-13 had a total deformation of 31.27mm toward to the north and the north monitoring 
point on the section 13-13 had a total deformation of 5.98mm toward the north. The relative 
deformation between two points was 37.25mm. The springback deformations in vertical direction 
for these two points were are 9.88 mm and 0.46 mm. For the section 15-15, two monitoring points 
in south side got deformation toward the north with 17.18mm and 11.76mm respectively. The 
vertical subsidence for the north monitoring point was 1.82mm. The vertical springback for the 
south monitoring point was 17.61mm. On the section 17-17, the north and south monitoring points 
got deformation toward the north of 31.72mm and 30.69mm respectively. The vertical springbacks 
of 12mm and 21.98mm were for these points respectively. 

The calculated resulted for the section 13-13 indicate that the relative deformation between the 
north and the south top surface of the isolated mound was 43.21mm, while the S2 close to the actual 
construction got a relative deformation of 31.85mm for these two sides. The later result is agreed 
with that the measured value. If the SI is used, the vertical springback deformation for top surface 
of the north and south straight wall would be 22.62 mm and 17.03 mm respectively. If the S2 is 
used, the vertical springback deformation for top surface of the north and south straight wall would 
be 23.78 mm and 19.55 mm respectively. These results are agreed with the measured values for the 
sections 15-15 and 17-17. 

7.   CONCLUSIONS 

The following conclusions will be drawn out: 
(1) During excavation of full shiplock room, there is change between elongation of cracks and 

stopping cracking. Stress released at some excavation step, tip of crack existing tensile stress 
elongates toward the deep rockmass. The shorter cracks got stress release on its tip and stopped 
cracking. The longer cracks got restraining on its elongation after being reinforced. However, the 
following excavation will result in further elongation of the existed cracks. The length of crack 
elongation depends on excavation depth, reinforcement and initial length of crack itself, and its 
location in rockmass. 

(2) Because of hard jointed rockmass, deformation of the isolated mound after excavated is 
mainly due to open of cracks while deformation of rockmass itself is small. 

(3) Anchor ropes can restrain open and elongation of cracks. It should be reinforced using anchor 
ropes at suitable time during construction. Otherwise, open and elongation of cracks could not be 
controlled well. Anchor ropes constructed at top of the isolated mound have stronger control to 
open and elongation of cracks than that constructed in middle and bottom. Therefore, reinforcement 
location of anchor ropes is also important to control deformation of the isolated rockmass. 

(4) When long occur together with short cracks, open width and elongation of longer cracks and 
shorter cracks close to sidewall of the isolated mound are larger than that of cracks occurred in 
middle of the isolated mound. 
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ABSTRACT 

A simulating program of the out-of-plane ESPI (Electronic Speckle Pattern Interferometry) 
method has been developed in order to assist the improvement of the ESPI technique. With this 
program a new ESPI method is suggested by which the laser speckle noise of the ESPI image could 
be removed in great amount. The vibrating object for the present application is a thin right-angled 
STS 304 plate. In the suggested ESPI method, the phase transformation of the reference wave of the 
ESPI is carried out only one time during harmonic vibration in order to clarify ESPI speckle 
patterns. Two dimensional vibrational modes are calculated from 3 ESPI patterns; one ESPI pattern 
before vibration onset and two ESPI patterns during vibrations but with and without the phase 
transformation. The ESPI modal results with this new phase-controlled method show much more 
clear modal figures than other previous results. Additionally a new phase unwrapping algorithm has 
been developed to derive a displacement map from an ESPI phase map. 

1. INTRODUCTION 

When a structural material is stressed or heated, the object is deformed. If the amount of the 
deformation is quantitatively measured, the materialistic and structural characteristics of the object 
could be known. Strain-gauges or piezoelectric sensors are commonly used for measurements of 
materialistic characteristics of any simple structure. Recently, various non-contacting and non- 
destructive techniques for such structural measurements using X-ray, ultrasound or laser, are rapidly 
developed and commercialized. ESPI (Electronic Speckle Pattern Interferometry) technique is one 
of laser applications for non-contacting measurements. It is reported that the ESPI technique 
enables in two dimension to measure the deformation of metallic objects caused by heating at more 
than 500°C [1,2]. The in-plane displacement of a stressed object and the out-of-plane displacement 
of a vibrating object are both possible to be measured by the ESPI [3]. The ESPI method introduced 
firstly by Butter and Leendertz [4,5] is an optically measuring device using both the speckle effects 
of laser and the interferometric phenomena of light. The application of the ESPI technique to 
industry has been slowly progressive since the earlier ESPI method still has some disadvantages of 
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measurement in precision and clarification. It is because the ESPI method has to directly use laser 
speckle noises of random intensities in its technical principle. Therefore differently modified ESPI 
techniques using subsidiary methods such as phase shifting methods [6] and phase transformation 
methods have been developed in order to increase the clarification of the ESPI. Also other new 
statistic or probabilistic algorithms such as least square phase estimation, maximum likelihood 
estimation and phase unwrapping methods are being developed in order to improve the precision of 
the ESPI. Those new ESPI techniques completely changed the experimental apparatus of the earlier 
ESPI techniques. For example, the phase shifting of the laser beam is now precisely controlled by a 
modified Michelson's interferometry in the realm of one wavelength. While experimental research 
is carried out on the ESPI development, the necessity of the ESPI simulation development comes 
into account. The software simulation of the ESPI technique may assist the improvement of the 
ESPI method. This paper deals with one particular case of the improvement of the ESPI 
clarification. That is, this paper suggests a new ESPI method for better performance in clarification. 
In the present paper the out-of-plane ESPI technique had been simulated as a Fortran program. Then, 
the two dimensional mode of a vibrating thin right-angled plate was calculated by the ESPI 
simulation. 
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Fig. 1 Out-of-Plane ESPI apparatus 
A new ESPI method using the phase shifting is designed for more clarified ESPI patterns than 

those of previous ESPI methods. The out-of-plane ESPI is mainly composed of a reference laser 
beam and an objective laser beam (Fig. 1). Both beams are splitted from the same coherent laser 
source by a beam splitter. The objective beam is expanded and is then crashed onto a plate by a 
beam expander, some of scattered objective beam from the plate is reflected to a beam combiner in 
front of a CCD camera. The reference beam is guided to the same beam combiner but in normal 
direction so as to be interfered with the reflected objective beam. And the two dimensional image 
formed on the beam combiner by the two interfered beams is taken by the CCD camera. Since the 
reflected objective beam is highly random in its phase, the two interfered beams produce a laser 
speckle pattern. If the plate is vibrating, the laser speckle pattern would contain the information of 
the structural vibration. The simplest way of getting the vibrational information is pixel by pixel 
subtracting one laser speckle pattern before vibration with the other laser speckle pattern after 
vibration. The subtracted pattern image still has random speckle noise, so that the resulting 
vibrational modal image is difficult to interpret. In this paper, a new phase shifting method is 
developed for the improved clarification of the vibrational modal analysis. And a new algorithm of 
phase unwrapping is also presented. 

Other results of previous ESPI methods showed poor clarification of vibrational modal patterns 
where either two laser speckle patterns before and after vibration were simply subtracted each other, 
or four laser speckle patterns with different phase shifts were arithmetically subtracted one another 
in order to derive the vibrational mode of the plate. Laser speckle noises were still remained in 
those figures, and particularly the latter method could only show the phase map of the vibrating 
plate rather than the displacement map (see results). This paper deals with the vibrational simulation 
of a thin right-angled STS 304 plate using the ESPI method with a new phase shifting feature. The 
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finite element method(FEM) is briefly mentioned in order to describe the three dimensional 
displacement of the thin right-angled plate. The FEM analysis would be helpful to comparatively 
understand any ESPI measurements. 

2. METHODS 

2.1. Finite Element Method 
The FEM is initially programmed in order to calculate three dimensional displacements of the 

vibrating thin right-angled plate which are then used for the ESPI simulation. The isoparametric 
formulation for three dimensional structural elements is well documented by Allik H. et. al and 
Chung S.C. et. al. If an external force is applied to the plate, the force is distributed throughout 
whole elements and thereby nodal displacements are generated as a function of frequency as 
follows in steady state matrix formula: 
[F] = ([K]-ca2[M])[a] (1) 

where [F] is an applied mechanical force vector, [K] is a elastic stiffness matrix, [M] is a mass 
matrix, and [a] is an elastic displacement vector, a is an angular frequency. The thin rectangular 
right-angled STS 304 plate (L. 150mm x W. 75mm x T. 0.8mm) are rigidly fixed at both end sides 
and a centre point is vibrated at 10 kHz as an external force drive (Fig. 2). The density of the STS 
304 is 8000Kg/m3 and its Young's modulus is 193 GPa and its poisson's ratio is 0.3. The right- 
angled plate is divided into total 1250 elements (50Lx25WxlT) (Fig. 3). 

| Camera's 
View Point 

Vibration 

Top 

l- -l 
Fig. 2 Vibration applied onto a centre point of a 
thin rectangular right-angled STS 304 plate. 

Fig. 3 1250 finite elements of the thin right- 
angled plate 

2.2. Electronic Speckle Pattern Interferometry 
The optical apparatus of the out-of-plane ESPI using a He-Ne laser (A. =632.8 run) is well 

described by Hong J.K. et. al (Fig. 1). The present out-of-plane ESPI has a piezoelectric (PZT) 
translator in its component in order to enable the phase shift of the reference beam. The PZT 
translator is calibrated in order to find the most linear realm of the voltage-displacement 
relationship. Therefore the phase shift is assumed to be controlled precisely. If the intensity of the 
reference beem, C, r(x,y) is Ur(x,y)2 and that of the objective beam, C, 0(x,y), is U0(x,y)2, and their 
phases on the interfering point (x,y) of the beam combiner is $ r(x,y) and <J> 0(x,y) respectively, 
then the intensity of the interfered beam is defined. 
I (x,y) = I £(x,y) + £„(x,y) 12 = cc(x,y) + ß(x,y) .cosT(x,y) (2) 

Where, a(x,y) = U0(x,y)2 + Ur (x,y)2, ß(x,y) = 2 .U„ (x,y) .Ur (x,y), *F(x,y) = ¥0 (x,y) - Tr (x,y) 
The displacement amplitude of the vibrating plate is defined as a(x, ,y,) . If the intensity of the 
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interfered beam is two-dimensionally acquired during vibration by the CCD camera for an interval 
of l/30[sec], then the acquiring time might be much longer than one period of the vibration. The 
time-averaged (much longer than one period of an input frequency) displacement amplitude of the 
vibrating plate is derived as the first kind and the 0th order Bessel function, J0(4JI a(x„y,)/A ). The 
two-dimensionally acquired intensity values mean a deformed laser speckle pattern caused by the 
vibration. Let the two-dimensionally acquired intensity values be In(x,y). Now three different In(x,y) 
are considered. Firstly Let the acquired intensity pattern before the vibration with no phase shifting 
be Ii(x,y) and secondly let the acquired intensity pattern during the vibration but with no phase 
shifting be I2(x,y). Thirdly let the acquired intensity pattern during the vibration with it phase 
shifting be I3(x,y). These intensity patterns of the optical interferometry could be mathematically 
expressed as following equations; 
Ii(x,y) = tx(x,y) + ß(x,y). cosOF(x,y)) + e,(x,y) (3) 

fAna{xx,yx)^ , 
I2(x,y) = a(x,y) + ß(x,y).cos4'(x,y).'yo<. x )+  e2(x,y) 

4£a(£i^i) 
I3(x,y) = a(x,y) + ß(x,y) .cosCF(x,y) + n). J o ( x )+ e3(x,y) 

where Ei(x,y) , e2(x,y) > E3(x>y) are electrical noises of photoelectric sensors inside the CCD 
camera. From equation (3) J0 could be derived as 

4££(£L^i)      _ I2(x,y)-I3(x,y) 
J°{ I > 2I^x,y)-I,{x,y)-I2{x,y) (4) 

Then a(x„ y,) can be calculated from J0(4rc a(x„y,)/A. ) by the inverse transformation of the Bessel 
function. Since the Bessel function does not correspond with its variable one by one, a numerical 
method need to be considered for the inverse transformation. This inverse process is called as phase 
unwrapping in this paper, and a new practical method will be explained in results. 

The computational simulation of the out-of-plane ESPI begins with Monte-Carlo method by 
which Ur(x,y)2, U0(x,y)2, *¥(x,y) and s(x,y) are all calculated from their probability density functions 
(pdf) [16]: 

where Ir is the intensity of the reference beam and <I,> is its mean value and aIr is a standard 
deviation. The reference beam has a Gaussian pdf. 

(-^-)"/o"-'eXp(   -M^fe-) 

PI0VO) = run  <6> 
where I0 is the intensity of the objective beam and <I0> is its mean value. The pdf of I0 is similar to 
a gamma function. It happens because the size of the photoelectric sensor is bigger than the size of a 
laser speckle, so that a small group of laser speckles are acquired in average by a single 
photoelectric sensor. Because of this effect, it is better to use photoelectric sensors of smaller size. 
In the other way the size of the laser speckle could be adjusted by a zoom lens in order to make it to 
have the similar size as the photoelectric cell size. The parameter M of the gamma function depends 
not only on the distance between the plate surface and the camera lens but also on the size of the iris. 
HereM=2. 

M(£)=V^7exp("i^L) 

where <e> and CTE are a mean and a standard deviation, <s> =0.95 and aE =1.97. 
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Pu(u) = 1 

2nJ\-u2     •   -Ku<+1 (8) 

where   u = cos^F) 

3. RESULTS AND DISCUSSION 

A FEM program had been developed in Fortran and was run at a super computer (Cray C90). The 
simulated three-dimensional displacement of the vibrating thin right-angled STS 304 plate is shown 
in Fig. 4. The input frequency is 10 kHz. The amplitude of the nodal displacement, afr^y,), at any 
point (x„y,) on the plate surface is then calculated by interpolation for which the total plate surface 
is again divided into 256(L.)xl28(W.) lattice windows. 

Fig. 5 Laser speckle noise rejection by median 
filtering 

Fig. 4 The amplitude of the three-dimensional 
displacement is derived from the vibrational 
magnitude for one cycle 

As mentioned in the method, J0(4JI afx^y,)/ A, ) was then calculated from a(x„y,) by the Bessel 
function. And a (x,y), ß (x,y), e (x,y) and ^(xj) were calculated by equation (2) from intensity 
patterns with pdfs of equations (5)~(8). And then I^y), I2(x,y), I3(x,y) were calculated by equation 
(3) from speckle patterns of a (x,y), ß (x,y), £ (x,y), *F (x,y) and J0(4rc a(x„y,)/A. ). I,(x,y), 
I2(x,y) and I3(x,y) are the simulated results of the out-of-plane ESPI. From given I^y), I2(x,y) and 
I3(x,y), J0(4it a(x„y,)/A ) is inversely calculated by equation (4). The calculated J0(4TC afx^y^/X ) 
is often mixed with speckle noise. Median filtering is most effective to remove such speckle noise 
in J0(4it a(x„y,)/X )(Fig. 5). Fig. 5 shows the simulated ESPI result of the vibrating plate's 
displacement mode in three dimension. Now, the displacement map a(x„y,) has to be derived from 
J0(4JI a(x„y,)/A. ) of Fig. 5. 

Fig. 6   4% a(x„y,)/A are calculated by one 
by one inverse matching according to Bessel 
function J0(x) with 0 < x < 3.8317. 

Fig. 7 Vibration displacement amplitude of the STS 
304 plate calculated from three laser speckle patterns 
acquired by the simulated ESPI. 
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It is called as a phase unwrapping process (inverse transformation of Bessel function). The Bessel 
function J0(x) has a maximum value, 1, and a minimum value, -0.4028. The variable x of J0(x) 
corresponding to the maximum is 3.8317. Therefore at first, if x is between 0 and 3.8317, 4it 
a(xi>yi)/Ä. is calculated from the Bessel function by one by one inverse matching (Fig. 6). Some 
central areas of Fig. 6 are almost close to 3.8317 in their amplitudes. The amplitudes of those 
corresponding pixels might be in fact bigger than 3.8317 but be decreased by the Bessel function. 
Therefore a Sobel edge enhancement method can be used to mark the local area of the amplitude 
more than 3.6. In this method, the two dimensional differentiation of the locally decreased area 
gives negative values for the local area. If the locally marked area of Fig. 6 are assumed to have 
bigger displacement amplitudes than 3.8317, since the second maximum value of J0(x) is 0.3001 at 
x=7.0156, a new increased 4% a(x„y,)/A, could be calculated from the Bessel function by one by 
one inverse matching between 3.8317<x<7.0156. Fig. 7 shows the displacement amplitude of the 
vibrating plate, a(x„y,), after removing 4% A, parameter. Comparing Fig. 7 with Fig. 4, the 
simulated ESPI displacement results of the vibrating thin right-angled STS 304 plate are very 
similar to those of FEM results. In case of the FEM, the maximal displacement amplitude in the 
middle of Fig. 4 is 3.237E-7 [m] and the average and the standard deviation of the total nodal 
displacements are 5.224E-8 [m] and 3.594E-8 [m] respectively. In the ESPI simulation, the 
displacement amplitude at the same central location is 2.713E-7 [m] and the average and the 
standard deviation of the total nodal displacements are 5.229E-8 [m] and 3.594E-8 [m] respectively. 

4. CONCLUSION 

In this paper the out-of-plane ESPI technique had been simulated. A series of interfered laser 
speckle patterns of a vibrating thin right-angled STS 304 plate were generated with the phase 
shifting of the ESPI reference beam. The first laser speckle pattern was acquired before any 
vibration with no phase shifting. The second laser speckle pattern was acquired during steady-state 
vibration with no phase shifting. And the third laser speckle pattern was acquired during the 
vibration with the it phase shifting. Those three laser speckle patterns were all acquired for the 
estimation of the out-of-plane displacement of the vibrating plate. A FEM program and a phase 
unwrapping technique had also been developed for the comparative purpose of the structural 
vibration analysis. Both vibrational modal results of the ESPI and structural displacement results of 
the FEM are well agreed quantitatively each other. 
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ABSTRACT 

A new element model for vibration analysis of elastic thin plate is proposed, which couples the 
versatility of the conventional FEM and the high accuracy of the classical theory though the 
construction of shape function. Two kinds of approaches are discussed to improve the analytical 
accuracy of the model: (1) to refine the element mesh, i.e., h-version, (2) to increase the DOF based 
upon the classical theory, i.e., c-version. A large number of numerical examples show that 
c-version can lead to a super-convergence. The contents of this paper include: the principle of 
combing the conventional FEM and the classical theory, the nodal coordinate and the field 
coordinate, construction of displacement field function, element characteristics, numerical 
examples. 

1. ABOUT COMPOSITE ELEMENT METHOD 

From the detailed comparisons between the classical approach and FEM in several aspects: the 
form of solution function, solving procedure, accuracy, efficiency, versatility and applicable scope, 
etc., we know that both classical theory and FEM possess individual characteristics when solving 
differential equation or mechanics problems. In a straightforward manner, it is expected to combine 
the advantages of these two methods. 

According to this philosophy, a new numerical method, Composite Element Method (CEM), is 
proposed [1]. The first aim of Composite Element method is to utilize the verticality of the FEM 
wherein the field functions are expressed in the form of nodal values [2,3,4]. The second aim is to 
embed the analytical solution of classical theory over the domain of the element into the field 
function of the elements. To this end, the first step is to define the appropriate coordinate system of 
element, which is used as a fundamental frame to describe the displacement field of element. Then 
the displacement field is constructed based on the given coordinate system. Meanwhile, the related 
boundary condition of element must be matched. In fact, the superposition method and singular 
element method have same concept[5,6], but they have not demand of matching the node boundary 
condition of element. 

We have carried out the following research work. 
(1) To develop the theory of Composite Element Method, which can couple the conventional 

FEM and the classical theory, possesses the versatility to various complex geometric shapes and 
excellent approximation of solution. 

(2) To define two sets of coordinate systems to describe the displacement field of elements: the 
nodal DOF system (the same as in the ordinary FEM), the field DOF system of element. 
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(3) To propose the coupling boundary condition of element, which will be as the boundary 
condition when utilizing the classical theory to obtain the closed solution of the element. 

(4) To develop two approaches of CEM, A-version and c-version, which can help to improve the 
accuracy of the solution. The latter having an ability to lead up to a super convergence. 

For any element, without loss of generality, we choose the following combination of both the 

polynomials and the analytical functions to describe the displacement field: 
U = UFEM+UCT = Nq+<i>c (1) 

where UFEM is the displacement field function by FEM based on the nodal DOF. N is the space- 

dependent shape function of the conventional FEM. UCT is the displacement field function by the 

classical theory based on the field DOF. <i> is the analytical function series by classical theory. 

According to the above expression, obviously, q is the nodal coordinate of the conventional FEM, 

also called nodal DOF, and c is the field coordinate, also called c-DOF or c-coordinate. It has to be 

pointed out that the field coordinate and its corresponding basis function 4> are not arbitrary. The 

function 4> must satisfy some requirements, especially the boundary conditions of element. 

2. THIN PLATE ELEMENT OF COMPOSITE ELEMENT METHOD 

The compatible rectangular 4-node thin-plate element of CEM is developed as follows. Take 
the origin of local x-y coordination at the corner of beam element, x e [0, 2a], y e [0, 2b], where 

la, 2b are the length of rectangle's two edge respectively in x and y direction. Transform the 
coordination x, y into £, TJ , where 

4 = - -i     rj = | -1 t,rje[-\,l] (2) 
a b 

According to the Kirchhoff assumption, the transverse shear strains is considered to be zero. As 

a result, all of an element's bending properties can be derived from a single variable, the lateral 
displacement w(£,,rj), which is described as 

w(Z,r)) = wFEM(%,T]) + wCT(%,7]) (3) 

where wFEM {£,, rj) is the displacement field function of conventional FEM based on nodal DOF. 
wcr(£>;7)  is me classical solution functions based on field DOF. It can be seen that the 

conventional FEM and the classical method are combined in the construction of displacement field. 
The detailed expression of these two parts of w(£, rj) is given below. 
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w( l, n) 

= -l            £= -1                £ = 1 
am: w( n)                  Beam: w( f ) 

Fig. 1   Expanding the 2D displacement field function as the product 
of two ID displacement field functions along the £  and   r\ directions 

A natural and effective approach is considered to construct the rectangle CEM element. As 
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shown in Fig.l, the 2D displacement field function w(grj) is formed by multiplying together the 

displacement field functions of two beam element respectively in £ and 77 directions, i.e., 

w(£f7) = "tan(#K«.('7) (4> 
where wbesmg) and 1^(77) take the following form, 

*„„(£) = N(£)q4+4<£)c4 

=^,tf wl (£) + 0(lNa (£) + w42Nw2({) + 042N62(Z) 
+ ci]Fi(£;,t)+ci2F2(A'2,Z)+- + c4n4F„((Ä:s,Z) 

= *>#*** (17) + 0*N(n (I) + W,2^w2 (V) + 0,2^82 (I) 

+ cvAtf,Tf) + c,iFi&,tj)+--- + c^Fl,^,ti) (5) 

Substitution of Eq.(5) in Eq.(4) yields: 

w(£»7) = ( N«)q4 + 4(l)c, ) ( N(77)q, + <K/7)c, ) 

= N(^)q^N(r7)q, + 4(fic{ «(itfc, + N(£)q, «K»7)c, + N(i/)q, 4tf)c4 (6) 

In order to get a more accurate solution, two approaches are available to improve CEM, the h- 
version and the c-version. The A-version of CEM, just like that of FEM, is to increase the accuracy 
by refining the element mesh. However, the c-version of CEM is defined as increasing of the c- 
DOF (i.e., increasing the trial function terms obtaining from the analytical solution of the classical 
theory), which is different from the/?-version of the conventional FEM. 

CEM exhibits a super-convergence in the solving of structural dynamical problem. The reason 
lies in that the trial function used in CEM involves a set of hierarchical analytical bases obtained 
from the classical theory, instead of the usual polynomial bases. The trial function itself inherently 
possesses the properties of vibration modes. The c-version is, in some sense, related to the theory of 
spectral method. Therefore, the use of the c-version of CEM results in achieving an improved 
approximate solution at less computational expense than the use of mesh refinement. 

3. NUMERICAL VERIFICATION 

3.1 Free vibration of square plate 
A detailed confirmation for the Composite Element Method is given below. Consider the free 

vibration of a square plate shown in Fig. 2. The boundary conditions are two opposing edges simple 

supported, one edge clamped and one edge free. 
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(a) 1 element (b) 2 elements        (c) 4 elements 

Fig.2 Discretization of square plate 
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w,= l,2,3,- (7) 

where w, is the natural frequencies. lx is the length of plate edge along x direction, p is the density. 

t is the plate thickness. D is the flexural rigidity: 
El E    fin    , , Et3 

D = r- = T\      z2dz= — (8) 
l-v2     l-v2 l»i 12(l-v2) V ' 

where v is the Poisson ratio. 

One idealizes the plate into 1 element and 4 elements, then applies the Composite Element 

Method to calculate the natural frequencies. Consider several calculating schemes wherein the 

number of c-order respectively equals to 0, 1, 2 and 3. Here, "the number of c-order equals to m" 
means that the order of classical functions in Eq.(5) equals to m, i.e., n,=n   = m . 

Table 1 Eigenvalue A, of various schemes in case of 1 element discretization 
FEM(le)* 
c-order: 0 
c-DOF *": 0 
Total DOF:4 

CEM(lxlc) 
c-order: 1 
c-DOF: 5 
Total DOF:9 

CEM(lx2c)" 
c-order: 2 
c-DOF: 12 
Total DOF: 16 

CEM(lx3c) 
c-order: 3 
c-DOF: 21 
Total DOF:25 

ANSYS 
(1225 
elements) 

Exact 

A, 3.7321 3.5633 3.5633 3.5621 3.5622 3.562 
A7 6.8062 5.7984 5.7550 5.7536 5.7496 5.750 

A, 7.2664 7.2189 6.4650 6.4605 6.4587 6.457 
A4 9.1972 8.5264 7.9502 7.9499 7.9373 7.938 
A5 11.140 8.5446 8.5175 8.5065 8.509 
A* 11.305 10.252 9.5293 9.5209 9.519 
A7 12.007 11.140 10.173 10.153 
As 12.828 11.921 10.603 10.577 
A 9 15.277 13.479 11.493 11.460 
A 10 15.195 12.389 12.353 
A ,, 15.758 12.814 12.624 
A ,2 16.178 14.711 12.734 
A l3 16.949 15.187 13.430 

* The symbol FEM(le) denotes using one thin plate element of the conventional FEM. 
** The symbol CEM (1 x 2c) means using one composite element with the c-order of 2. 
*** In the count of both c-DOF and Total DOF, the DOF constrained in boundary conditions are excluded. 

As shown in Table 1 and Table 2, various order of eigenvalues Ai resulted from above 

calculating schemes are compared with the exact classical solutions, as well as the result from 

ANSYS. In the ANSYS model, the element type is bending-only 4-node shell, and totally 1225 
elements is used. 

It can be found that in each scheme of CEM, when the orders of the resultant eigenvalues are 

less than the element number multiplied by the square of the number of c-order, the result will be 

very close to the exact solution and ANSYS results. Take the scheme of CEM(4 x 2c) as example, 

in which the element number n = 4 and the number of c-order n = 2, the resultant eigenvalues from 

A, to A16 are very close to the exact solution, and the maximum relative error (i.e., that of A16) is 

only 0.17%. 
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Table 2 Eigenvalue Xt of various schemes in case of 4 element discretization 
FEM(4e)' 
c-order: 0 
c-DOF: 0 
Total DOF: 16 

CEM(4xlc)" 
c-order: 1 
c-DOF: 20 
Total DOF:36 

CEM(4x2c) 
c-order: 2 
c-DOF: 48 
Total DOF:64 

CEM(4x3c) 
c-order: 3 
c-DOF: 84 
Total DOF: 100 

ANSYS 
(1225 
elements) 

Exact 

A, 3.5708 3.5622 3.5620 3.5619 3.5622 3.562 

X, 5.7879 5.7539 5.7507 5.7504 5.7496 5.750 

X, 6.7803 6.4591 6.4582 6.4578 6.4587 6.457 

A< 8.1864 7.9451 7.9399 7.9387 7.9373 7.938 

A, 9.2362 8.5290 8.5104 8.5095 8.5065 8.509 

A* 10.579 9.6536 9.5242 9.5218 9.5209 9.519 

X7 10.833 10.191 10.161 10.159 10.153 

X% 11.483 10.694 10.585 10.581 10.577 

A 9 13.407 11.580 11.492 11.468 11.460 

X 10 14.227 12.481 12.370 12.365 12.353 

X n 14.389 12.869 12.628 12.627 12.624 

X 12 15.133 14.215 12.771 12.748 12.734 

X13 16.203 14.786 13.442 13.439 13.430 

X 14 16.363 14.843 14.552 14.507 14.493 

X 15 18.032 16.060 14.615 14.592 14.569 

•^ 16 20.313 16.936 14.900 14.893 14.874 

/I 17 17.721 15.592 15.537 15.515 

X 18 17.822 16.087 15.769 15.744 

/, ig 18.384 16.721 16.415 16.390 

X 20 18.868 16.828 16.810 16.772 
* The symbol FEM(4e) 
** The symbol CEM (4 

denotes using four thin 
x lc) means using four 

plate element of the conventional FEM. 
composite elements with each c-order being to 1. 

Relative 30% [ 
Error      25% 

Fig. 3    Comparison between the relative errors of FEM and CEM 

As shown in Fig.3, the relative errors of FEM and CEM, both of which use 2 elements, is 
compared. It can be found that under the same number of elements, the accuracy of CEM is much 
higher than that of FEM. Take the 8th-order eigenvalue as the example, the relative error of FEM is 
26.5%, while that of CEM(2 x lc) is 13.5% and that of CEM(2 x 2c) is 0.156%. With the increase 
of c-order, the accuracy is effectively improved. 
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4. REMARKS 

The thin plate element of The Composite Element Method, a new numerical approach for 
structural dynamics, is developed in this paper. The related characteristics and convergence of 
CEM are summarized as follows. 

(1) The Composite Element Method is proposed by combining the conventional FEM and 
classical theory. Therefore, it inherits the powerful versatility of FEM in dealing with various 
complex geometric shapes and boundary conditions, as well as the excellent approximation and 
super-convergence of the classical theory. 

(2) The core of CEM is to choose a special combined function as the trial function of a 
displacement field, which is constructed by the combination of the nodal interpolation polynomials 
of the FEM and the analytical solutions based on the classical theory 

(3) The 2D displacement field function of plate element in CEM can be effectively formed by 
multiplying together the displacement field functions of two beam element respectively in £ and t] 
directions. 

(4) In order to get a more accurate solution, two approaches are available to improve CEM, the 
A-version and the c-version. Numerical examples show the c-version of CEM is of paramount 
significance in obtaining the fine approximate solution in structural dynamics. 

(5) CEM exhibits a super-convergence in the solving of structural dynamical problem. The 
reason lies in that the trial function used in CEM involves a set of hierarchical analytical bases 
obtained from the classical theory, instead of the usual polynomial bases. 
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ABSTRACT 

This paper is concerned with the exploration of hierarchical models for the reliable numerical 
analysis of laminated composite structures. Here, a construction of the hierarchical models and the 
investigation on their spectral characteristics along the model level and the relative structure 
thickness are major concerns. By varying the maximum thickness-polynomial orders in the 
displacement field, we sequentially define the hierarchical models. Through the numerical 
experiments, we examine the variations of stress and local modeling error distributions and the d- 
convergence rates along the two key parameters. 

1. INTRODUCTION 

In every numerical analysis of real natural problems, at least two error components, the 
modeling and the numerical approximation errors, are inherently involved in the final numerical 
results, as illustrated in Fig. 1(a). Therefore, the selection of suitable analysis model becomes a first 
important step for the results with the desired quality. However, most research efforts so far in 
computational mechanics have been made for minimizing the numerical approximation error. 

Fortunately, a new modeling technology called hierarchical modeling has been introduced early 
in 1990's by Babuska et al. [1], Oden and Cho [2-3], Szabo et al. [4] and other several investigators. 
As illustrated in Fig. 1(b), this technology is to adaptively and systematically generate an optimal 
spatial combination of analysis models uq with different model levels, called hierarchical models, 
so as to meet the predefined modeling tolerance.[3-4] Here, the hierarchical models refer to a set of 
analysis models for a specific physical problem which are sequentially defined by a key parameter 
defining the model level in the solution field.[l-2,4,7] These models possess sort of spectral model 
accuracies such that the model accuracy increases in proportion to the model level. 

Thin structures such as beam-, arch-, plate- and shell-like bodies are representative engineering 
problems for the hierarchical modeling. This is because, owing to their geometry feature of small 
thickness to the reference surface dimension, the displacement and stress fields can be distinguished 
by the maximum thickness-polynomial order wherein. In these cases, the relative thickness and the 
maximum polynomial order become two key parameters characterizing the hierarchical models. 
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Real Natural Problem, u 
• Exact behavior 
- Exact geometry, boundary, etc 

Modeling Step Modeling Error 

Analysis Model, U 
- Assumption 
- Unsurcness 

Numerical Simu- 
lation Step 

Numerical Approxi- 
mation Error 

Numerical Solution, uq 

-'"nmpnljti.iii 1 iiuilalioii 

Fig. 1. Illustrations; (a) numerical analysis steps and (b) hierarchical modeling. 

For the numerical analysis of laminated composites, traditionally two broad analysis models, 
equivalent single layer models [5] and layerwise models [6], have been widely used. However, most 
of conventional models are restricted to lower thickness-polynomials in displacement field, and 
which may be insufficient at the region where stress field exhibits complex variations through the 
thickness. One can use higher-order theories for better results, but which is strongly faced with the 
accuracy-computation cost dilemma. In order to resolve these difficulties, ,Szabo et al. [4] and 
Bertoti [7] extended the hierarchical modeling concept to laminated composites. But, their studies 
are at the preliminary stage. 

In this paper, we aim at the intensive exploration of hierarchical models of laminated 
composites. For this goal, we first construct them and investigate their characteristics. And then, 
through numerical experiments, we examine the sequential variations in stress and local modeling 
error distributions and the d-convergence rates along the model level and the relative thickness. 

2. HIERARCHICAL MODELS FOR LAMINATED COMPOSITES 

2.1. A Model Problem 
For a simplicity purpose, we consider a two-dimensional plane-strain laminated composite fi 

of uniform thickness 2d composed of M orthotropic layers, as shown in Fig. 2(a), where co 
indicates the reference line with its end boundary da. Layerwise constant body force f € [L2

 (Q)]2 

and external traction te[L2(SQN)]2 are applied on the upper and lower surfaces dQN. Details on 
the mathematical definitions in this paper are referred to Adams [8]. Viewing the laminated 
structure as a two-dimensional linear elasticity, we formulate the elliptic boundary-value-problem: 

o(uUB+f«=0, 

= ±t„ 

in  Q 

a 

a 

u„=0 
yy     — Iy 

, on y = ±d 

on 9cox[-d,d] 

(a,ß = x,y) (1) 

Referring to Fig. 2(b) presenting k-th laminate, its material coordinates (x',y')k are aligned 
such that y' = y and x' is rotated by 9k with respect to the global coordinates. For such a two- 
dimensional orthotropic material, the laminar material stiffness matrix [c]k in the material 
coordinates constitutes the local plane-strain stress-strain relations: 

Mt=[cUB'] 
c„ Ct2 o •" E,yl 

C,2 c22 0 

0 0 c«J k i xy J 

(2) 
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with Cauchy stress and strain tensors o'af,e'afi measured in the material coordinates. In above 
relations, Cm = (l-vß3v3p)E0/A,Cl2 =(v2, + v23v3,)E, /A and C66 =G12 with A defined by (l-v,2v2, 
-v23V3J -v31v]3 -2v12v23v3l) and reciprocal relations for materials parameters in the material 
coordinates (no sum: a and ß, and 3 refers to the z-axis). By defining a coordinate transformation 
matrix [T]k between material and global coordinate systems given by 

~cos26k    sin2et 0 
[T\= sin29k    cos20k 0 

0 0        (cos20k-sin2ek) 

the local relations (2) are transformed into the stress-strain relations in the global coordinates: 

R44H- 
0"xx 

O-yy ■     = 

T "xy k 

bn    b12 

JI12        1^22 [Ei=[T]I[c]k[T]k 

(3) 

(4) 

h \                      fy 
—t, 

t 

1 

® 

2d 
■ " 

© 
\ © 

V ->t_ 

Fig. 2. A plane-stain laminated structure (a) and its k-th layer (b). 

2.2. Hierarchical Models 
We define the kinematically admissible displacement field space v(fi) as 

v(n)={v:ve[H'(fi)]2|v = 0 on d£lD}, where dQD refers to Dirichlet boundary region (i.e. 
9cox[-d,d]). Then, according to the usual weighted residual formulation, we have the variational 
formulation of the problem (1) for the fully two-dimensional linear elasticity solution u: Find 
u e V(n) such that 

a(u,v) = <v),  VveV(n) (5) 

Here, the internal virtual strain-energy functional  a(u,v) and the external virtual-work functioanl 
^(v) are respectively given by 

a(n,v)=£{|:(;'{I8(v)L:[a(n)]k}dy}dx <6> 

^HlgjVfdyJdx+^tds (7) 

where y^ and yk indicate y coordinates at the bottom and top surfaces of k-th layer, and 9fiN 

Neumann boundary region where external tractions are applied. 
Since the hierarchical models are distinguished by the maximum thickness-polynomial order, 

we define two separated one-dimensional scalar function spaces x(co) and Y[- d,d] such that 

x(cc) = {v:veH'(cD)|v = 0 on da} and Y[-d,d]eC°[-d,d] (8) 

Letting q = (qx,qy) be a non-integer set, we define the thickness order-restricted subspace Vq(n) 
of V(fi)by (a = x,y) 
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V<(n)=jv:va =|)V(j(x)-0;(y/d)|Va' sX(ca) and 0< e Y[-d,d]j (9) 

where &'a  are t-üi order thickness polynomials. Then the previously defined space V(fi) is 
equivalent to V" (Q), and furthermore V" (£2) => V(fi) as q -> +oo from the density argument. [8] 

Within the subspaces, the previous problem (5) becomes a dimensionally-reduced problem: 
Find u'eV'(Q) suchthat 

a(u",vi) = ^(vi),    Vv'eV(fi) (10) a 

From Eqs. (5) and (10) together with V'(Q)cV(fi), it is easy to prove the following orthogonal 
projection holds:  a(u-uq,v'>)=0,Vvq eV(Q). 

By varying the set q sequentially, we can construct a family of infinite solutions uq through the 
formulation (10). We define it as a hierarchical family 3H = {uq,q = l,2,...,<»} and each uq as a 
hierarchical model with the model level q (or the q-model). Mathematically, hierarchical models are 
defined as orthogonal projections of two-dimensional elasticity solution u of problem (5) onto the 
subspace Vq(f2).[2] In this family, the lowest model u' corresponds the first-order shear 
deformation theory while the highest mode u" to fully 2-D elasticity theory. The derivation of the 
thickness-polynomials is well addressed in [2-3] for isotropic structures and [4,7] for laminates. 

The finite element analysis of hierarchical models with the pre-determined thickness- 
polynomials is to seek the one-dimensional coefficients V^ in Eq. (9). But, differing from isotropic 
materials, the analytic integration through the thickness becomes significantly complicated as the 
model level increases owing to complex thickness polynomials.[4] An easy alternative numerical 
implementation is to use 2-D tensor-product finite elements: 

^(x.y)=i:',ii:>mw-^(y). (ID 
In other words, by restricting the element order q in the y-direction while increasing p as high as 
possible (usually p=8~9), we can equivalently carry out the finite element approximations, and 
which holds mathematically according to the order completeness [8] of the thickness-polynomials. 

2.3 Characteristics of Hierarchical Models 
Every model member uq in the hierarchical family 3H possesses common characteristics (or 

requirements) with respect to the two parameters, the model level and the relative thickness: 

(i) For given external loads and boundary conditions, each uq e 3H should be uniquely defined, 
(ii) The limit requirement should be satisfied:     ijmflu - uq |E(ß) -» 0, Vq, with | • |E(n) = Va(-,-). 

(iii) For applied loading with the regularity s, there exists a constant C such that (a = min(q,s) 
d the relative thickness 2d/L)) [2] 

i—i^^c.&y- (i2) 
3. NUMERICAL EXPERIMENTS 

Consider a symmetric three-layer plane-strain laminate shown in Fig. 3(a), composed of three 
orthotropic layers of equal thickness 2d/3 and subjected to uniform normal load p0 /2 on the upper 
and lower surfaces. The laminate is assumed to be in state of plane strain with respect to the xy- 
plane, and each layer is of square symmetric unidirectional fibrous composite material possessing: 
EL=25xl06psi,ET=EL/25,GLT=0.5xl06psi,GTT=GLT/2.5 and vLT =v7T =0.25, where L and T 
indicate the directions parallel and transverse to the fibers, respectively. In this problem, the In- 
direction coincides with the x-axis in the outer layers while the T-direction is parallel to the x-axis 
in the central layer (i.e. 0/90/0 graphite/epoxy composite). Fig. 3(b) shows the uniform finite- 
element mesh constructed with 2-D tensor-product elements with p of 8. 
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/ J      J . ■       I      ■ 1 

Po'2 
L = 30in 

same model level q 

^ z n n v 
Uniform mesh partition (H=30) 
same approximation order Px =8 

Fig. 3. Symmetric three-layer plane-strain laminate (a) and the uniform finite-element mesh (b). 

Fig. 4(a) represents limits of non-dimensional vertical deflection uy(L,0) at the tip for different 
hierarchical models u" along the relative thickness, where Sy is calibrated by the CLPT solution 
[6]: uy =l8ET(2d)3uy /p0L

4. Regardless of the model level, the non-dimensional limits approaches 
the CLPT solution, and which illustrates the above-described limit requirement. Vertical 
distributions of the calibrated transverse shear stress xxy =xxy /p0 at x=2d/3 are given in Fig. 4(b), 
where the model of q=l shows the distribution of FSDT [6]. The refinement in the description of 
transverse shear stress becomes considerable as the model-level increases, particularly for q > 3. 

51 -^q=l 

'   \  r2 

\ 

-'-q=3 
—r-q=S 

v, 
X  

CLPT                        ~-  
" 

3 5 10 

Thickness ratio (L/2d) Calibrated transverse shear stress x (psi) 

Fig. 4. Limits of the calibrated vertical deflection uy (L,0) (a) and distributions of the calibrated 
transverse shear stress  xxy (2d / 3, y) when (L/2d) is 10 (b). 

Next Figs. 5(a) and 5(b) respectively represent the variations of total relative modeling errors 
r|T0T (%) to the model level and the d-convergence rates yd, which are defined respectively by 

riTOT : u-uq /, I llE<nK)   
1 UOi^xlOO»/»)2}     ={j(rii)}    ,  yd=log|n-u"|B(n))/log(2d/L) (13) 

where U(u) indicates the total strain energy of the laminate while t|K is defined as the local 
relative modeling error within each finite element Q.K. For the numerical implementation, 2-D 
elasticity solution u is replaced with a higher model u8. As shown in the plots, nT0T decreases as 
q increases, and this reduction tendency becomes considerable for thicker laminate. Within 
relatively thin thickness range, yd increases together with q up to 2 according to the error bound 
(12), but it saturates when q > 3 owing to the regularity limitation. 

Distributions of riK are shown in Figs. 6(a)-(c) when hierarchical models uq with the same 
model level q of 1, 2 and 3, respectively are employed within the entire laminate region. We see that 
the closer to the fixed end finite elements are the higher r|K are obtained. Even though r|K can be 
uniformly reduced by increasing the model level, this model enrichment with the same model level 
leads to expensive computation. Fig. 6(d) shows a conceptual example of hierarchical modeling, for 
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Fig. 5. Total relative modeling errors; (a) along the model level and (b) the d-convergence rates. 

which we selectively combine hierarchical models such that u3 in the left region, u2 in the middle 
region and u' in the right region. Then, we achieve the low T|TOT as the case with a single u3 (i.e. 
Fig. 6(c)), but the r|K -distribution is more uniform and the required degrees-of-freedom are smaller. 
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(a) uniform q of 1 (r|T0T = 18.5%) (b) uniform q of 2 (r|T0T =7.39%) 
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(c) uniform q of 3 (T!TOT =1.94%) (d) model combination (t!T0T =2.57%) 

Fig. 6. Distributions of local relative modeling error t|K(%) when (L/2d) is 10. 

4. CONCLUSION 

According to the orthogonal projection of the fully 2-D elasticity theory onto the subspaces 
defined by restricting the maximum thickness-polynomial order in displacement field, we 
constructed hierarchical models for laminated structures. In order to investigate their spectral 
modeling-error characteristics, we carried out finite element analysis utilizing 2-D tensor-product 
elements. Through numerical experiments, we presented the model limit, the stress variation, 
distributions of local modeling errors and the d-convergence rates together with a conceptual 
example illustrating hierarchical modeling. 
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ABSTRACT 

Displacement field in the vicinity of notch-tip in a rubber toughened PMMA was measured at 
different levels of load using moire interferometry. The displacement field obtained was then 
compared with the analytical fields calculated on the basis of the linear elastic fracture mechanics 
and obtained from nonlinear finite element analysis that was based on the deformation theory of 
plasticity. The displacement field experimentally measured at about 90% of the maximum load 
exhibited nonlinearity. There were both similarity and difference between the measured and the 
analytical displacement fields. The nonlinearity of the displacement field is also discussed on the 
basis of the microscopic damage formation in the notch-tip region. 

1. INTRODUCTION 

Rubber modified polymers have been developed by blending rubbery phases with polymer 
matrices to improve the fracture toughness and impact resistance of the brittle neat polymers [1]. 
For example, various types of rubber particles are blended in brittle PMMA to improve its fracture 
properties [2]. It is known that damage zone is formed and extends in the vicinity of crack-tip as the 
applied load increases in rubber toughened PMMA (RT-PMMA) [3]. The damage zone consists of 
microcrazes generated in the surroundings of rubber particles as a result of local stress 
concentration and/or failure of the rubber particles. This type of microdamage formation is different 
from yielding in metals and therefore, the macroscopic nonlinear deformation field caused by the 
damage zone is naturally expected to be different from that of metals. Thus, applicability of elastic- 
plastic fracture mechanics that has been developed on the basis of metal plasticity to rubber 
modified polymers has to be carefully inquired. 

In this study, mode-I deformation behavior of a rubber toughened PMMA (RT-PMMA) was 
studied. Displacement field in the vicinity of a notch-tip was measured using moire interferometry. 
The experimental result was then compared with an analytical result obtained using nonlinear FEM 
analysis that is based upon the deformation theory of plasticity. Nonlinear deformation behavior of 
the toughened PMMA is discussed on the basis of those experimental and analytical results. 

2. EXPERIMENTAL 

2.1. Material and specimen 
The RT-PMMA examined was a press formed material containing 40wt% butyl acrylate-co- 

styrene rubber. Its microstructure observed using a field emission scanning electron microscope 
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(FE-SEM) is shown in Fig.l. The diameter of the core-shell rubber particles is approximately 300 
nm. A neat PMMA was also examined for comparison. Single edge notched specimens were 
prepared for mode-I fracture testing. The specimen geometry is shown in Fig.2. 

40 

♦ 
Grating 

-t- 

15 

<► 

150 180 

(Thickness: 5) 

Fig.l Microstructure of RT-PMMA. Fig.2 Specimen geometry (in mm). 

2.2. Measurement of displacement field 
Notch-tip displacement fields in the y-direction in the neat PMMA and the RT-PMMA were 

measured by using moire interferometry [4,5]. Specimen gratings of 400 lines mm"1 were replicated 
on the surfaces of the specimens as shown in Fig.2. Moire fringes associated with ^displacement 
field were obtained with a two-beam moire interferometry setup and recorded using a camera at two 
different load values, P^O^P^ and 0.9Pmax where Pmax is the maximum value of the applied load. 
It is noted that no crack growth occurred during the moire measurements. 

Examples of moire fringe pattern obtained for the neat PMMA and the RT-PMMA are shown in 
Figs.3. Those patterns were obtained at PaO.SP^. The difference of ^displacement between two 
fringes is 1.25 urn. It is seen that the fringe pattern observed in the RT-PMMA was denser than that 
in the neat PMMA, suggesting that larger deformation field existed in the RT-PMMA. The v- 
displacement as a function of the distance r from the notch-tip and the angle 0is given by: 

v(r,0) = N(r,0)/2F (1) 

where N(r,0) is the fringe number at (r,0), and F is the frequency of the specimen grating (400 lines 
mm"1 in the present study). 

3. FEM ANALYSIS 

3.1. Nonlinear theory 
Crack-tip HRR singular field derived from the deformation theory of plasticity is the basis of 

elastic-plastic fracture mechanics [6]. A stress-strain relation deduced from the nonlinear theory is 
given by: 
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Fig.3 Moire fring patterns at Ptä0.5PBax. 

l + ve     l-2v      _.     3ep 

,j        E     y       3E      kk  v     2 -    y (2) 

Where E is the elastic modulus, v the poisson's ratio and Sv the Kronecker delta. The deviatoric 

stresses Sv, equivalent stress ä and equivalent plastic strain ep are given by: 

Sa = 0",,. -T-CH.^,7 

o^fjW 

*"=lyW 

V2 

1/2 

(3) 

(4) 

(5) 

where fi/are plastic strain components. Mises yield criterion is employed here. Using Ramberg- 

Osgood model, relation between <r and sp is defined by: 

( — \" a 

\°yj 
(6) 

where ay and £, are yield stress and strain, respectively, and n is the strain hardening exponent and a 
a dimensionless material constant. From Eqs.2-6, the stress-strain relation becomes: 
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\*yj 

u 
a 

(7) 

A nonlinear FEM can be developed using Eq.7. 

3.2. FEM model 
A FEM model for the specimen used in the present study is shown in Fig.4. Plane stress 

condition was assumed. Isoparametric 8-node and 6-node elements were used and the numbers of 
the elements and nodes were 584 and 1805, respectively. Nonlinear FEM analyses with the aid of 
Eq.7 were performed for the RT-PMMA and the material constants used were £=1.58GPa, v=0.40, 
cry=18MPa, oH).01 and «=20. For the neat PMMA, linear elastic FEM analyses were carried out 
with the material constants, .E=3.03GPa and v=0.35. 

y,v 

X, u 

L 

ywwii 

Fig.4 Finite element model. 

4. RESULTS AND DISCUSSION 

4.1. Unmodified PMMA 
Experimental and FEM results of u-displacement field at P=0A7Pm^ are shown as a function of 

6>in Fig.5(a). In the figure, v-displacement calculated on the basis of the linear fracture mechanics 
(LEFM) is also shown. The ^displacement in the vicinity of a crack-tip derived from LEFM is 
given by: 

v(r,0)-- 
2G 

^   sin—  + 1- 
2n      2\\+v 

2cos  — (8) 
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Fig.5 y-displacement fields as a function of 9 for PMMA. 

where Äi and G are the stress intensity factor and shear modulus, respectively. For the specimen 
used, Xj can be calculated using: 

Kj=<T^F{t),   % = a/W (9) 

where a is the applied tensile stress, a the crack length and IF the specimen width. The correction 
factor F is given by: 

F{4) = 0.265(1 -1)4 + (0.857 + 0.265£)/(l - <T)3/2 (10) 

It is seen from the figure that those three v fields, i.e. the moire, LEFM and FEM, exhibited good 
agreement at 0<9O° , and the difference became larger as 9 increased. It is noted that the 
difference between the moire and LEFM fields was larger than that between the moire and FEM 
fields at 9 >90° . This is mainly because of the difference of geometry between the crack-tip 
and notch-tip. 

^displacement fields obtained at P=0.92Pmax are shown in Fig.5(b). The moire displacement 
field coincided with the FEM field well, suggesting that the PMMA specimen exhibited linear 
elastic deformation even at P=0.92Pm3X. Figs.5(a) and (b) show that the moire data was the largest of 
all three results at 9 > 90° . It is known that craze formation leads crack growth in neat PMMA. It 
therefore appears that a crazing in front of the notch-tip enabled the specimen to rotate towards the 
direction of applied load, as a result, the y-displacement at 9 > 90° in the vicinity of the notch-tip 
became larger than the FEM result. 

4.2. Rubber toughened PMMA 
For the RT-PMMA tested, experimental and analytical w-displacement fields are shown as a 

function of 9 in Figs.6. At P=0.53Pma„ the three results showed a good agreement and it is therefore 
understood that the deformation was very similar to that of a linear elastic material.     On the other 
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Fig.6 ^displacement fields as a function of 0 for RT-PMMA. 

hand, at P=Q.92Pnai, the difference between the experimental and analytical results was significant, 
implying that extensive nonlinear deformation occurred in the vicinity of the notch-tip. Although 
the FEM result included the effect of elastic-plastic nonlinear deformation, the v values obtained 
were much smaller than the experimental values. This nonlinearity appears to be caused by damage 
zone formation in the notch-tip region. It has been elucidated that the damage zone is formed as a 
cloud of microcrazes generated in the surroundings of distributed rubber particles [3]. It is thus 
considered that the mechanism of nonlinear deformation in RT-PMMA may not exactly be 
described by the HRR singular field. 

5. CONCLUSIONS 

Mode I displacement field of a rubber toughened PMMA in the vicinity of a notch-tip was 
measured using moire interferometry. The experimental results were then compared with 
displacement fields obtained by a nonlinear finite element analysis. It was seen that there existed a 
similarity between the experimental and analytical displacement fields. However, the difference 
between them became larger as the nonlinearity increased. Thus, a new constitutive low is needed 
to be developed in order to properly express the nonlinearity observed in the RT-PMMA. 
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ABSTRACT 

The body structure of a bus is generally assembled by using various spot welded box members. 

Window pillar member is ordinarily built up by T-type member. It has been shown that T-type 

member has problems such as high stress concentrations, low fatigue strength and low structural 

rigidity on spot welding nugget. In this study, a new approach to optimize the design of the bus 

window pillar member concern with stress concentration on spot welding nugget was proposed 

based on optimization technique, finite element method. To describe the shape of the gusset 

connecting the vertical and horizontal members of the T-type window pillar member, B-spline was 

adopted and this curve was optimized to have minimum weight satisfying strength constraints. It 

was found that the new approach could effectively improve fatigue durability and structural rigidity. 

1. Introduction 

Recently, interests on conservation of environment and resources have been growing. 

Automotive manufacturers are concentrating their research activities upon light weight vehicles. 

Especially, the body structure is received strong interest on the weight issue due to the high weight 

ratio of 30% of the whole vehicle. However, to build a light weight body is limited due to its 

functions such as strength, stiffness and crash worthiness. There are many means for light weight 

body such as design change, adoption of new technology for adhesion and application of lighter 

materials. Since the replacement of material or change of the adhesion method may increase the 

cost, reshaping of the design is generally adoptedfl] 
However, simple reshaping of parts may cause fatigue cracks in an actual structure as shown in 

Fig.l because stress concentration around spot welding nugget is intensified. Therefore the design 



416 Fracture and Strength of Solids 

techniques to obtain minimum weight while conserving or improving the strength is getting more 
important. 

Window pillar member in Fig.l is the significant structural member connecting upper and lower 

bodies. In addition, it is the weakest region in the body structure of bus. In this study, load pattern, 

deformation and stress distribution for the window pillar members including the spot welding 

nugget is firstly investigated. And then, optimum design technique is proposed to improve structural 

rigidity and fatigue strength with minimum weight based on the finite element analysis with the 

previous loading pattern and deformation. 

Fatigue crack 

-iWfm1Wvafpj^ 

Fig.l The shape of bus window pillar member and typical fatigue crack 

2. Finite element analysis 

2.1 Deformation of bus body 

Deformation modes of bus body can be classified into bending and torsion.fl] Usually, bending 

deformation is sufficiently restrained by a ladder type main frame. However, torsional deformation 

cannot be well support in case of typical bus structure of these days. The severe torsional 

deformation directly influences the fatigue fracture in the window pillar members due to the 

warping along longitudinal direction and lateral direction on side panel. Effective manner to cope 

with the torsional deformation of bus body is to insert diaphragms which are perpendicular to the 

longitudinal direction. To maximize the inner space of bus for passengers, however, there is no 

diaphragm except the front and rear wind shield glasses. Moreover, the body structure of the bus 

must provide wide view for the passengers. This makes the window be wider and wider. [2] 

Therefore, the numbers and the cross section area of the window pillar member are reducing. The 

structure may be put in more severe strength and rigidity conditions. 

2.2 Analysis model and condition 

Finite element analysis is performed to investigate the stress distribution of the window pillar 

member. Firstly, whole body structure is modeled with beam elements as illustrated in Fig.2 to 
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obtain the boundary conditions for the window pillar member of Fig.3. Torsional load which is 

known as the most dominant factor for the strength and stiffness of window pillar member, is 

applied to the beam model. Two FAC's(front axle center) and one RAC(rear axle center) are fixed 

and forced displacement at the other RAC is applied in the vertical direction. From this result, 

loading conditions for the window pillar member depicted in Fig.3 are obtained in the form of 

displacements. Shell element with 4-node is utilized for the finite element analysis of the window 

pillar member. To investigate the stress distribution of the spot welding points, solid element with 8- 

node is utilized for more detail describing of the spot welding points. FEM program for the analysis 

is EMRC/NISA-II, Version 7.0(1997).[3] 

Window Pillar Joint 

I : Displaced points 

Fig. 2 Beam element model of bus body Fig.3 FEA model of window pillar member 

2.3 Result of analysis 

Stress distribution and deformation of the window pillar member are shown in Fig.4, and Fig.5. 

And, Figure 6 illustrates the composition of typical window pillar member. Deformation of 

longitudinal direction and lateral direction in upper structure of the member is observed as shown 

Fig.5. Maximum stress appears at the spot welding point around the fillet of the outer gusset in 

Fig.6, which set up in order to prevent stress concentration at the joint region of vertical and 

horizontal member. It coincides with the region in which fatigue crack appears indicated in Fig.l. 

On the other hand, with the same model, analyses subjected to the unit displacement of 

longitudinal and lateral direction are performed. As the result, maximum stress due to the 

longitudinal displacement is about four times as large as it due to the lateral displacement. 

Maximum stress with the former displacement occurs where the fatigue crack of the actual model 

does. Therefore, it may be concluded that the mechanical main factor, relating with fatigue failure 

caused by stress concentration at the outer gusset of window pillar member, is the longitudinal 

deformation. This longitudinal deformation may also be called as in-plane deformation. 
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Fig. 4 Stress distribution subject to torsional load 
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Fig. 5 Deformation subject to torsional load   Fig. 6 Composition of typical window pillar joint 

4. The optimum shape of the bus window pillar member 

As already noted, the main mechanical factor, which causes the stress concentration, is in-plane 

deformation or force. The maximum stress in window pillar member by that force is located in spot 

welding point around the fillet of the outer gusset. Because stress distribution and concentration are 

dramatically changed according to a shape of outline of outer gusset as shown in Table 1, the goal 

of this study is to decide the shape for the alleviation of the maximum stress. The shape of the outer 

gusset of the present model is a single circular arc as shown in Fig.7. By increasing the radius, the 

stress concentration at the spot welding point and the outer gusset can be alleviated. However, to 

increase only its radius is not an effective counter plan from the viewpoint of the mass and the 

passenger's view. Therefore, the outline of the outer gusset will be determined in this study by the 

optimum design technique. 

Table 1 The maximum stress according to change of fillet radius 
FJllet^adius(mm) ; Maximum stress(Mpa) 

80 151.2 
'■r^\wiW^'WMi 143.7 

84 136.8 
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Fig. 7 Shape of outer gusset in present model 

4.1 The shape optimization of the outer gusset using B-spIine 
When an in-plane force acts on the window pillar member, the maximum stress occurs at the 

connecting area between a circular arc and a vertical tangential line, when this connection has a 

smooth transition by a propper control of the curve, the stress concentration can be alleviated. [4] As 

aleady verified in Table 1, it could be adopted to alleviation of the stress at the spot welding point. 

In this study, the outline is expressed by B-spline of the 3rd order, which could freely govern the 

shape of the curve by changing the location of control points. As the B-spline is the versatile curve, 

which not only sensitively reacts to infinitesimal change of the location of the control points but 

also does not allow a mathematical discontinuity, it is suitable for representation of free shape and is 

useful to apply to manufacture easily using the CNC machines.[5] The optimization method is 

applied to the half model of the outer gusset. 

The problem ststement is expressed as follows. 

Min '■ volume (x) 

subject   to: (1) 

x',<x:<x^   (i' = l 12) 

where x is design variable vector; the components of design variable x are x,y coordinates of 
the control points(Ci~C6) which determine the shape of B-spline as illustrated in Fig.8; and GJ 

represents the stress at the j th node on the outer curve. In this study, the stresses on 26 nodes along 

the outline of the outer gusset surface are adopted, i.e.,/=26 The volume of resource is constrained 

to be less than C which is taken as the weight of the current design in this study. The side 

constraints are set up to avoid impractical shape. The optimization algorithms in this study [6] are 
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presented in Table 2. 

Table 2 The algorithm using in optimization 
Whole routine 

Algorithm 
Augmented Lagrange 

Multiplier method 
Search direction 

detecting algorithm 
Broydon-Fletcher-Goldfarb- 

Shanno Variable metric method 
One-Dimensional 
Search Algorithm 

Golden Section method followed 
by polynomial interpolation 

4.2 The results of the shape optimization 

The stress distribution and maximum stress on the spot welding point around the fillet of the 

outer gusset after the optimization are shown in Fig.9 and Table 3. The figure shows that the 

maximum stress occurred to spot welding point is reduced by 43% comparing to the initial design. 

In addition, the rigidity of the member is improved by 28%. The maximum deformation is 

decreased by that percentage. It is noticeable that the weight of the optimized design in the same as 

the initial one. By the reduction of the maximum stress and the deformation in the window pillar 

member, it is expected the fatigue strength and structural rigidity of the whole body structure are 
improved. 

60 
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Fig. 8 Design variables and control points 

for the shape optimization 

Table 3 Optimization results 
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Fig.9 Stress distribution on the spot welding points 

""-——--___ 
Before 

optimize 
After 

optimize 
Reduction 

Ratio 
Insane 

Load 
(2940N) 

Max. stress(MPa) 151.1 85.5 43.8% 
Max. deform.(mm) 0.52 0.37 28.8% 

T    Weight(£|^ 16.5 16.48 0.15% 

5. Conclusion 

Window pillar member of bus body which greatly influences the body stiffness and strength was 
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optimized through the following procedures. Firstly, whole body structure is modeled with beam 

elements to obtain the boundary conditions for the window pillar member. Detailed finite element 

analysis was performed to investigate the stress distribution of the window pillar member with the 

boundary conditions. 
An approach to optimize the design of the bus window pillar member was performed. To 

describe the shape of the gusset connecting the vertical and horizontal members of the T-type 

window pillar member, B-spline was adopted and this curve was optimized to have minimum stress 

satisfying weight constraint. By changing the shape of the outer gusset, the maximum stress 

decreased by 43% and the maximum deformation decreased by 28%, with the same weight. 

From this study, it is confirmed that the B-spline is highly effective means for shape 

optimization. The approach in this study is expected to contribute to improve fatigue strength and 

the structural rigidity of the body structure of bus. 
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ABSTRACT 

In this paper, theoretic and experimental researches were conducted to analyze the mode and 
damping properties of a structure. Based on the comparison of theoretic and experiment results, a 
suitable finite element model of a structure was selected. With this model, the dynamic response of 
the structure under high over-load was analyzed with FEM. The results show that the dynamic 
stress and displacement of the structure satisfy the design requirements. 

1. INTRODUCTION 

In some special circumstance, structure may experience high over-load. For example, the 
over-load of projectile launched by cannon could reach 10000g in 2-3ms, and its dynamic response 
presents different properties due to different over-loading procedure. 

Numerical method is an effective way to analyze the dynamic response of structure. Due to 
high acceleration of the basement, the structure will undergo high inertial force. Large mass method, 
large stiffness method, or Lagrange amplify method may be used in obtaining the solution of the 
enforced motion. In this paper, the dynamic response of a structure is analyzed by the "large mass" 
method with NASTRAN. 

2. ESTABLISHMENT OF MODEL 

Fig.l   is  the  structure,  which  is  made  of high 
molecular material. 

Fig. 1 The structure 

2.1. FEM model 
Considering the properties of the structure, two FEM models were established: 
® Model   I : solid element (Fig. 2 a). 
© Model   II : solid and plan element (Fig.2 b). 
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(a) Model I 
Fig. 2   FEM model 

(b) Model   II 

2.2. Acceleration curve 
Fig.3 is the acceleration curve in y direction. 

2.3. Constraint conditions 
Main constraint conditions are: 

® bolt constraint; 
© one direction constraint. 

3. THE MODAL AND DAMPING ANALYSIS 
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Fig. 3 Acceleration curve 

3.1. Numerical analysis of mode 
The mode of unconstrained structure is analyzed using NASTRAN with two FEM models. The 

results were shown in Table 1 and Fig.4 

Table 1    Mode result of structure with Model I and Model II 
Mode Model   I Model   II 

l 720.3 Hz 465.5 Hz 
2 1148.5 Hz 818.6 Hz 
3 1463.1 Hz 1008.4Hz 
4 2162.0 Hz 1138.7Hz 

Fig.4   the Is" 1 mode shapes of structure 
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3.2. Experimental study of mode and damping 
1) The mode of unconstrained structure 

Table.2   Mode result of unconstrained structure 
Mode Frequency(Hz) 

1 455.1 
2 872.5 
3 1269.4 
4 1689.9 

The 1st—41 mode shapes of the experiment are consistent with that of numerical results. 

Comparing the frequency of the numerical and the experimental results, the Model II is more 
suitable, and is selected in the analysis of the dynamic response. 

2) The damping experiment of constrained structure 

Table.3    Damping coefficient of constraint structure 
mode Damping coefficient    (%) 

1 3.83 
2 3.68 
3 4.46 

4. NUMERICAL ANALYSIS OF STRUCTURAL DYNAMIC RESPONSE 

When the basement is accelerated, the structure is in a enforced motion. Large mass method is 
used in yielding the solution with NASTRAN[1]. The dynamic displacements of the structure at 
four different times are shown in Fig. 5.[2] 

Time 0.000000 Time 0.005000 

Time 0.009500 Time 0.019000 

Fig. 5 Dynamic displacement of the structure 
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The largest vibration of the structure occurred at the edge. Fig. 6 is an illustration of the 
dynamic displacement of an edge point. Due to the high damping coefficient, the vibration may 
disappear after 0.03s. 

The largest Von Mises stress occurred at the root of the structure. Fig.7 is the dynamic stress 
curve of a root element. The largest stress is below the strength limit of material. 
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Fig.7    Dynamic stress curve of an element 

5. CONCLUSION 

1) Numerical and experimental researches of mode for a structure are conducted. Based on the 
comparison of results, a suitable FEM model is selected. 

2) The damping coefficient of constraint structure is obtained with experimental study. 
3) Numerical analysis of dynamic response of structure under high over-load is conducted using 

NASTRAN. The results show that the design of the structure satisfies the requirement. 
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ABSTRACT 

A FEA(Finite Element Analysis) model was developed to predict the nonlinear behavior and to 
study stress and strain distributions in thick composites with fiber waviness under flexural loading. 
In the analytical model, both material and geometrical nonlinearities were incorporated into the 
model using energy density, iterative mapping and incremental method. Three types of fiber 
waviness model were considered in this study: uniform, graded and localized fiber waviness models. 
A special fabrication technique was developed to produce thick composite specimens with various 
degrees of uniform fiber waviness. Four-point bending tests were conducted to obtain the 
nonlinear behavior of thick composites with fiber waviness. It was found that the predictions from 
the model were in good agreement with the experimental results and the nonlinear behavior as well 
as local stress and strain distributions of composites were significantly affected by both the type and 
degree of fiber waviness. 

1. INTRODUCTION 

Fiber waviness is one of the manufacturing defects frequently encountered in thick composite 
structures. It results from local buckling of prepreg or wet hoop-wound filament strands under the 
pressure exerted by the overwrapped layers during the filament winding process or from lamination 
residual stress built up during curing. Its characteristics can be represented by the through the 
thickness undulation of fibers within a thick composite laminate. 

A number of studies[l-5] have been conducted on the behavior of thick composites with fiber 
waviness. Chun et al.[6] investigated nonlinear flexural behavior of thick composites with fiber 
waviness by using an analytical model(thin slice model). In this study, the nonlinear flexural 
behavior of thick composites with fiber waviness is investigated theoretically and experimentally. 
The effects of material and geometrical nonlinearities are incorporated into the finite element 
analysis by employing energy density and iterative mapping method. 
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2. ANALYSIS 

2.1. Uniform Fiber Waviness Model 

Figure 1 illustrates a representative volume of uniform fiber waviness model. The fibers are 
assumed to maintain sinusoidal curvature along a spatial coordinate direction (x-axis). The 
representative volume is then divided into subelements in both x and z directions. Then, each 
subelement can be treated as an off-axis unidirectional laminate. 

Fig. 1. Schematic drawing of a representative volume for unidirectional composite material with 
uniform fiber waviness. 

The fiber waviness is assumed to be planar sinusoidal in the x-z plane defined by 

.   ITCX 
z = asm  

A 
(1) 

From Fig. 1, the initial fiber orientation of the n'h subelement, 6^, can be written as 
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where a and X are the amplitude and wavelength of the wavy fiber, respctively. 

Energy density (W) is used to incorporate the material nonlinearity in the model.    The fourth 
order expansion of W is considered for nonlinear elastic composite 
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   .  *—"i 111*^11  T   .  v-'2222°22 T   . ^3333°33 T   . '"'4444/ 23 T   .   - J5»/  13 , *-'55557l3 """   A  ^66661 12 

(3) 

where stj, yv and C s are on-axis normal strains, on-axis shear strains and stiffness, respectively. 
If the nonlinear coupling terms between normal and shear strains are neglected, from energy density, 
str-ess-strain relations referred to material coordinates can be expressed in following matrix form 
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K,3=[C*]H,2,3 

For the plane problem, the off-axis stiffness matrix can be transformed as 

\Q']=[T-'][Q}[T] 

(4) 

(5) 

where [Q\ and [T] are an off-axis stiffness matrix and a transformation matrix, respectively. 
For a particular subelement, the changed fiber orientation due to the deformation is obtained as 

a function of strains, coordinates of nodes and nodal displacements. Figure 2 illustrates the 
deformation and associated nodal displacements of a subelement. 
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Fig. 2. Schematic drawing showing the deformation of subelement. 

From Fig. 2 and Eq. 2, the fiber orientation of deformed subelement, 0M, is given as: 

6 <»> _ tan" A#>, - A<p2 + 
l + ei' 

-tan0<' 

where 

dz    2 

<p, = tan" 
z'-z, X '-X ' 

^=tan"'77TT' £ 

z,-z, dx    2 

u2 -M, | u3 -u4 

wt - w,    w3 - w2 

(6) 

,„,     dw    du     11 w, - w,     w, - W.     M, - U,     M, - M, 
y;" = — + — = - — '- + — - + — '- + —  

dx    dz    2[ x,—x,     x.-x 

s[n) and s'"' are strains in the x and z directions for the n'h element, respectively, u,, w,, xt and zt 

are displacements and coordinates in the x and z directions for the i'h node, respectively. 
From the equilibrium equation for finite element analysis, the relation between force vector [F\ 

and displacement vector [d] is expressed as follows 

[K}[d}=[F]^ 

(7) 
a' 

where [ß], [D] and \J | are the strain shape function matrix, elasticity matrix and the determinant 
of Jacobian matrix, respectively. 

Once the stiffness matrix is determined, for given boundary conditions and force vector [F\, 
the corresponding displacement vector [d] is obtained by Newton-Raphson method. The strain 
vector is determined from the displacement vector and strain-displacement relations.    The stress 
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vector is then derived from stress-strain relations. Iterative mapping is used to recalculate the [K] 

due to fiber orientation during incremental deformation. An incremental method is adopted to 
incorporate the nonlinear characteristics into the analysis. These procedures are repeated till the 
final value of load is reached. 

2.2. Graded Fiber Waviness Model 

The representative volume of graded fiber waviness model consists of thicknesswise volume 
fraction (Va) of graded fiber waviness and volume fraction without fiber waviness. It is assumed 
that amplitude of fiber waviness decays linearly from a maximum at the middle of the beam to zero 
at the certain profiles parallel to the outer surfaces. 

2.3. Localized Fiber Waviness Model 

The representative volume of localized fiber waviness model consists of lengthwise volume 
fraction (Vd = Lw IL) of localized fiber waviness and volume fraction without fiber waviness. L 
and Lw are length of representative volume and length of volume containing fiber waviness, 
respectively. 

3. EXPERIMENTAL PROCEDURES 

The material investigated in this study was DMS 2224 graphite/epoxy composite material 
(Hexcel Co. Inc.). In order to determine the elastic properties and the nonlinear stress-strain 
behaviors of this composite material, quasi-static tests with standard specimens were conducted in a 
MTS servo-hydraulic testing system. A special fabrication technique[5] was developed for 
producing the thick composite specimens with the controlled fiber waviness. Molds with various 
sinusoidal waves were used to fabricate the composites with fiber waviness in an autoclave 
following special two-step curing cycle. Specimens with three waviness ratios (amplitude/ 
wavelength) were fabricated. The fiber waviness ratios were 0.011, 0.034 and 0.059. The 
specimens were 150 mm long, 10 mm wide and 5.2 mm thick. The test coupons were 
instrumented with strain gages on both sides. Four point flexural tests were conducted in a servo- 
hydraulic testing machine while monitoring the deflections, strains and applied loads. The 
deflections of the composite beam were measured with the home-made deflection meter. 

4. RESULTS AND DISCUSION 

Figure 3 (a) shows the comparisons among the predicted and experimentally obtained load- 
deflection curves under flexural loading for uniform fiber waviness model with various fiber 
waviness ratios. It is observed from the figure that the predicted deflections for corresponding 
load by the FEA model are lower than that obtained by the thin slice model[6] and the experiments 
for all fiber waviness ratios. It is also noted that load-deflection curves show more nonlinearity as 
the fiber waviness ratio increases. The predicted curves by the FEA model show good agreement 
with the predictions by thin slice model[6] and the experimental results. 

Figure 3 (b) shows the comparison of load-deflection curves for three types of fiber waviness 
pattern : uniform, graded and localized fiber waviness. It is observed from the figure that the type 
of fiber waviness significantly affects the nonlinear behavior of thick composites. The load- 
deflection curve of the uniform fiber waviness model shows the most degradation and nonlinearity 
among the three models. 
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Fig. 3. (a) Predicted and experimentally obtained load-deflection curves for uniform fiber waviness 

model with various fiber waviness ratios, (b) Predicted load-deflection curves for three types of 
fiber waviness with fiber waviness ratio (a IX) of 0.034 (Vcl =1.0 for graded fiber waviness model, 

Vct =1.0 and Vcl =0.5 for localized fiber waviness model). 

Figures 4-6 show schematic drawings of specimen with fiber waviness and contour plots of 
effective stress and strain for three types of fiber waviness model. When flexural loading is 
applied to a composite beam, some portion of the beam is exposed to tensile stress and the 
remainder to compressive stress. The portion of the beam under tensile stress tends to stretch the 
wavy fibers while the portion under compressive stress tend to increase the fiber waviness. Thus, 
the portion under tensile stress stiffens while that under compressive stress softens during the 
deformation. Those effects are clearly shown in the effective stress and strain distributions. The 
figures show that relatively high effective stress distribution is observed in the uniform fiber 
waviness model while relatively low effective stress distribution is observed in the localized fiber 
waviness model for the same amount of applied load. The uniform fiber waviness model shows 
the most decrease of effective stress while the localized fiber waviness model shows the least 
decrease of effective stress toward midplane of the beam. It is believed that these effects are due 
to stiffening associated with type of fiber waviness as shown in Fig. 3 (b). The effective strain 
distributions for the three types of fiber waviness model show some influence of fiber waviness 
whereas the effective stress distributions show a little influence of fiber waviness. This influence 
is relatively more pronounced in the uniform fiber waviness model and relatively less pronounced 
for the graded and localized fiber waviness models as the portions containing wavy fibers decrease 
in the composite specimens. 
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(a) (b) (c) 
Fig. 4. Stress and strain analyses of composites with uniform fiber waviness (applied load, P=50 
kN/m and a IX = 0.034): (a) schematic drawing of specimen with uniform fiber waviness, (b) 

contour plot of effective stress (a€, MPa), (c) contour plot of effective strain (s€, %). 
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(a) (b) (c) 
Fig. 5. Stress and strain analyses of composites with graded fiber waviness (applied load, P=50 
kN/m, a0IX= 0.034 and Va= 1.0) : (a) schematic drawing of specimen with graded fiber 
waviness, (b) contour plot of effective stress (ae]f, MPa), (c) contour plot of effective strain( s   , %). 

(a) (b) (c) 
Fig. 6. Stress and strain analyses of composites with localized fiber waviness (applied load, P=50 
kN/m, a0 IX =0.034, Fa=1.0and Vd= 0.5): (a) schematic drawing of specimen with localized 
fiber Waviness, (b) contour plot of effective stress (o€, MPa), (c) contour plot of effective strain 
(*„,%)• 
5. CONCLUSIONS 

A FEA model was proposed to study the nonlinear flexural behavior of thick composites with 
three types of fiber waviness. It was found that the degree of fiber waviness as well as the type of 
fiber waviness in composites significantly affected the nonlinear flexural behavior. In addition, 
stress and strain analyses were also conducted. It was concluded that the type of fiber waviness 
also affected the stress and strain distributions in composites. The uniform fiber waviness model 
showed relatively high stress and strain distributions compare to those of other models under the 
same amount of applied load and showed strong influence of fiber waviness in the strain 
distributions under flexural loading. 

ACKNOWLEDGEMENT 

The authors are grateful for the support provided by Brain Korea 21 from Korea Research 
Foundation (KRF). 

REFERENCES 
1. M. J. Shuart, AIAA Journal, 27 (1989) pp. 1274-1279. 
2. H. K. Telegadas and M. W. Hyer, Journal of Reinforced Plastics and Composites, 11 (1992) pp. 

127-145. 
3. T. -W. Chou and K. Takahashi, Composites, 19 (1987) pp.25-33. 
4. H. M. Hsiao and I. M. Daniel, Journal of Engineering Materials and Technology, 118 (1996) pp. 

561-570. 
5. H. M. Hsiao, S. C. Wooh and I. M. Daniel, Journal of Advanced Materials, 26 (1996) pp. 19-26. 
6. H. -J. Chun, J. -Y. Shin and I. M. Daniel, Materials Science Research International, 5 (1999) pp. 

181-188. 



Key Engineering Materials Vols. 183-187 (2000) pp. 433-438 
© 2000 Trans Tech Publications, Switzerland 

Fuzzy Mathematical Method for Evaluation 
of Rock Mechanical Indexes 

Guang Zhang, Tingjie Li and Shiwei Bai 

Institute of Rock and Soil Mechanics, The Chinese Academy of Sciences, 
Wuhan 430071, China P.R. 

Keywords: Fuzzy Method, Mechanical Parameter, Rock Mass 

ABSTRACT 

A new fuzzy model to assess synthetically the rockmasses quality is established which 
considers the uniaxial compressive strength Rc , integrity coefficient kv, joint spacing dp and rock 
quality designation RQD as the assessing factors of the rockmass quality. The fuzzy attributions of 
the assessing factors to the rockmass quality are described with normal subordinative functions and 
the weights of the factors are determined using the dualistic contrast method. The synthetical 
assessment on rockmass quality is performed using M(-, +) type fuzzy operator. A method to 
evaluate rockmass shear strength indexes is proposed based on the synthetical fuzzy assessment of 
the rockmass quality. 

1. INTRODUCTION 

The rockmass quality grades method (RQG method) is often used to evaluate the mechanical 
parameters of rockmass, in which the mechanical indexes of a specific rockmass is determined 
indirectly: firstly, establish the corresponding relationship between the mechanical index and the 
rockmass quality through summarizing and analysing in statistics a mass of engineering experiences 
based upon the inner link between the mechanical index and the rockmass quality and then evaluate 
the mechanical parameters of a specific rockmass according to the rockmass quality. Of many RQG 
methods, those proposed by N. Barton, Z. T. Bieniawski, Gu Dezhen and Liu Fuzheng are widely 
used [1]. 

The inadequacy of the aforesaid RQG methods lies in: (1) too clear RQG levels sometimes 
result in great difference of two rockmasses in mechanical indexes because their RQGs just fall on 
the two sides of two adjacent levels, in fact, the two rockmasses have no remarkable quality 
differences; (2) each RQG level has too large index range, resulting in inevitable man-made 
differentiation in evaluating a parameter value. As a matter of fact, no abrupt change exists between 
adjoining levels and transition from one to another is a progressive course, in other words, the RQG 
levels' boundary is unclear or ambiguous. Classical mathematical method fails to describe this 
characteristic. For this reason, the fuzzy mathematical theory is introduced into the study of 
rockmass quality grades. 

This paper tries to establish a new fuzzy synthetical assessing model for rockmass quality 
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mainly on the basis of Bieniawski RQG method, in connexion with the experiences of previous 
researchers and through rescreening assessing factors. Additionally, this paper suggests a new 
method to estimate the mechanical indexes of a rockmass. 

2. MATHEMATICAL MODEL FOR FUZZY ASSESSMENT OF ROCKMASS QUALITY 

By fuzzy synthetical assessing is meant to deduce the fuzzy subset B established on the 
discourse universe of remarks, V, from the fuzzy composite operation between the fuzzy subset A 
that is established on the discourse universe of factors, U, and the fuzzy relationship of R between 
UeaidV. 

Write fuzzy subsets A and B in terms of vectors as A={a^, Xm and B={b)IXn where a, (0 ^at ^STl) 
is the subordinative degree of u, on A, measuring how the single factor of w, plays a role in the 
overall assessing factor of A; i^O^fy^l) is the subordinative degree of the grade v, on B that is 
obtained from synthetical assessment, i.e., the result needed by the synthetical assessment. 

Write the fuzzy relationship R between U and V in terms of matrix as R ={ru}mX„ where 
rij = MvXui) (0 ^V^l) is the subordinative degree to which an object is judged as the grade v, from 
the angle of the factor w„ i.e., ru is the subordinative degree of the assessment from the factor w,on 
the grade v,. 

When A and R are known, the synthetical assessment can be made through fuzzy product of A 
andÄ 

B=A »R (1) 
Depending upon the operator form in the product, a variety of specific models have been proposed 
[2], among which M( • , +) model is the one of weighted mean type that makes synthetical 
assessment take into account the effect of various affecting factors and suitable for fuzzy 
assessment of rockmass quality. In the model, the fuzzy vector is of weight vector meaning, 
whereas the right side of Eq. (1) becomes the multiplication between common matrixes, i.e., 

m m 

bj = ^ a-jr9 , where the weight coefficient of a, meets ^] a, = 1. 

3. FUZZY SYNTHETICAL ASSESSING MODEL FOR ROCKMASS QUALITY 

3.1. Determination of Factor Set U 
There are many and complex factors affecting the rockmass quality. In assessing rockmass 

quality, the attempt to take all affecting factors into consideration is not only very difficult but also 
out of value in practice because it is impossible to implement overall investigation of all factors. It 
is necessary to screen the factors accordingly. 

To screen affecting factors should follow as fully as possible the four basic principles: (1) 
Importance: the assessing factor should be the important or fairly important ones that governs the 
rockmass quality and at least reflect a special basic aspect of the quality; (2) Independence: they are 
independent of each other relatively; it should be avoided to employ multiple factors that reflect the 
same basic aspect, which produces needless duplications; (3) Easy measurement: the index of 
assessing factors should be obtained easily and convenient for measuring with reliable results; and 
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(4) Universal in use: The assessing factors should be those that are necessary for general projects 

and easy to be widely applied to engineering. 
By analysing the factors that affect the rockmass quality under the above stated principles and 

consulting the previous RQG methods, we select such factors as elements of assessing factor set for 
rockmass quality as uniaxial compressive strength (Rc), integrity coefficient (£v), joint spacing (dp) 
and RQD value of rocks. So-comprised assessing factor set has the expression of 

U={u,,UzUzU4}={RaKdp$QV} W 
where k=(Kpm/Kpr)

2, Vpm standing for the longitudinal wave velocity of rockmass and Vpr for the 

same velocity of intact rock blocks. 

3.2. Determination of Remark Set V 
The current RQG methods with multiple factors divide rockmass quality into four or five 

grades. For correspendence, our method also has five quality grades, i.e., I -V grades, that 

comprise remark set: 
F={v„v2,v3,v4,v5}={Gl,G2,G3,G4,G5} (3) 

3.3. Establishement of Subordinative Functions 
The normal function is used to describe the subordinative function //„ (w,) on the factor u, [3]: 

\2 

p («,.) = exp (4) 

where m0 and btJ are the character constants describing the //„.(«/) function's center and amplitude. 
Eq. (4) is suitable for each factor with respect to the subordinative functions of remarks v2,v3 and v„ 
whereas with respect to the subordinative functions of remarks v, and vs, it may as well rewrite 
Eq.(4) in increasing seminormal form or in decreasing seminormal form. 

Table 1. Relation between rockmass quality grades and affecting factors 

^^\ grades 
factors ^^^^ 

v,(Gl) v2(G2) v3(G3) v4(G4) v5(G5) 

M,(*„(MPa)) >250 250-100 100-50 50-25 <25 

u£K) >0.9 0.9 - 0.75 0.75 - 0.45 0.45 - 0.2 <0.2 

u3{dD,(m)) >2 2-0.6 0.6 - 0.2 0.2 - 0.06 <0.06 

u4(RQD,(%)) 100 - 90 90-75 75-50 50-25 <25 

Tabulated in Table 1 are the rough correspondent relations between rockmass quality and 
affecting factors, which are summarized after studies of Bieniawski [4] and Yang Ziwen et al [1]. 
Given that the ranges of w, and «3 correspondent to v, are 450-250 and 4-2 respectively, then, from 
Table 1, the characters mv and b:j of all subordinative functions can be determined as shown in Table 
2. When m{i and b0 are determined, the subordinative functions are determined accordingly. Shown 
in Fig.l is the subordinative function curve of the assessing factor w, (uniaxial compressive strength 
of rocks, Rc). 

Providing a set of index values of U° ={u^° ,u2° ,u3° ,w4° } are given to assessing factors 
after determination of subordinative functions, we have assessing matrix of R ={ru}iX5 where 



436 Fracture and Strength of Solids 

r,j=MAu°). 

Table 2. Character constants (mu,b,) of subordinative functions 

7?7„=350.0 

/3„=120.112 

777,2=175.0 

/jp=90.084 
777,3=75.0 

/j,,=30.028 
777,4=37.5 

6,4=15.014 
777,5=12.5 

*15=15.014 

77721=0.950 

/j71=0.06 
77722=0.825 

6„=0.09 
77223=0.600 

/j23=0.18 

77724=0.325 

/324=0.15 
77725=0.100 

625=0.12 

m3l=3.00 
ö3!=1.201 

77732=1.30 

/j„=0.841 
77733=0.40 

0,3=0.240 

77734=0.13 

/334=0.084 
7773=0.03 

/335=0.036 

w4 ,=95.0 
64,=6.006 

77742=82.5 

/34,=9.008 
77743=62.5 

/j43=15.014 
77744=37.5 

644=15.014 
77745=12.5 

645=15.014 

SO     100    ISO     ZOO     250    300     ISO    400     ß 

Fig. 1.      Subordinative function curve of «, 

3.4. Determination of Weight Vector 
As stated previously, the element a, of vector A is the subordinative degree of the assessing 

factor of ut upon A, it is the magnitude to measure how the single factor of u, functions in the 
overall assessing factor. This magnitude can be determined using the method of dualistic relative 
comparison [3]. 

Now, if a group of factors, uuu2,--,um are to be arranged in sequence according to a specific 

character, we may make a pairwise comparison on the factors: first to establish a dualistic 

comparing grade and then turn it into the overall ordering through a certain algorithm. If the extent 

to which Uj possesses a character is given as /„(",) when we make dualistic comparison on an 

arbitrary pair of factors (w,,u,), then it's extent to possess this character should be fu (w,). The 

weight, a,, of each factor can be obtained only when a certain algorthm is employed according to 

fu.{Uj) and fu (w,) of each pair of factors (H,,W;). 

The establishment of dualistic comparing grade relies upon experts experiences or fuzzy 
statistic analysis. As concerns the problem of assessing the rockmass quality, a variety of grade- 
division methods have been developed, we may draw experiences of experts to establish a dualistic 
comparing grade. 

Bieniawski's method takes into account three factors of Rc,dp and RQD, a pairwise dualistic 
comparing grade of those factors can be established according to the marks allocated to each one. 
However Bieniawski's method does not take kv into consideration but replaces it with another factor 
of discontinuity state that is similar to kv; besides, his method pays more importance to the 
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discontinuity state than to the joint spacing dp. Liu Fuzheng's method, however, equally considers 
the importances of kv and dp. Comprehensive analysis on Bieniawski's and Liu's methods shows 
that kv is somewhat more important than dp. A rough dualistic comparing grade between any 
pairwise elements of all factors can be obtained from the above analyses: 

/„,(«,) = (0.6,1.0) /„(«,) = (1.0, 0.6) /.,(«3) = (l-0,0.7) /.,(««) = (1.0, 0.6) 

fUj („,) = (0.7,1.0) /„3 (u2) = (1.0, 0.8) f„t (u3) = (0.8,1.0) /„, («4) = (0.9,1.0) 

/„>,) = (0.6,1.0)   /„>2) = (1.0,0.9) /.4(«3) = (0.9,1.0) A,(«4) = G.0,0.9) 

By employing the algorithm proposed in the literature of [3], we have the following weight 

vector A: 
A={0.18     0.31      0.24     0.27} (5) 

3.5. Fuzzy Synthetical Assessment on Rockmass Quality 
Once the weight vector A and the synthetical assessing matrix R are determined, the fuzzy 

synthetical assessment can be carried out according to Eq.(3), thus obtaining B. According to the 
assessing criterion of maximum subordinative degree, providing 

bk=Vbj (6) 

the rockmass quality is evaluated as the grade of vk. In Eq.(8),' \y ' means to maximize. 
y=i 

4. EVALUATION OF ROCKMASS PARAMETER CHARACTER VALUE 

Shown in Table 3 [5], as an exmaple, is the correspondent relation between the rockmass peak 
strengths (/"and c) and each quality grade. 

Table 3. Values of shearing strength index of each grade of rockmass quality 

RQG level Gl G2 G3 G4 G5 

/ >1.6 1.6- 1.28 1.28- 1.0 1.0- 0.58 <0.58 

c(MPa) >2.5 2.5- 1.5 1.5- 1.0 1.0- 0.3 <0.3 

Consider a parameter written as P and take the mean value of P for they'th grade rockmass as 
the representative of this grade, written as P-. The subordinative degree to which the rockmass 
sample belongs to theyth grade is by Obviously, the higher the bj value, the greater the possibility 
that the rockmass sample is classified into they'th grade. It is easy to know, therefore, that evaluation 
of parameter P is related with each Pr How important Pj is to P is described by the subordinative 
degree of br By normalizing bp we have bj' , so-obtained b/ can be considered as the weight to 
describe the importance extent of Pj. Thereupon, the evaluated value of parameter P, P, is the 
weighted mean value of all affecting factors, i.e., 

■Y.bjPj (7) 
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where    b. 'bW 
Concretely, given that the upper limit of the rockmass shearing strength indexes are fmm=2.0 

and cmax=4.5MPa respectively, we have the typical value of/or c for each grade (Table 4) and the 
evaluation of/and c can be determined from fuzzy subset B and Eq.(7), written as/ and c 
respectively. 

Table 4. Typical values of/and c for each grade 

/         y;=i.8 /2=144 /3=1-14 fr0.79 /=0.29 

c(MPa)     |       c,=3.5 c2=2.0 c3=1.25 c4=0.65 c5=0.15 

5. CONCLUSION REMARKS 

The fuzzy synthetical assessing model for rockmass quality proposed in the present paper are 
characterized by the followings: 

(1) Having analysed and screened all factors affecting the rockmass quality, the uniaxial 
compressive strength (Rc), integrity coefficient (&„), joint spacing (dp) and rockmass quality 
designation (RQD) are selected as the basic affecting factors. These factors are independent 
relatively, each reflecting a specific aspect of the rockmass quality. 

(2) The normal functions are employed to describe the subordinative relation between 
rockmass quality and assessing factors. The character constants (mean value, m, and amplitude 
width, b) of the normal functions are determined according to previous researchers' results and 
experts' experiences. 

(3) Based upon the results of previous researchers and the experiences of experts, the dualistic 
relative analogue method is used to determine the weight vector of the assessing factor. 

In addition, this paper on the basis of fuzzy synthetical assessment on rockmass quality puts 
forward a method following the principle of First Order Second Moment Method in which both 
mean value and quadratic error of rockmass shearing strength parameters are determined. 
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ABSTRACT 

Topology optimization technique to find an optimized path of an inner reinforcement of a shell- 

typed structure is proposed on the basis of the modal design sensitivity analysis. The strength and 

mode characteristics of an automobile hood are analyzed and their design sensitivity analyses with 

respect to the thickness of the shell structure are carried out using MSC/NASTRAN. According to 

the strength and mode design sensitivity analyses, determination of design variables and response 

functions for the topology optimization is discussed. Many approaches to improve mode 

characteristics of the automobile hood from design sensitivity information are suggested. 

Available methods for direction finding and step size determination of the topology optimization 

process are suggested and their advantages and disadvantages are discussed. Finally the double- 

layer method is proposed to optimize the path of stiffener for a shell structure. Using the proposed 

method, we redesign a new inner reinforcement of the automobile hood and compare the mode 

responses with the original design. It is confirmed that new design is improved in the view of the 

natural frequency responses without increasing the weight of the automobile hood. 

1.   INTRODUCTION 

For thin shell structures, inner reinforcement is necessary in order to strengthen the weakness of 

structures to transverse vibrations or loads. However, responses from static and dynamic analyses 

cannot effectively provide the design information for the topology of the inner reinforcement. 

Therefore we introduce the new concepts of optimization techniques such as design sensitivity 

analysis to achieve the optimum path of inner reinforcement for a thin shell structure.    For 
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topology optimization, materials with microstructure were considered in the optimum material 

distribution for elastic plates in early 1980s [1]. The homogenization and density methods for 

topology design have leaded to the capacity to predict computationally the optimal topologies of 

continuum structures [2]. However, the homogenization method is difficult to apply in industry 

applications because a commercial finite element analysis code doesn't provide the design 

sensitivities with respect to material properties. While topology optimization has been promised 

as solution to the path design of inner reinforcement, design sensitivity method will benefit from 

modal design sensitivity of the shell structure supplied by commercial finite element programs and 

how to increase its natural frequency. 

In this research, an optimization technique to obtain the optimum path of an inner reinforcement 

of an automobile hood shown in Fig. 1 is proposed by using modal design sensitivity analysis 

performed by using MSC/NASTRAN. Without an appropriated initial shape of the inner 

reinforcement, the optimum path is found. Then we have seen that the proposed method is 

effective and reliable comparing with the original design that is suggested by a field designer. 

Fig. 1    FE model of the outer panel of 

an automobile hood. 
Fig. 2    Sealing region of inner panel. 

2.   MODAL DESIGN SENSITIVITY ANALYSIS 

Modal design sensitivity analysis computes the rate of changes of response-dependent functions, 

for instance, eigenvalues and eigenvectors with respect to the perturbation of design variables. 

The definition of modal analysis is given from eigenvalue problem as follows: 
Ku,=^Mu,. (1) 

where K and M represent the stiffness matrix and the mass matrix, respectively. The eigenvalue 
Aj and its associated eigenvectors u, represent the z-th free vibration frequency squared and 

corresponding mode shapes, respectively. Then the sensitivity coefficients of the eigenvalues and 

eigenvectors are defined as the total derivatives of responses with respect to design variable, b, as 

follows: 
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^ and ^ (2) 
db db 

For the complete reviews of modal design sensitivity analysis, work of Lee should be consulted [3]. 

3.   PATH OPTIMIZATION OF INNER REINFORCEMENT 

3.1 Definition of Problem 
In order to perform the topology optimization of the automobile hood of Fig. 1 by applying 

modal design sensitivity analysis, its finite element analysis is carried out first. Because the edge 

of the hood, the so-called sealing region, is required to contact tightly with engine room, we cannot 

change the path of the edge of the inner reinforcement as shown in Fig. 2. Therefore, the design 

domain will be the inside of the sealing region of the hood. Geometric and material properties of 

the hood and inner reinforcement are given in the Table 1. 

Table 1    Geometric and material properties of the hood 
Outer panel 1.2 mm 

Panel thickness Inner Panel 1.2 mm 
Reinforced bracket 1.2 mm 

Young's modulus 2.07 GPa 

Poisson's ratio 0.29 
Mass density 7.83 xlO-6 kg/mm3 

Since the path of the edge of the inner reinforcement must maintain the initial design, the 

thickness of all shell elements within the inside of the inner panel will be design variables. 

Therefore, modal design sensitivity analysis of the hood with respect to the defined design variables 

will be evaluated by using MSC/NASTRAN [4]. 
In order to determine the objective function for design sensitivity analysis, we examine the 

design sensitivity analyses of strength at a local point and frequencies of the hood. For strength 

and durability, torsional deformation due to a concentrated load applied at the corner of the hood 

must be less than the given limit value to meet the vehicle test standard such as FMVSS. However 

the design sensitivity analyses of the maximum deformation and stress show that the sensitivity 

coefficients distribute on the neighborhood of the load point. And design sensitivity of the central 

transverse loading on the hood also reveals local distribution near loading point. Thus it is 

important to note that the inner reinforcement of the hood doesn't have an effect on the torsional 

stiffness or strength of the hood. Maximum deformation or stress that leads local distribution of 

design sensitivity coefficient in the neighborhood of the load applied cannot be a candidate for 

objective functions. 
Next we consider the modal design sensitivity analysis of the hood and it shows that the modal 
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sensitivity coefficients are distributed widely on the design domain. Thus it is concluded in the 

research that the optimal path for the inner reinforcement of the hood can be evaluated by using 

modal design sensitivity analysis of the hood. Therefore, to prevent the twisting and bending 

motion of the hood, we define the object functions as the first and second natural frequencies. 

3.2 Path Optimization 

To generate the path of inner reinforcement from multiple objective functions, i.e., the first and 

second natural frequencies, we have to determine the design direction and its step size. Modal 

design sensitivity analysis of multiple objectives can provide the same sign of sensitivity 

coefficients in some design variables and the different signs in the other design variables. If the 

sign of sensitivity coefficient is positive for the multiple objectives, we can determine the design 

direction as the design variable is to be increased to improve the design. For negative sensitivity 

coefficients, the design variable is to be reduced to improve the design. If the signs of sensitivity 

coefficients have conflict, it is difficult to determine the design direction. Thus we introduce the 

root mean squared (RMS) to count the magnitude of the opposite sign of sensitivity coefficients. 

Based on these observations, we examine four methods of design directions as shown in Table 2. 

For the method 1, we increase the design variables if the signs of sensitivity coefficients of the 

multiple objectives are all positives and decrease the design variables if those are all negatives. It 

can be seen that the method 1 shows fair design improvement and good path generation comparing 

with other methods.    Thus we choose the method 1 for design direction. 

Table 2   Methods of design directions using design sensitivity coefficients 

Methods Thickness 
1 2 3 4 

Sign of + increase increase no change no change 
sensitivity - reduce reduce reduce reduce 
coefficients +/- no change change-RMS no change reduce-RMS 
Weight reduction fair good fair good 
Freq. Improvement fair good fair good 
Path Topology good bad fair bad 

Once we determine the design direction, we must determine step size of the design variables for 

optimization. For step size determination, we can consider many different methods. Here we use 

the uniform proportional step that change the design variable in proportional to the previous design 
variable as follows: 

b\n) = A<"-'> x Rsign[' with  sign[x] = 
1     ifx>0 

0     ifx = Q 

-1    ifx<0 
(3) 

where the superscript (w) denotes the design step, and b\n), c\n)  and R represent the value of /-th 
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design variable, the design sensitivity coefficient of b\n), and    proportional ratio of design 

variables, respectively. 

3.3 Double-layer Method 
Whenever the inner reinforcements are employed to strengthen the thin shell structure, the 

topology of inner reinforcement doesn't affect the shape of outer panel in general. Thus initially 

we add an identical shell panel (inner panel) to the outer panel and shear the node numbers of the 

finite element analysis. Then we change the thickness of the inner panel only, i.e., the design 

variables become the shell thickness of inner panel within the design region. In this way, the path 

of inner reinforcement becomes natural and clear. 

In the finite element model, quadrilateral element of CQUARD4 and triangular element of 

CTRIA3 elements are used and 1420 elements with 2313 common node points in the design region 

are employed. Method 1 for design direction and proportional step size are used to generate the 

topology of reinforcement. Initial thickness of the inner panel is given as 0.5 mm and lower and 

upper limits of the design variables are 0.001 mm and 1.0 mm, respectively. The free boundary 

condition is employed to carry out the response analysis and optimization. It is important to note 

that the convergence is very fast and reliable because the path of the reinforcement appears in one 

or two design steps as shown in Fig. 3(a). In the Fig. 3(a), the gray region becomes the path of 

reinforcements and dark region can be eliminated. 
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Fig. 3    Optimum design of inner reinforcement of automobile hood: (a) Topology of reinforcement, 

(b) FE model of optimized design, and (c) FE model of original design 

4.   RESULTS 

The path of inner reinforcement can be designed so that a designer can draw the path along the 

relative thick region of inner panel of Fig. 3(a). Finally, Fig. 3(b) shows the finite element model 

of the optimized inner reinforcement.    Then the modal analysis of the automobile hood attached 
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with the inner reinforcement is carried out and its responses are given for both free and fixed 

boundary conditions in Table 3. The results shows that the first and second natural frequencies of 

the optimized design are improved for the free and fixed boundary conditions without increasing 

the weight comparing to the original design shown in Fig. 3(c). 

Table 3 Comparison of the modal analyses of the hood 
Original design Optimized design 

Weight 23.3 kg 23.0 kg 
Free Mode 1 12.6 Hz 14.6 Hz 
boundary Mode 2 48.8 Hz 49.5 Hz 
Fixed Mode 1 32.4 Hz 37.8 Hz 
boundary Mode 2 56.2 Hz 58.0 Hz 

5.   CONCLUDING REMARKS 

Topology optimization technique of the inner reinforcement for a thin shell structure is 

proposed by using modal design sensitivity analysis. The criteria to determine the objective 

function and design variables are suggested to achieve the optimum path of the inner reinforcement. 

And the developed double-layer method is so natural and fast that it can show clear pattern of 

topology because the inner reinforcement doesn't change the shape of the outer panel but is added 

to it. The optimized design of the automobile hood is considerably improved in the view of 

vibration characteristics without increasing the weight. The proposed method can be used to 

design the topology of reinforcement of a thin shell structure in general. 
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ABSTRACT 
This paper provides a summary of recent computational studies on various dynamic fracture 

phenomena. First, the dynamic J integral and the separated dynamic J integral are presented These 
path independent integrals are very useful for accurately evaluating various fracture parameters. 
Next, several types of fracture simulation are explained. These are generation-phase simulation, 
mixed-phase fracture-path prediction mode simulation, mixed-phase crack-growth prediction mode 
simulation, and application phase simulation. Simulation results are presented for (i) impact 
kinking and curving fracture, (ii) dynamic interfacial fracture, and (iii) dynamic crack bifurcation. 

1. INTRODUCTION 
Numerical simulations of dynamic fracture phenomena involve many inherent difficulties. 

Main reasons of these difficulties may be listed as follows: 
(1) Moving singularities at the tips of dynamically propagating cracks should be treated accurately. 

The ordinary numerical methods cannot treat the moving singularities. 
(2) When a propagating crack tip passes a material point, the material point instantaneously 

separates into at least two parts. In the ordinary numerical models with nodal release 
techniques, this sudden unloading process often produces spurious oscillations. 

(3) Cracks may curve, kink or bifurcate. Automatic mesh generations for these non-self-similar fast 
fracture phenomena are extremely difficult. 

(4) The crack propagation velocity along a bimaterial interface can become extremely fast and can 
exceed the shear wave speed of the compliant material. 

To overcome such difficulties, the author and coworkers have developed various numerical 
simulation technologies, such as various moving finite element methods, the path independent 
dynamic J integral, concept of separated dynamic J integral, and concept of mixed-phase 
simulation. 

Using the developed concepts and technologies, various dynamic fracture phenomena including 
(i) impact kinking and curving fracture, (iii) dynamic interfacial fracture, and (iv) dynamic crack 
bifurcation, are successfully simulated. The simulation results for dynamic fracture path prediction, 
variations of the dynamic J integral and dynamic stress intensity factor during the dynamic fracture 
processes are presented. 
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2. PATH INDEPENDENT DYNAMIC J INTEGRAL 
To evaluate various fracture mechanics parameters for a crack subject to impact stress wave 

loading, and for a dynamically kinking as well as dynamically curving crack, the path independent 
dynamic J integral derived by Nishioka and Atluri [1] is used. 

In most numerical analyses, the dynamic J integral (J') can be evaluated by 

Jr+rc 
■Ji J'k= [(W+K)nk-tiUiik]dS+     [(püi-fi)ui,k-püiüi,k]dV   (i) 

Fig.l Integral paths 

where W and K are the strain and kinetic energy densities, 
respectively. The integral paths are defined in Fig.l. 

The crack-axis components of the dynamic J integral can be 
evaluated by the coordinate transformation, ]'f = a/i(0o) J'i 
where ctft is the coordinate transformation tensor. The tangential 
component of the dynamic J integral J'^ corresponds to the rate of 
change in the potential energy per unit crack extension, namely, the 
dynamic energy release rate. The dynamic J integral can be related to the instantaneous stress 
intensity factors for the elastodynamically propagating crack with velocity C, as in [1]. 

To accurately evaluate the inplane mixed-mode stress intensity factors from the dynamic J 
integral values, the component separation method [2] has been proposed. The formulae of the 
component separation method are expressed by 

(2^ß2(j'icoseo+J'2sine0)|
1/2        K =s   f2nßi(j'icose0+J'2sineo}|1/2 

\     A,(82ß2 + Önßi)      j U\     Ajfe + öäßi)     ■/ 
where ö, and 8n are the mode I and mode II crack opening displacements, and Ai(C), An(C) are 
functions of crack velocity and given in [1], 

KI=6I (2.a, b) 

3 SEPARATED DYNAMIC J INTEGRAL FOR AN INTERFACIAL CRACK 
Now we consider an interfacial crack (see Fig.2). The interface may be curved or straight. Then 

the separated dynamic J integral [4] which has the physical meaning of energy-flow rate from the 
materials 1 or 2, can be defined as 

'k
m)= [(■W+K)nk-tiui,k]dS+       [{(pKii-fOuj.k-pHiiüiJdV (m=i 2) (3) 

material 1 

interface 

,(m)     (m)      (m) +rc +ri 
where rim) (m=l, 2) are the integral paths along the interface in 
the sides of the materials 1 and 2, respectively. 

The crack-axis components of the separated dynamic J 
integrals can be obtained by the coordinate transformation: 
J'/0(m) = a/k(eo)j'k

m)» (m=l,2). Thus the separated energy- 
release rates G(m) (m=l,2) [4] which are the energy-flow rates 
from the material m (m=l,2) into the propagating interfacial 
crack tip per unit crack extension can be expressed by 

GW = J'?(m) = J'<m) cos90 + Jim) sinGo, (m=l,2).      (4) 

. ,™™„ „ Fig.2 Definition of integral paths 
4. TYPES OF FRACTURE SIMULATION for separated dynamic J integral 

For non-self-similar fracture such as curving crack growth, three types of numerical simulation 
were proposed by Nishioka [5]. First, the generation phase simulation can be conducted, using both 
experimental data of the crack-propagation and the curved fracture-path histories (see Fig.3(i)). 

On the other hand, in the application phase simulation for curving crack growth, two criteria 
must be postulated or predetermined as shown in Fig.3(ii). One is the crack-propagation criterion 
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Crack-propagation history Fracture-path history 
(i) Generation phase simulation 

! -4— ■ Propagation-direction criterion , 

Crack-propagation criterion 
(ii) Application phase simulation 

-|—' Propagation-direction criterion ■ 

that governs the rate of crack growth. The other one is a 
criterion for predicting the direction of crack propagation 
(propagation-direction criterion). However, the application 
phase simulations of curving crack growth have not been 
fully established, due to several critical difficulties in those 
simulations. For instance, in dynamic brittle fracture, the 
crack-propagation criterion described by fracture-toughness 
versus crack-velocity relation itself has several unsolved 
problems. 

To verify only the propagation-direction criterion such as 
the maximum energy release rate criterion, Nishioka [5] has 
proposed "mixed-phase simulation"'as depicted in Fig.3(iii). 
In "fracture-path prediction mode" of mixed-phase 
simulation, the experimental data for the a-t relation is used. 
Thus, the increment of crack propagation is prescribed for the 
given time-step sizes in this mode of simulation. Then a 
propagation-direction criterion predicts the direction of 
fracture path in each time step. If the simulated final fracture 
path agrees with the actual one, the postulated propagation- 
direction criterion is valid. 

Another mode of the mixed-phase simulation can be 
considered as depicted in Fig.3(iii-b), i.e., "crack-growth prediction mode". In this mode, the 
experimental data for the fracture-path history and the crack-propagation criterion are used 
simultaneously. In this case, the crack is forced to propagate along the actual fracture path during 
the numerical simulation. Simulated crack-propagation history should agree with the 
experimentally obtained actual one if the postulated crack-propagation criterion is valid. 

Crack-propagation history 

(a) Fracture-path prediction mode 

Fracture-path history Crack-propagation criterion 

(b) Crack-growth prediction mode 

(iii) Mixed-phase simulation 

Fig.3 Mixed-phase simulation for 
non-self-similar dynamic fracture 

5. DYNAMIC FRACTURE SIMULATIONS 
To simulate dynamic crack propagation, two different concepts of computational modeling can 

be considered, i.e., (i) the stationary element procedure, and (ii) the moving element procedure, as 
reviewed by Nishioka and Atluri [6], and Nishioka [2,5]. For self-similar dynamic crack 
propagation problems, it is well known that the numerical results of the moving element procedure 
are generally more accurate than those of the fixed element procedure. Nishioka and coworkers 
developed various moving finite element methods [7-9] for self-similar dynamic fracture problems. 
However, the moving element procedure was difficult to be applied for non-self-similar dynamic 
crack propagation problems except for smoothly curving fracture problems (Nishioka et al.[10,l 1]), 
because of the difficulties in moving the near-tip elements along curved or kinked path. 

Material: PMMA 

W = 100 mm 
S = 400 mm 
a0= 50 mm 
h =  10 mm 

I 

5.1 Impact Kinking Fracture 
Mixed-mode impact fracture tests were conducted 

in [12]. The geometry of the impact fracture specimen 
is shown in Fig.4. The impact load was applied at the 
off-center point as shown in Fig.4. The loading 
eccentricity is defined as e=//(S/2). The initial impact 
velocity of the hammer was 5 m/s. The history of Fig.4 Mixed-mode impact fracture specimen 
crack propagation was recorded by using a high-speed camera [12]. The crack started propagating 
at t=120 Us after the initiation of impact (t=0). The maximum crack velocity observed was 300 m/s. 

Since the local symmetry (Kn=0) criterion has demonstrated [10,11] the best prediction of 
smoothly curving fracture paths in DCB specimens, this criterion is also employed in this study. 
Using the local symmetry criterion together with the experimentally obtained crack-propagation 
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Fig.5 Dynamic fracture path simulated with the 
local symmetry criterion 

I (Simulation) j» 
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history, the mixed-phase fracture-path prediction 
mode simulation was carried out. The time 
increment At=2 ns is used. The dynamic J 
integral values at various instants of time shows 
excellent path independence. 

The deformation of the dynamically 
fracturing specimen is shown in Fig.5. The 
deformation is magnified by 30 times. It is seen 
that the postulated local symmetry criterion 
predicts the dynamically propagating fracture 
path toward the point of impact loading. The 
simulated fracture path excellently agrees with 
the experimental fracture path (see Fig.4). 

Figure 6 shows the variations of the stress 
intensity factors converted from the average 
values of the dynamic J integral using Eqs.2(a) 
and (b). As seen in Fig.6, the impact fracture for 
the case of e=0.1 occurs under almost pure mode 
II condition. Contrary to that, the mode II stress 
intensity factors are zero during dynamic crack 
propagation, since the Kn=0 criterion is forced in the 
fracture-path prediction mode simulation. 

5.2 Dynamic Interfacial Fracture 
Dynamic crack propagation along the interface of 

a bimaterial plate is considered as shown in Fig.7. 
The dimensions of the plate are W=2L=40 mm. The 
plate is subject to shear loading xn or tension loading 
an at the upper and lower ends of the plate. Then at 
the time t=0, the crack is assumed to propagate with a 
constant velocity C. 

The strain energy density distribution for the transonic crack 
velocity regime under tension loading is shown in Fig.8. It is seen that 
the highly dense contours of the strain energy density agree excellently 
with the theoretical Mach shock wave angle of ^s=56.4° measured 
from the crack face [4]. These results may be the first computational 
visualization of distinct shock waves emanated from the transonically 
propagating interfacial crack tip [4]. 

Figure 9 shows the energy release rates calculated by the dynamic 
J integral during the interfacial crack propagation under the shear 
loading [13]. In this figure, the dynamic J integrals are normalized by     Fi8-7 A bimaterial plate 
the static one for the initial crack. In each case, the dynamic J integral drops immediately after the 
onset of dynamic crack propagation. 

Figure 10 shows the minimum values of the normalized dynamic J integral for all types of 
calculated models. The crack velocities are normalized by the shear wave velocity of material 1. It 
is seen that the curves of the tension-dominated models do not depend on the material mismatch 
ratio and always become zero for transonic interfacial cracks. For the shear-dominated models, it is 
found that the minimum energy release rate remains finite in transonic interfacial crack propagation. 
It almost does not change with the variation of crack tip velocity in cases C=1.0Cs(", C=1.2Cs and 
C=1.4Cs  . Thus, once the crack velocity reaches in this range, the crack will accelerates very 
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rapidly up to C=1.4Cs(". 
The separated dynamic J integrals showed excellent path 

independence [4,14] although they are not given here. For 
subsonically propagating cracks under shear as well as tension 
loading, it was observed in the present results that the energy 
flow rate from the compliant material is much larger than that 
from the stiffer one. Furthermore, for the transonically 
propagating cracks under shear loading, the energy release 
rates from both material sides become the same. 

CRACK TIP 

260 

(N.m) 

100 

E(2)/E(1)=3.0    C/CS0)=1.2 

Fig.8 Mach shock wave 

0.22 0.24 0.26 
Crack Length (a/W) 

Fig.9 Dynamic J integral under shear loading 

Fig. 10 Dynamic J integral vs. Crack tip velocity 
5.3 Dynamic Crack Bifurcation 

The governing condition of dynamic crack bifurcation 
phenomena had not been fully clarified until our recent 
experimental studies [14,15]. We found from the experimental 
results that the energy flux per a unit time into a propagating 
crack tip governs the crack bifurcation. 

Regarding the numerical simulation of dynamic crack 
bifurcation, to the authors' knowledge, no simulations have been 
carried out, due to several unresolved difficulties. 

In order to overcome the difficulties, for the analysis of Fi§-n Evaluation of the dynamic 
dynamic crack bifurcation, we have developed a moving finite J integral for branched cracks 
element method based on Delaunay automatic triangulation. Using this moving finite element 
method, the generation phase simulation was carried out, based on the experimentally recorded 
fracture histories by an ultra-high speed camera [14,15]. In order to evaluate the dynamic J integral 
values for dynamically branching cracks, a special form of the dynamic J integral has been derived 
as follows: 

35.7us 79.4us 119us 142us 
Fig. 12 Generation phase simulation of dynamic crack bifurcation 
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at the tip b, and vice versa. Equation (5) made it 
possible to evaluate the dynamic J integral components 
for interacting branched crack tips. 

The deformed mesh patterns of dynamically 
fracturing specimen are shown in Fig. 13. In order to 
visualize the crack profile, the deformation was 
magnified by 10 times. 

Figure 13 shows the variations of the crack-axis 
components of dynamic J integral. It is seen that the 
total energy release rate is continuous before and after 
the crack bifurcation. In other words, the energy release    Fl^A3 °ynamic J mte8ral components 
rate for each branched crack becomes a half of the one at the crack bifurcation. 
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6. CONCLUDING REMARKS 
Recent computational studies on various dynamic fracture phenomena were summarized. In all 

cases, the moving finite element method and the path independent dynamic J integral demonstrated 
their excellent applicability for solving dynamic fracture phenomena. The numerical simulations 
provided valuable results and insights to clarify the mechanisms of various dynamic fracture 
phenomena. 
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ABSTRACT 

The spacer grid is one of the main structural components in fuel assembly, which supports the 

fuel rods, guides cooling water, and protects the fuel assembly from the external impact load such 

as earthquakes. Therefore, the mechanical and the structural properties of the spacer grid must be 

extensively examined while designing it. In this paper, a numerical method for reliably predicting 

the buckling strength of the spacer grid is presented. Numerical analyses on the buckling behavior 

of the spacer grid are performed for a various array of grid sizes, considering that the spacer grids 

are an assembled structure of thin-walled plates. The nonlinear dynamic impact analysis is 

conducted by using the finite element code ABAQUS/Explicit. Buckling tests are also carried out 

for several kinds of the specimens of the spacer grids in order to compare the results between the 

test and the simulation. This test is accomplished by a free fall dummy weight onto the specimen. 

From this test, only the uppermost and lowermost layers of the multi-cell are buckled, which 

implies the local buckling at the weakest point of the grid structure. Simulation results also 

similarly predict the local buckling phenomena. It is found to corresponde well with the test results. 

In addition, a correlation that can predict the maximum impact strength is empirically derived from 

the simulation results in the case of the grids having the larger number of cells. 

1.    INTRODUCTION 

The spacer grid, one of the most important components of nuclear fuel assembly, is composed 
of straps, which are crossed to form an egg-crate like structure. It constitutes the skeleton of the fuel 
assembly together with guide thimbles, top and bottom end pieces. The structural grid assemblies 
provide both lateral and vertical support for the fuel rods. The pitch of the fuel rods in the core is a 
carefully selected parameter, which has a major effect on the nuclear and thermal/hydraulic 
performance of the core. The spacer grid is an interconnected array of slotted grid straps welded at 
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the intersections. The fuel assembly incorporates either seven or eight spacer grids. The spacer grid 
outer straps constitute contact surfaces that can transmit possible seismic loads between the fuel 
assemblies. The principal design concern with regard to grid strap buckling is that the fuel rods 
should maintain the coolable geometry and that the control rods should be inserted. Therefore, 
thermal/hydraulic testing and analysis are necessary to demonstrate that a deformed grid is coolable 
and that control rod motion is not impeded. Design practice is to adopt the incipient buckling load 
as a failure criterion for the grid. The diagonal axis of the grid assembly has the lowest impact 
strength. Sustained loads applied along the diagonal axis, however, are not credible because 
slipping between grid assemblies causes diagonal loads to be applied to the grids in normal 
directions only. Consequently, the limiting loads imposed upon the grid assembly are the result of 
impacts due to lateral seismic accelerations, lateral LOCA (Loss Of Coolant Accident) blowdown 
forces, and shipping and handling loads. The ability of the grid to resist lateral loads is 
characterized in terms of its dynamic and static crush strengths. These quantities and the grid 
dynamic stiffness are required for fuel assembly seismic and LOCA blowdown analyses to verify 
that coolable grid geometry is maintained. During calculations, the cutout section is not regarded to 
affect the buckling strength. The dynamic impact properties (dynamic stiffness and coefficient of 
restitution) are determined by measuring the impact force and its duration as a function of impact 
velocity, with suitable assumptions. 

2.   NONLINEAR DYNAMIC IMPACT ANALYSIS 

2.1. FE Model and Boundary Conditions 
The nonlinear dynamic impact analysis is simulated by a finite element method. The 

commercial code ABAQUS/Explicit (version 5.8)[1] is used for the FE analysis. The geometrical 
data for the FE analysis follow the specimen of the dynamic free fall tests as shown in Fig. 1. 
Besides the geometry, 186.8 GPa is used for Young's modulus of the grid material, stainless steel. 
0.3 is used for the Poisson ratio. Since the characteristic curve shows the nonlinear elastic-plastic 
behavior, the plastic property of the material is also considered, such as the yield strength (258.6 
MPa) and the hardening curve. The stress vs. strain curve of stainless steel for the dynamic analysis 

12.80.3=38.40 

is applied. 
(b) FE model 
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Fig. 1. Schematic diagram of grid specimen. 

4-node shell elements are used for the FE model of the analyses because the thickness of the 

strap (0.6 mm) is much smaller than the width (12. 8 mm). A thin shell element is used when the 

transverse shear flexibility is negligible and the Kirchhoff constraint must be satisfied accurately. 

For the boundary conditions of the FE analysis, three translational degrees of freedom at the lower 

four edges are constrained since the specimen is regarded to have the simply supported condition on 

the edges of the grid specimen during the dynamic impact test. The number of elements is 2352, 

and the number of nodes is 3296[2]. The dynamic impact load onto the grid is simulated by 

imposed initial velocity onto rigid surface, which initially contacts the top of the grid. The boundary 

conditions are well depicted by Fig. 2[3, 4], The impact force is obtained from the total reaction 

force at four lower edges by applying the initial velocity on the rigid surface. 

Initial Velocity 

_/y: 

ir mass 

XE XL 

\ rigid surface 

spacer grid 

~n 

Fig. 2. Boundary condition for the simulation of 3 by 3 cell grid. 

2.2. Analysis Results 
The FE results for simulating the dynamic impact characterization curves are given in Fig. 3. 

The impact force increases more and more until the buckling of a grid cell occurs. The local 

buckling occurs only at the upper and lower cells of the grid. The difference in impact force 

between the simulation and test is +1.7%. The maximum stress is revealed at the corner leg of the 

unit cell as shown in Fig. 4(a). The deformed shape is very similar to the test result. The energy 

input to the entire model is shown in Fig. 4(b). 

3. FREE FALL TEST 

3.1. Test Setup 
A free fall shock machine, as shown in Fig. 6, is used to perform the tests. It is intended to 

simulate the type of load and impact velocities anticipated under seismic disturbance. The upper 
part of the structure consists of two guide rods and supporting columns, which are erected from the 
base. The carriage moves with the guidance of the two guide rods. The carriage is aluminum casting, 



454 Fracture and Strength of Solids 

the shape of which is determined for obtaining maximum rigidity with minimum mass. 

H Type Grid (3x3 cell) 

0.2 0.3 0.4 

Initial Velocity (m/sec) 
0.5 

Fig. 3. Initial velocity vs. impact force of 3 by 3 cell grid. 
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Fig. 5. Deformed shape by dynamic impact analysis. 

The general test setup consists of the floor, dummy weight, force transducer, dynamic accelerometer, 
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and mounting fixtures. A carriage weight of 45 lbs (20.43 kg) for the specimen is selected. The 
impact force by the tester is found too high to investigate the critical buckling load of a grid. 
Therefore, an additional spring damper is mounted on the carriage in order to decrease the impact 
velocity. The static force transducer is mounted on the carriage to measure the impacting forces. 
One dynamic accelerometer is mounted on the top surface of the carriage. The grids are rigidly 
clamped to the holding plate that is also placed on the floor. The initial drop height of the impact 
weight is 7.75 inches (196.85 mm). The impacting tests were performed on the 3x3 array grids. The 
grids are fixed with holding fixture by 4 screws. The carriage is moved to initial height and then 
droped onto the grid. This procedure is repeated, increasing the height by 0.5 inches at each step 

until the specimen buckles. 

Specimen 

Fig. 6. Test setup for grid impact test. 

3.2. Test Results 
The impact forces of the test are varied from 4778 N to 6401 N and impact accelerations are 

from 17.6 g to 25.8 g. The average values of these are 5365 N and 21.5 g. The deformed shape of 
specimen is shown in Fig. 7. 

iiW|Rr;"»!llf : 

■wm^rn^ 

Fig. 7. Deformed shape after grid impact test. 

4. CONCLUDING REMARKS 
The nonlinear dynamic impact analysis for the spacer grid is conducted and the intrinsic 

boundary condition of the grid structure is checked. The importance of the boundary condition is 
apparently verified by using several boundary conditions. It seems that the difference is caused by 
the geometry, an each specimen. Comparing the analysis results with the test chooses the boundary 
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conditions finally applied. 
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Fig. 8. Impact force and acceleration by grid impact test. 

The free fall shock test shows the interesting buckling behavior of the grid. The deviation 
bounds of the impact force and acceleration by test are within 10%. The acceleration and impact 
force by test are showed in Fig. 8. The average critical drop height is 0.083 m. The buckling of the 
grid initiate at only the uppermost and lowermost cells, but the middle layer cells retain in the 
original grid shape. It is the weakest layer of the grid, which initiates buckling in the shear direction 
by the strain localization phenomenon. 
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ABSTRACT 

The large-scale chime group composes of three layer of steel frames and 108 various mass of 
bells. This set of chimes named "Chinese Peace Chime Group " was put in the 'Tai Temple" of 
Forbidden City of Beijing for the millennium celebration. Since the structure of the chimes is 
coupled by the frame and various of single-pendulum bells, how to treat the coupling between the 
single-pendulum and the frame structure and to model the full structure with a large group of 
single-pendulum bells are the objective of this paper. First of all, one uses a beam element plus a 
mass block to model the a single pendulum, which is considered as a "eigen" structure, then 
analyzes the approximation between the "eigen" structure and the origin in the aspect of dynamics, 
and sets up the relationship among various parameters. Based upon this modeling, one completes the 
modal analyses of full large-scale chime group on the platform of ANSYS software. The result 
shows that the first part of modals are the independent swing of various single-pendulum bells, then 
the following part is the coupled modals, which is very reasonable. 

1. INTRODUCTION 

Modern large and precise structures (such as building, civil engineering, spaceshuttle, space 
station, aircraft, train, automobile, robotics, antennas, satellites, manipulator, etc.) raise a demand 
on the accurate dynamic analysis for both lower eigen frequencies and higher eigen 
frequencies[l]-[4]. The large-scale chime group is a such structure, which composes of three layer 
of steel frames and 108 various weight of bells (see Fig.l). Since the acoustic effect of each bell and 
the free vibration of the frame must be coupled together, the design and analysis of this complex 
structure is an objective of this paper by using new modeling technique. 

2. MODELING OF SINGLE-PENDULUM IN STRUCTURE VIBRATION 

In order to do the coupling analysis of this large-scale chime group, one must get an equivalent 
model to describe the single-pendulum in structural analysis platform. Since a single-pendulum is a 
system of rigid dynamics (see Fig.2 (a)), its natural circular frequency is characterized by following 
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formula (1). 

1 5 5       C 

l 

plf    plf   pUf   pM 
^^^^^^^^^^^^ffl; 

fl  A  Ü  Ö 
T 

fl A D fl TMMU Ö A A fl 
T 

Fig. 1.   The large-scale chime group 
composed of three layer of steel frames and 108 various weight of bells 

CD- (1) 

where / is the length of single-pendulum, g is the gravity acceleration. 

""/'" 

Beam element r 
Mass element ki 

E, I, I, m, 

m 

(a) a single-pendulum (b) "eigen" structure 

Fig.2. Using an "eigen" structure to model a single-pendulum 

We consider a similar structure to model a single pendulum[5], which called "eigen" structure 
composed of two components: a linking beam and a mass block. Assume E, I,l,ml of beam are the 
elastic modulus, inertial, the length, the mass of the beam element, respectively, the m is the mass of 
bell. From the vibration analysis of this "eigen" structure, one has its natural circular frequency as 
following. 

CO 

where k is the stiffness of linking beam, i.e., 

1     * 
m + 

33 

140   ' 

i.e., 

k-- 
3EI 

~~  /3 

(2) 

(3) 

From the Eq.(2), one know that the parameters m, mx and their combination will play an important 

role for the natural vibration of "eigen" structure, we study the error of co corresponding to the 
combination of the parameters m and mu which are listed in Table 1 and Fig.3. 
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Table 1. The error of co vs. the combination of the parameters m and m^ 

m(kg) m/mx a1 ■ co2  ■ «(%) 

102 0.001282 53.29 50.00 6.58 

103 0.01282 52.04 48.97 6.269 

104 0.1282 43.00 41.29 4.141 

105 1.2882 21.06 20.86 0.959 

106 12.82 7.180 7.172 0.112 

107 128.2 2.289 2.289 0 
!) w,: the result of Eq.(2);   CJ2: the result of single-pendulum;   £:  (torco2)/co2 

0.07. 

0.06. 

0.« 

CM. 

O.OJ 

Fig.3 The error of a vs. m/mt 

Within a scope of error, one considers the approximation between the single-pendulum (see 
Fig.2(a)) and the "eigen" structure (see Fig.2(b)). Let Eq.(2) approximate to Eq.(l), one has 

co- 
33 

\m-\ m\ 
140   l 

(4) 

Substituting Eq.(3) into Eq.(4) can get 

3El = gl2\m + ^pAl (5) 

For the sake of convenience, one fixes the parameters: A, I, P ,I,m unchangeable and only changes 
the elastic modulus of linking beam: E corresponding to each bell of single-pendulum. To do so, we 
can completely model the 108 single-pendulum bells using the corresponding "eigen" structure. 
According to the actual case of chimes, the maximum m/mx of upper layer bells is more than 30%, so 
the analogue error of nature frequency is less than 3%; the maximum m/m^of middle and low layer 
bells is more than 10, so the analogue error of nature frequency is less than 0.1%. Such an accuracy 
is very good for engineering analysis. 



460 Fracture and Strength of Solids 

3. COUPLING MODELING FOR PENDULUM AND STRUCTURE 

Based upon the "eigen" structure for single-pendulum, one can implement the coupled modeling 
for both the pendulum and the frame structure in an uniform computing platform, we choose 
ANSYS 5.5 code to analyze the large-scale chime group. In ANSYS 5.5, BEAM4 is a uniaxial 
element with tension, compression, torsion, and bending capabilities. The element has six degrees of 
freedom at each node: translations in the nodal x, y, and z directions and rotations about the nodal x, 
y and z axes. Stress stiffening and large deflection capabilities are included. MASS21 is a point 
element having up to six degrees of freedom: translations in the nodal x, y, and z directions and 
rotations about the nodal x, y, and z axes. A different mass and rotary inertia may be assigned to each 
coordinate direction. The mass element is defined by a single node, concentrated mass components 
(Force*Time2/Length) in the element coordinate directions, and rotary inertias 
(Force*Length*Time2) about the element coordinate axes. The element coordinate system may be 
initially parallel to the global Cartesian coordinate system or to the nodal coordinate system 
(KEYOPT(2)). 

4. MODAL ANALYSIS 

According to the analysis result by ANSYS 5.5, the first 106 orders of natural frequencies are 
corresponding to that of each single-pendulum, please see Table 2. 

Table 2. Parts of natural frequencies of structural analysis 
compared with the results of single-pendulum (Hz) 

order By ANSYS By single-pendulum Error(%) 

1 0.43723 0.41592 0.5829 
2 0.43736 0.43749 0.2857 
3 0.44661 0.43749 0.6198 
4 0.44676 0.44689 0.2842 
20 0.62721 0.62757 0.5673 
21 0.63158 0.63215 0.8954 
22 0.64077 0.6414 0.9853 
23 0.64536 0.64591 0.8577 
24 0.65003 0.65058 0.8423 
25 0.65462 0.65517 0.8456 
64 0.75570 0.75708 0.18162 
65 0.75570 0.75708 0.18162 
90 0.96667 0.96877 0.21667 
91 0.97372 0.96877 -0.51106 
100 1.0099 1.00474 -0.51357 
101 1.0100 1.01259 0.25627 
105 1.0296 1.02625 -0.32643 
106 1.0366 1.03351 -0.29888 

Parts of modal shapes corresponding to the first 106 orders of natural frequencies are shown in 
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Fig.4. 
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Fig.4 Parts of modal shapes of the first 106 orders of natural vibrations 

Parts of the natural vibration frequencies coupling the single-pendulum and the frame structure 

are listed in Table 3. 

Table 3. Parts of natural frequencies of structural analysis 

coupling the single-pendulum and the frame structure (Hz) 

order fi order / 

110 
112 
113 

8.1920 
8.4196 
8.5495 

120 
122 

8.6394 
8.7031 

Parts of modal shapes of natural vibration coupling the single-pendulum and the frame structure are 

shown in Fig.5. 
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(a) the modal shape of natural vibration 
coupling the single-pendulum and the frame structure (f '=104.60 Hz) 
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(b)  the modal shape of natural vibration 

coupling the single-pendulum and the frame structure (/=152.30 Hz ) 

Fig.5 Parts of modal shapes of natural vibration 
coupling the single-pendulum and the frame structure 

5. DISCUSSION 

How to set up the coupling model on a uniform analysis platform is a main work of this paper. 
The key to this purpose is to study the equivalent model, e.g., to use a beam element plus a mass 
block to model the a single pendulum, which is considered as a "eigen" structure. The analysis 
results should contain two parts: vibration character of each single-pendulum and the coupled 
vibration of frame and single-pendulum, first part will be as an essential verification to the modeling 
method. The work of the paper concerns how to treat two kinds of problems (mechanical oscillation 
and structural vibration) on a uniform FEM platform, which can provide a useful strategy and 
experience to some complex engineering problem. 
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ABSTRACT 

Grillage is common types of structures in marine and land-based structural system. The plastic 
collapse modes of those structures are dependent on the loads, which are lateral, in plane or 
combination of those directions as well as boundaries. 

In this paper, a plastic analysis method is applied to grillages or grids under a single concentrated 
load to find the worst load point. The worst load point would be either at the central intersection or 
on the point of between intersections. 

In the present paper, general formulae for plastic collapse for the square grillages with fixed 
boundaries are derived. 

1. INTRODUCTION 

The rational design procedure requires a sound and scientific background in the following key 
areas. 

(a) Accurate load prediction. 
(b) Definition of safety margins and design criteria, 
(a) Response analysis methods. 
(d) Synthesis and optimization. 

In a certain structural system such as grillages in ships and ocean structural system, it is possible 
to predict the more accurate limiting condition by applying plastic analysis method [1-5]. 

In grillage design, the central intersection point load may be used as a worst loading condition 
especially with larger numbers of beams in each direction as long as local collapse is prevented. But, 
a point load may often move around anywhere on the grid system. In such case, the worst load point 
would not necessarily be at the central point. In this case, the worst load point is located between 
intersections. 

To find the plastic collapse equations, upper bound theorem or mechanism method is applied to 
the square grillages with fixed boundaries. 

2. BEAM WITH FIXED BOUNDARIES 

In the plastic analysis of grillage, virtual work method (i.e. mechanism method) is useful. Virtual 
work equation could have been derived by writing the work balance for small movement 8 of the 
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load and the hinge rotation at the center of each beam as shown in Fig. 1. 

i f\Si 
Work equation:  PS = Mp  

Collapse load can be expressed as follows. 

m 3^ AS 

Fig. 1 Work Equation of Fixed Beam 

3. SQUARE GRILLAGE UNDER POINT LOAD BETWEEN INTERSECTIONS 

In practice, a point load may move around anywhere on the grid system as in the case of wheel 
load on the deck of ships and heliport deck. So the wrost point is not always central intersection. 

In the present study, collapse mechanism method is applied to find the worst point load position 
and collapse load formula for fixed boundaries with the following and assumptions with the grid 
system. 

(a) A load is applied perpendicular. 
(b) Joints are rigidly connected to transfer forces and moments. 
(c) A local collapse is prevented. 
(d) All the beams are equal sizes in each direction. 

If lengths of horizontal and vertical beams are equal, plastic hinges are occurred at the center of a 
beam, and then the plastic collapse load of each beam can be calculated as usual method. To find 
collapse load, parameter "z" is used as in Fig.2 

deflection 

4z 

4(1 -z) 

5 
4(1-z) 

5 

2(1 -z) 

Fig. 2 Plastic Collapse Modes of 3x3 Grillage under off-center Load 
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The detail analysis process is introduced in the reference[6]. 

To find collapse load, virtual work method is applied as follows. 

External work: PS 

.     (2 + 4z)<5 ,,        (2 + 4z)S .. 
Internal work: — M„, + - —Mnt 

z(l-z)L     "'      z{\-z)L     "' 

Therefore work equation becomes as follows. 

2 + 4z    ,, 2 + 4z    .. 
P = M-, + : MB. c    z{\-z)L     "'     z(l-z)L     "' 

When MpI and Mpl  are equal work equation is as follows. 

j4 + 8z)^ (Mp=Mpi=Mp<) 
z(l - z) 

Fig. 3 and Fig. 4 show a change of collapse loads for the (3x2) and (3x3) grillages. When the 
load applied between intersections in the central bay. Parameter z start from the end boundary of 
central horizontal beam and parameter x is located at between central intersection as shown in Fig. 
3 and Fig. 4. 

collapse 
mode 

collapse 
mode 

28.0 

ü 
CO   26.0 

H— 

CO 
o 

I 

I ■ 

H - X 
o 
co 

H— 

CO 
o 

24.0 

0        0.25      0.5      0.75        1 

Load positions 

Fig. 3 Collapse Load Factors with Moving 
Load (3x2 Grillage) 

lfMpl=Mpt, collapse loads are found as follows. 

The collapse load of (3x2) grillage. 

< _ 1, 9 
Mpt 

z\\ - Z) iz(i - z) 

Pc=- 

18.0 

16.0 

14.0 

■  —• % • 

■ ■ ■ ■ 

ii      ii 

Z(l - 2) 

23-9z 
3Z(1 - z) 

3z(l - z) 

Mp     (Mp=Mpl=Mpi) 

Pc 

Pc 

0        0.25      0.5      0.75        1 

Load positions 

Fig. 4 Collapse Load Factors with Moving 
Load (3x3 Grillage) 

The collapse load of (3 x 3) grillage. 

2 + 4z   Mpl+  2 + 4z   Mpt 
z(l - z)L 

4-8z 

z(l-z) 

z(l - z)L 

Mp  (Mp=Mpi=Mpt) 
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In Fig.3, if z is 0.562(x=0.6860), minimum Pc is 24.30 MP. And in Fig.4, if z is 0.455 (x=0.464) 
minimum Pc is 29.86 MP. Minimum collapse loads of structures are lower than central intersection 
point load by about 6%-8%. 

Types of grillages are grouped into 3 cases as follows. 

(a) Case 1: (mxn) = (odd x odd) 

(b) Case 2: (mxn) = (oddxeven) 

(c) Case 3: (mx n) = (evenx even) 

Where, m and n represent the numbers of beams in horizontal and vertical directions respectively. 

Then the plastic collapse load in each case can be expressed as follows. 

Case 1: Pc =aiMPi + ß}MPt 

Case 2: Pc = a2MPi +ß2MPt 

Case 3: Pc = a3MPi + ß3MPi 

Where a\, ß\, 03> ßl-> a3 ^d ß~b ^ coefficients including variable z, Mpi and Mpt 
are plastic moments of horizontal and vertical beams respectively. 

The coefficients (or,, ßj) are calculated by virtual work method, and then the results are shown 

in the next tables for different numbers of vertical and horizontal beams. 

Case 1: In case of (odd x odd) grillage, the worst point is clearly located at central beam. Variable z 
is defined from end of the beam to unknown point. Table 1 and Table 2 show coefficients (ax, ßx) 
that are varied by the numbers of horizontal and vertical beams. 

Table 1 The Coefficients (a,) of Horizontal 
Beam for (odd x odd) Grillage 

Table 2 The Coefficients (/?,) of Vertical 
Beam for (oddx odd) Grillage. 

1 3 5 7 

1 

4z 4z 4z 4z 
z(l - z)L z(l - z)L z(l - z)L z(l - z)L 

3 

2 + 4z 

z(l - z)L 
2 + 4z 

z(l - z)L 
2 + 4z 

z(l - z)L 

5 

4 + 4z 

z(l - z)L 
4 + 4z 

z(l - z)L 

7 

6 + 4z 

z(l - z)L 

\^ n 
m\ 1 3 5 7 

1 

2 2+4z 

z(l - z)L 

2 + 8z 

z(l - z)L 

2 + 12z 

z(l - z)L z(l - z)L 

3 

2 + 4z 

z(l - z)L 
2 + iz 

z(l - z)L 
2 + 12z 

z(l - z)L 

5 

2 + 8z 

z(l - z)L 
2 + 12z 

z(l - z)L 

7 

2 + 12z 

z(l - z)L 

General formula of coefficients in Table 2andTable 3 can be simplified as or,, ßx. Where m and 
n are the numbers of horizontal and vertical beams respectively. 
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a,= 
2(m -1) + 8z 

z{\ - z)L ßx 
2 + 2(»-l)z 

z(l - z)L 

Case 2: In case of (odd x even) grillage, the worst point is clearly located at central beams. Table 
4and Table 5 show coefficients (a2, ß2) that are varied by the numbers of horizontal and vertical 
beams. 

Table 3 The Coefficients (a2) of Horizontal 
Beam for (oddx even) Grillage 

Table 4 The Coefficients (ß2) of Vertical 
Beam for (odd xeven) Grillage 

2 4 6 8 

3 

10- 6z 16- 10z 22-14z 

4z(l-z)I 

28-18z 

5z(l - z)L 2z(l- -z)L 3z(l- -z)L 

5 

26- 20z 36-28z 

Az{\-z)L 

46-32z 

5z(l - z)L 3z(l- -z)L 

7 
50-42z 

4z(l-z)Z 

64-54z 

5z(l - z)L 

9 

82-72z 

5z(l - z)L 

2 4 6 8 

3 

8 24 48 80 
3z(l - z)i 5z(l - z)L 7z(l-z)i 9z(l-z)I 

5 

24 48 80 
5z(l - z)L 7z(l-z)I 9z(l - z)£ 

7 

48 80 
7z(l - z)L 9z(l - z)l 

9 

80 
9z(l - z)L 

General formula of coefficients in Table 4 and Table 5 can be simplified as a2,ß2- 

2m(n +1) + 2 - 2(« + \){m - \)z „ n2+2n 
a-, 

(n + 2)z(l - z)L ßi (n + l)z(l - z)L 

Case 3: In case of (evenxeven) grillage, the worst point is clearly located at off-central beam. Table 
6 and Table 7 show coefficients (a3, j33) that are varied by the numbers of horizontal beams. 

Table 5 The Coefficients (a3) of Horizontal 
Beam for (even x even) Grillage 

Table 6 The Coefficients (/?3) of Vertical 
Beam for (oddx odd) Grillage 

X 2 4 6 8 

2 

7-3z 13-9z 19-15z 25 - 21z 

2z(l - z). 2z(l - z)L 2z(l - z)L 2z(l - z)L 

4 

21-15z 31-25z 41-35z 

3z(l - z)L 3z(l - z)L 3z(l - z)L 

6 

43 - 35z 

4(1 - z)L 

57 - 49z 

4z(l - z)L 

8 

73 - 63z 

5z(l - z)L 

2 4 6 8 

2 

49 25 49 81 
3z0-z)£ 9z(l-z)I 18z(l - z)L 30z(l-z)£ 

4 

75 147 243 
15z(l - z)L 3(b(l-z)i 50z(l-z)I 

6 

294 486 

42<l-z)Z lto{\-z)L 

8 

810 

90z(l-z)£ 

General formula of coefficient in Table 6 can be simplified as cc3 and ß3. 
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(m2 + 2m)(n +1)2 _ 2(mn + » + !) + 2(mn -m + n-\) 
a3   {m +1)(« + 2w)z(l - z)L Pi (m + 2)z(\-z)L 

Above tables are expressed to case when the number of vertical beams is more than that of 
horizontal beams. Other cases also can be found, since the grillage is square. 

Therefore the collapse loads are summonsed for case as follow. 

„     , _     (m-l) + 4z ..     2(l + (w-l)z) .. 
Casel:       Pc=- MPi+—-—- -^-Mpt 

z(l-z)L z{\-z)L 

_     „ „     2/w(« +1) + 2-2(« + l)(w-l)z .. n2 +2n 
Case 2:       Pc =—- —MPi +  MPt 

(n + 2)z(l - z)Z (w + l)z(l-z)Z 

„      - „ (m2 + 2m)(n +1)2       ,.   ,    2(mn +n + l) + 2(mn-m +n-l) .. 
Case 3:        Pc =— Mpi+ —  Mpt 

(w + l)(n + 2«)z(l - z)L (m + 2)z(l - z)L 

Minimum collapse load can be found by simple calculus with the above plastic collapse equations. 

4. CONCLUSIONS 

By applying upper bound theorem to plastic collapse analysis of square grillages with fixed 
boundaries collapse equations are obtained. These collapse equations are grouped into 3 cases 
depending on the numbers of beams in two directions. 

These equations can easily be applied to optimization study of grillages under a concentrated load. 
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ABSTRACT 

This paper examines the validity of modification equations of Gauss sampling points in the 
analysis of specific damping capacity. In the mean time, the damping matrix used in the 
evaluation of specific damping capacity is symmetrized with the conventional asymmetric damping 
matrix. 

In addition, the validity of a modification equation of Gauss sampling points in the analysis of 
undamped/damped forced motion of a composite plate is also examined. In this case, the 
theoretical errors of the undamped/damped forced motion of a composite plate are predicted from 
the reduction in the order of numerical integration. 

1. INTRODUCTION 

Modified Gauss sampling points applied to laminated composite plates are found to be 
effective in the evaluation of specific damping capacity and the analysis of time-dependent motion 
when comparing the results of conventional and modified 16-node models with those of 20-node 
models. The damping stiffness matrix is symmetrized, thereby improving the convenience and 
effectiveness of computation. 

In addition, forced dynamic response errors caused by reduced integration are predicted, and 
compared with actual errors versus the number of layers in a laminate. If the prediction is 
acceptable, the decision can be made whether to use full integration or reduced integration based on 
an allowed error bound and the number of layers in the laminated composite plates. 

2. ANALYSIS OF SPECIFIC DAMPING CAPACITY 
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The specific damping capacity of laminated composite plates can be defined as in Eq.l. 

</>   =  AU/U (1) 

Here, U denotes the maximum strain energy and AC/ represents the dissipated energy during the 
stress cycle. The strain energy of each layer can be represented as in Eq.2. 

Uk = 1 [{sY{a}dVk=\ I l{eY[Q]{e}dZ dQ (2) 

Where, Uk = the strain energy of the kth layer, Vk = the volume of the kth layer, 

lß]= [AY \Q\A> ^ = trie plane of the plate, and Qy = the elastic coefficients of the material 
when the principle axes of the material coincide with the axes of coordinates. Then, total strain 
energy of the laminated composite plates with NL -layer can be given by Eq.3. 

NL 

U  =   5X (3) 

Meanwhile, the dissipated energy of a layer during the stress cycle can be represented by Eq.411,21. 

AUk= \it^^^dzdA 

= iiJ>WMfe]M{*}«faM (4) 

In Eq.4, [A ] is the coordinates transformation matrix as presented, and [A] 
T
 M[ß][^4] is asym- 

metric matrix. 

The matrix in Eq.4 can be symmetrized as in Eq.5. Therefore, advantage can be taken of the 
symmetricity of the specific damping stiffness matrix represented in Eq.6 instead of the 
conventional asymmetric one given in Eq.4. 

Here, 

[T] 

Wk = ±lll{eY[s]{e}dzdA 

S = [A]1 \T][A\     ;    symmetric 

20,ö„ («S,+(MÖ12 (0, +0, )Qn (0,+0,2)ßu 
(«S2+«S,)ß2, 2^022 ((*2+«>J)ß2) (02+0,2^24 

(0,   + 03  )Qn (02  +   0,  )ö,2 2^233 («>l2+f>,  )ß,4 

((*,  +   (*,2)ß4, (02+*12)ß42 W,2+(*j)ß«                          UnQ» 
0 0 0                                0 

0 0 0                                0 

0 

0 

0 

0 

2(*2,e!5 

(023   +(*3l)ß« 

(5) 

(6) 

0 

0 

0 

0 

(0 2, +  03, >ß5r, 
20„ 0„„ 

(7) 
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The total dissipated energy during the stress cycle can be given by Eq.8. 

NL 

AU = £AI/t (8) 

3. DAMPED TIME-DEPENDENT MOTIONS ANALYSIS 

The motion equation for the time-dependent motions of a laminated composite plate can be 
given by Eq.9. 

[M]{Ü} +  [C]{Ü}+  [K]{U]   =   R(t) (9) 

Here, [C\ is the damping matrix and R(t) represents the time-dependent external forces.    In Eq.9, 
the displacement vector U represents the same as in Eq.10. 

[U]   =    ±  X,{t) {<D,} (10) 

Here, X,(t) denotes the generalized coordinates, {<J>,} denotes the modal vectors. 
Eq.10 is inserted into Eq.9, and rearranged to produce Eq.ll. 

X, (t)  + 2a>, I X, (0 + co] X, (t)=r,{t) (l!) 

Where  £>i -.damping ratio,   a>i : circular frequency, {<J>,}7 [M]{<1),} = 1, 

2co,^=M'[*,},   co?={<&,rM{<D,}, y,(t) =  {®,}rR(t) 

4. MODIFIED 16-NODE SOLID ELEMENT 

4.1. Modification Equations of Gauss Quadrature 
The modification equations'31 of the Gauss quadrature can be given as follows. These are 

applied to the analyses of undamped/damped time-dependent motion. 

tki6j = tt20J[\   ~   Dn Dn/(DU D22)]"' (12) 

G(1.„»=G(M)12il/[l-ÄrÄ^/(ÄyÄr)] (13) 

4.2. Reduced Order of Quadrature in Laminated Composite Plates 
The relative error131 of reduced integration for [KJ of a composite laminate can be obtained as 

follows. It is compared with actual errors of undamped/damped time-dependent motion. 
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error =\WI{E] h> /ll) + W2 [EJ? l^-fh^xA I   {Wx [E^ l\2)+ W2 (E2h
3 /\l)} (14) 

Where, Wx, W2 : weight factor depending upon specific layering scheme, Ek = elastic coefficient 
of kth layer. 

5. NUMERICAL EXAMPLES AND DISCUSSION 

5.1. Evaluation of Specific Damping Capacity 
The material properties of specimen model A are represented in Table 1-A, and the model 

dimensions are the same as in reference^]. The material properties of specimen model B are 
represented in Table 1-B and the model dimensions are the same as in reference[l]. The finite 
element model A is discretized into 10 elements, whereas model B is discretized into 4x 4 
elements of equal size. In Table 2, the maximum errors are 0.65% in the case of A, and 2.5% in 
the case of B. 

Table 1 Material properties of composite laminate 

TYPE E„ 
(GPa) 

E22 

(GPa) 
E33 

(GPa) (GPa) 
G,3 

(GPa) 
vl2 VB ^23 /?(Kg/m3) 

A 112 8.81 8.81 5.45 5.45 .0.33 0.33 0.50 1575 
B 172.7 7.20 7.20 3.76 3.76 0.30 0.30 0.50 1636 

Table 2 Comparison of natural frequencies and SDCs 

Size(mm) Model 
Natural Frequencies 

SDCl 
(Error %) 

SDC2 
(Error %) 

SDC3 
(Error %) 1st Mode 

(Error %) 
2nd Mode 
(Error %) 

3rd Mode 
(Error %) 

A 
120X 19.6 

x 0.88 
(mm) 

20-Node 82.80 392.1 526.3 1.05 2.16 1.06 

Ref. [4] 83.04 (.29) 393.5 (.35) 523.2 (.60) 1.04(1.1) 2.15 (.65) 1.05 (.47) 

Mod.l6-Node 83.26 (.56) 393.7 (.40) 524.1 (.42) 1.05 (.00) 2.15 (.65) 1.05(47) 

B 
215x 215 

x 1.62 
(mm) 

20-Node 88.13 233.2 290.7 3.07 0.81 1.71 

Ref.fl] 86.33 (2.0) 224.5 (3.7) 280.4 (3.5) 3.11(1.3) 0.80(1.2) 1.70 (.58) 

Mod.l6-Node 88.20 (.079) 231.18(.85) 293.6(1.0) 3.08 (.33) 0.79 (2.5) 1.74(1.8) 

5.2. Analysis of Time-Dependent Motion Using Modified 16-Node Element 
The plates were composed of three laminae stacked according to two schemes, (0/90/0) and 

(0/90/0). The finite element model was discretized into 10 elements, and the specifications are 
shown in Table 2-A.    A load of 0.1N was suddenly applied at the tip of the cantilever plate 
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(0/90/0). The responses obtained using the conventional 16-node model, modified 16-node model 
and 20-node model are compared in Fig.l and Fig.2 for undamped and damped cases, respectively. 
Similar responses are also plotted in Fig.3 and Fig.4 for the cantilever plate (90/0/90), undamped 
and damped. 

From the results it can be seen that in one case the modification was unnecessary, whereas in 
another case it was necessary for all situations irrespective of the damping effect. This implies 
that the modified 16-node element can predict almost the same result as that of a 20-node element, 
even though it only has a small degree of freedom. 
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5.3. Reduction of Integration Order 
The undamped/damped time dependent 

dynamic responses of the composite plates 
were computed using both full order 
quadrature and reduced order quadrature. 
With these responses, the actual errors 
resulting from a reduction in the integration 
order could be obtained. These errors 
were then compared with the predicted ones 
and exhibited good agreements for both 
undamped and damped motions. The errors 
are decreasing with the increment of the 
number of layers. Accordingly, it would 
appear that either full order integration or 
reduced order integration can be used in 
evaluating stiffness, in a time-dependent 
analysis, depending on the allowable error 
bound and the number of layers. 

30- 

h, 20- 

£ 
10- 

D 
A 

V 

P.E (theoretical) 
A.E (no damping) 
A.E (damping) 

P.E : Predicted error 
A.E : Actual error 

4 6 8 10 

Number of layers (N) 

Fig.5 Integration errors(order 1) of 
laminated composite plates in 
time dependent motion analysis 

6. CONCLUSIONS 

1) Damping matrix can be symmetrized. Therefore, a much simpler algorithm can be utilized 
which can achieve a better efficiency in the computation of specific damping capacity. 
2) The effectiveness of the modification equations of Gauss sampling points was shown based 
on evaluations of time-dependent undamped/damped motions analyses. 
3) The errors in undamped/damped time-dependent motions caused by reduced integration 
can be theoretically predicted by assuming that the stiffness varies quadratically in a thickness 
direction. As a result, full or reduced integration can be selected for a given number of layers 
in laminated composite plates, in the evaluation of stiffness satisfying a required error 
criterion. 
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ABSTRACT 

This paper deals with a new seal system between two flanges without using gaskets. The system 
includes a groove and an annular lip that is held by one of the flange with its highest point in contact 
with the other flange to form a seal line when the flanges are assembled. The condition whether the 
system leaks or not depends on the shape and dimension of a thinned area with the annular lip 
deformed during the contact. In this study several gasketless flanges are prepared with varying the 
fundamental dimensions of the deformed area to investigate the condition through an experiment and 
FEM analysis. The analysis indicates that the conditions can be expressed in terms of the maximum 
contact stress and the plastic zone size when the flanges are assembled. 

1. INTRODUCTION 
Between any pipe flanges it is necessary to choose a suitable gasket depending on the kind of 

fluids with their pressure and temperature to obtain good seal systems. However, generally the 
sealing performance of gaskets deteriorates in several years, and, therefore, the maintenance to find a 
leak and to renew the gasket has been required. In this paper a new seal system between two flanges 
without using gaskets has been treated. Figure 1 shows the system that includes a groove and an 
annular lip that is held by one of the flange with its highest point in contact with the other flange to 
form a seal line when the flanges are assembled. Figure 2 also shows a similar system called 
ÖsupersealÖ, which is inserted between the flanges currently used. In this study several gasketless 
flanges and superseals are prepared with varying fundamental dimensions of the deformed area to 
investigate the sealing mechanism through an experiment and FEM analysis. 

2. EXPERIMENTAL METHOD 
Figure 2 indicates dimensions of models used in this study. By comparing the results of the 

model A and model B, we may find how the groove works. From the results of models B and C we 
may find a suitable dimension of the thickness h. From the results of the models C and D we may 
find a suitable dimension of the groove depth. The material used is 0.25 percent carbon steel S25C 
(JIS). The maximum surface roughness at the annular lip is Rmax=4 (JIS) and the maximum 
surface roughness of the other flange is Rmax=80.   After the flanges are clamped by bolts of 
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Before fasten After fasten 

Fig. 1. Gasketless flange and superseal 

Ml6, an internal pressure 4.9MPais applied to these models by water-hydraulic pump. The results 
of sealing performance are shown in the right end in Table 1. The symbol O means there has been 
no leak for model B, A means there is no leak in the first trial but leaks in the second trial after 
released and clamped again for model A, and • means there is leak in the first trial for model C. 
Through the experiment it is found that the sealing performance depends on the shape and 
dimension of a thinned area involving the annular lip, which is deformed during the contact. 

model c d f q h 1 
experimental 

results 

no  groove A _ 67 24 0 oo - A 

h=5nun B 87 67 24 3 5 13 .  O 
h=3mm C 87 67 22 3 3 13 • 
l-Smm D 77 67 22 3 3 8 - 

onleak      A: First nonleak.next leak 

Detail  of A 

Fig. 2. Dimension of experiment model (mm) 

3. ANALYTICAL METHOD 

The FEM analysis is applied using 4 node axisymmetric element. The total number of element is 
2624~2961 and the total number of node is 2816~3173. The clamping force is estimated about 
98kN from the torque applied to the bolts and approximated by axisymmetric uniform distribution. 
The stress-strain relation is indicated in Fig. 3. Figure 3 shows the stress-strain relation with 
Young's modules E=20580MPa,   Poisson's ratio V =0.3, the yielding stress is 255MPa. 
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Fig. 3. Finite element mesh and material property 

4. RESULTS AND DISCUSSION 

Figure 4 shows Mises equivalent stress for (a) gasketless flange and (b) superseal. Since Fig. 4 
(a) and Fig. 4 (b) are not very different, the results of superseals can be regarded as the ones of 
gasketless flanges. Figure 5 indicates the effect of internal pressure 4.9MPa applied to the model B. 
The plastic zone size around the root of groove in Fig.5(b) is smaller than the one in Fig.5(a). 
Therefore large internal pressure may be useful for sealing performance because of the small plastic 
zone size. Figure 6 shows the relation between the clamping force and contact length. For models B 
and C, if the clamping force is large enough the contact length becomes independent of the force. 

Figures 7-9 show Mises equivalent stress. The maximum stresses are almost equal for models A, 
B, C, that is, ae mx ^=?286MPa.. On the other hand, the maximum stresses in the z-direction CTzmax 

=-1200MPa for models A and B, but crzmax^-900MPafor model C, which is smaller by about 25 
percent. It may be concluded that the reason why model C leaks at the small value of crzmsx. The 
FEM results also indicate that for model A the plastic zone size around the contact region is larger. 
Because of this large plastic deformation, model A seems to leak in the second trial after released and 
clamped again although there is no leak in the first trial. Finally, a suitable groove depth is 
considered because models A, B, C have a constant groove depth, 1 =13mm. Figure 10 shows the 
results for model D, where 1 =8mm and h = 3mm. By reducing the depth the maximum stresses in 
the z-direction cr mK=F-1300MPa with a suitable plastic zone size. However., around the root of 
the groove the plastic zone prevails all over the section, and therefore, the sealing performance 
seems worse in the second trial. The FEM analysis indicates that the conditions whether the system 
has a leak or not can be controlled by the maximum contact stress with the plastic zone size when 
the flanges are assembled. It may be concluded that the dimensions of model B is suitable because 
of large contact stress and suitable plastic zone size. 

5. CONCLUSION 

Generally the sealing performance of gaskets between any pipe flanges deteriorates in several 
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(a)Gasketless  flange (b)Superseal 
Fig.4. Mises equivalent stress  oeq (MPa) |/^%| plastic zone 

p=4.9MPa 

(a)Without internal pressure (b)With internal pressure 

Fig. 5. Mises equivalent stress  aeq (MPa) [%%| plastic zone 

typeA   (h-oo   in  Fig. 2) 

Fig.6.Contact length vs. Clamping force relation 
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»contact 
length 
=0.574 

<x ma =2 86MPa eq max 

Fig.7. Equivalent stress  a^ for model A (no groove, h=co inFig.2)  ^^^ plastic zone 

Fig.8. Equivalent stress  a   for model B (h=5mm in Fig.2)     '//////. plastic zone 

fflffllx=-888MEa 
°-0!max=276MPa 

Fig.9. Equivalent stress  a   for model C (h=3mm in Fig.2)    V////X plastic zone 
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99MPa 
2MPa 

Fig. 10. Equivalent stress  oeq for model D (l=8mm in Fig.2)    X^///A plastic zone 

years, and, therefore, the maintenance to find a leak and to renew the gasket has been required. In 
this paper a new seal system without using gaskets has been considered. In this study several 
gasketless flanges are prepared with varying fundamental dimensions of the deformed area to form a 
seal line during contact in order to investigate the sealing mechanism. Through an experiment and 
FEM analysis the following conclusions can be made. 
(1) Three experimental models A, B, C are investigated. For model A, which has no groove, there is 
no leak in the first trial but leaks in the second trial after released and clamped again. There has been 
no leak for model B, whose thickness of a thinned area h = 5mm. There is a leak from the first trial 
for model C, where h=3mm. Through the experiment it is found that the sealing performance 
depends on the shape and dimension of a thinned area involving the annular lip, which is deformed 
during the contact. 
(2) FEM analysis indicates that the maximum stress at the contact zone azm!lx =-1200MPa with a 
suitable plastic zone size is necessary for good sealing performance. For example, model C leaks 
because of the small value of cr max =-900MPa, and model A leaks in the second trial due to the large 
plastic deformation at the contact region. It may be concluded that the dimensions of model B is 
suitable because of large contact stress and suitable plastic zone size. 
(3) The experiment and FEM analysis show the internal pressure is useful for sealing performance 
because it makes a large contact stress and small plastic zone size. This new seal system, therefore, 
may be effective for high internal pressure, under which current gaskets cannot be used. 
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ABSTRACT 

The shock wave caused by an underwater explosion can damage to the equipment inside vessels 
and can create a local defect on ship hull. As reaching structure, this shock wave propagates in the 
form of stress wave which may cause an instant failure at a local point. This stress wave creates 
reflection, deflection at the free boundary and the corner of structure and forms a complex stress 
fields. 

In this paper, the stress wave propagation of stiffened cylinder subjected to a strong acoustic 
wave is studied by both experimental and numerical methods. To confirm the validity of the 
numerical analysis, the dynamic stress fields for a I-form stiffener under a simple impact load 
history are compared with the dynamic photoelastic methodology. For the application to a more 
complex structure, the numerical analysis is carried out in two steps such as the macro and micro 
analyses by MSC/DYTRAN and MSC/NASTRAN. In macro analysis, the dynamic response of the 
whole structure is investigated. And the pressure history obtained from the analysis is used as the 
external dynamic load in the micro analysis. The stress wave propagation of the local stiffener is 
numerically analyzed for the micro method. 

1. INTRODUCTION 

The marine vessels are to be designed considering the impact caused by underwater explosion to 
maintain their functions. In the USA navy, it is regulated to conduct the shock test of the marine 
vessels under the explosion condition in the development phase. But the ship shock test is limited 
because of very high costs and environmental safety concerns. And analytic solutions are also 
limited to very simple cases of fluid-structure interaction problemsfl]. Therefore, it is strongly 
recommended to develop an accurate numerical simulation technique. 

In the nineties, a number of commercial softwares have been applied to resolve the interaction 
between fluid and structure, such as MSC/DYTRAN[2], LS/DYNA[3] and DYSMAS/ELC[4]. 
Recently, these hydrocodes have been also utilized in underwater explosion problems yielding good 
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agreement with analytic and experimental results [5]. 
In this study, the stress wave of stiffened cylinder is analysed by two steps such as the macro and 

micro analyses by MSC/DYTRAN and MSC/NASTRAN. In the macro analysis, fluid-structure 
interaction of stiffened cylinder subjected to underwater explosion load is investigated. For the 
validity of the macro analysis, the response of spherical body under simple plane wave and fluid- 
structure interaction of cylinder under a spherical wave by underwater explosion are analyzed and 
compared with analytic solution and experimental data. 

In the micro analysis, the stress wave propagation of ring stiffener subjected to early shock 
pressure time history which is calculated in macro analysis is studied. To confirm the validity of the 
micro analysis, stress patterns of stiffener under simple load history obtained by the dynamic 
photoelastic methodology and numerical simulation are compared. 

The preprocessor which links macro analysis to micro analysis is developed by using PCL(Patran 
Command Language). Fig. 1 shows the procedure of the study. 

Macro Analysis 
Response analysis of the stiffened cylinder 

subject to underwater explosion 
Compute shock pressure around the cylinder 

I 

Validity 
Plane wave problem compared with 

analytic solution 

Spherical wave problem compared with 
experimental data 

Preprocessor ^MM PCL 
Create F.E Model in the micro analysis 
Import pressure in the macro analysis 

Create pressure time history in the micro analysis 

> f 

Micro Analysis Validity 
Stress wave patterns of stiffener 

subject to impact load are compared 
with dynamic photoelastic 

methodology 
Calculate dynamic stress intensity factor 

Fig. 1 Procedure diagram 

2. MACRO ANALYSIS 

2.1. Spherical shell/Plane step wave 
To check the validity of macro analysis, an elastic response of a spherical shell subject to a plane 

step wave was numerically analyzed. Huang has solved this problem analytically, using a direct 
inverse Laplace transform to a finite number of terms of the infinte sereis expansion of the 
equations for the respective shells[6]. The same material properties and dimensionless procedures 
by Huang in his analysis were used for the numerical investigation. 

Figure 2 shows the numerical model for the spherical shell/plane step wave problem. A quarter 
symmetry model consisting of 150 quadrilateral Lagrangian shell elements was generated. For this 
problem, the fluid-structure interaction was studied by a general coupling method of 
MSC/DYTRAN. Since this method requires the coupling surface forming a closed volume, 450 
dummy elements were used to generate the surface. The fluid model which consists of 65,536 
hexagonal Eulerian elements is a rectangle bounded by the planes x=0 and x=4, y=0 and y=4, and 
z=4 and z=-4, where the point (0, 0, 0) represents the center of sphere and units are in terms of the 
radius of the sphere. 
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Fig. 3 Dimensionless radial velocity 

The resulting transient solution for the radial velocity of the shell at azimuth angles of 0°, 90°, 
180° are shown in Fig. 3. Huang's analytic solution for these same points is shown for comparison. 
Numerical result is in a quite good agreement with analytical solution. 

2.2. Cylinder/Spherical shock wave 
The response analysis of the cylinder in the infinite water medium subjected to spherical shock 

wave caused by an underwater explosion in consideration of the fluid-structure interaction was 
carried out numerically and compared with experimental result by Umemoto[7]. The model 
consisted of cylinder with diameter of 356mm and thickness of 25.5mm. The material of model was 
a steel. Also the explosive, Composition B, has mass of 23.8g. The distance from the center of the 
charge to the nearest point on the cylinder was 500mm for the side-on explosion. 

As a fluid domain consists of explosive and water, the multi-material Euler volume elements 
have been used. The region where the explosive is initially located has been modeled fine to be able 
to accurately compute the detonation process. The water is modeled by a polynomial equation of 
state. The pressure depends on the density and explosive is modeled by the Jones-Wilkins- 
Lee(JWL) equation of state. For the consideration of the fluid-structure interaction, ALE(Arbitrary 
Lagrange Euler) coupling as well as general coupling was applied. Fig. 4 shows numerical analysis 
model. 

To compare the results of the analysis with the experiment, the pressure time history of point P 
in Fig. 4 has been plotted in Fig. 5. From the results it is clear that MSC/DYTRAN is well suited to 
analyze underwater explosion problems. 

Experiment 

ALE Coupling 
General Coupling 

Fig. 4 Analysis model 

0.7 0.8 
Time [msec] 

Fig. 5 Pressure time history of point P 
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3. MICRO ANALYSIS 

3.1. Experiment 

3.1.1. Multi-spark camera system 
The dynamic photoelasticity method consists of the Cranz-Shardin camera system with a multi- 

spark camera set, a dynamic photoelastic apparatus, a loading equipment, circular polarized set, 
field lens and controller. A general view of the experimental apparatus is shown in Fig. 6. The spark 
time delay can be controlled by start delay and horizontal-vertical delay in the range from lusec to 
0.1 sec for each frame. The pulse time to high speed camera frame was measured by a ptical detecter 
to check the reliability of the framing rate. 

1. Polarizer    2. Analyser    3. Field lens    4. Loading apparatus 
5.Multi-spark high speed light source 6. Trigger controller 7. Screen 

Fig. 6 A general view of dynamic photoelasticity experimental apparatus 

3.1.2. Specimen and loading 
To reveal the dynamic isochromatics fringe propagation phenomena, a polycarbonate (PC) as 

specimen material(Table 1) was used. The configuration of the test specimen is shown in Fig. 7. 
The dynamic impact loading was applied to the specimen by a free-fall tup with the Wheatston 
bridge circuit attached on it. The load trace is shown in Fig. 8. 

Table 1. Material and physical properties of Polycarbonate 

Poisson's ratio 0.38 
Young's modulus, E(GPa) 2.72 
Material stress optics fringe value(MPa-mm/fr) 6.7 
Shear modulus(GPa) 0.98 
Density (g/cm3) 1.196 
Dilatational wave speed (m/s) 1960 
Distortional wave speed (m/s) 910 
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3.2. Comparision numerical analysis with experiment 
The stress wave propagation of stiffener is numerically analyzed by MSC/NASTRAN. To 

compare with experiment, same geometry, material properties and dynamic loading history were 
implicated. Assuming plane stress problem, stiffener model which consists of 12,800 quadrilateral 
shell element was used. The crack was modeled by CRAC2D element of MSC/NASTRAN. Also 
the stiffener was modeled by PCL(Patran Command Language). PCL is a fully functional computer 
programming language in the pre/post-processor MSC/PATRAN. 

As the results, fringe plots of maximum shear stress are shown in Fig. 9. This figure shows the 
stress wave propagation through the stiffener. First, the compressive wave generated by dynamic 
impact loading was propagated(Fig 9a). When this compressive wave encounters a free surface, it 
reflects back as a tensile wave. This tensile wave causes the tensile tearing failure at the crack. The 
wave reflected at free edge is shown in Fig. 9b. Intensification of stress by tensile wave and 
'butterfly shape' of stress fringe pattern at crack tip is as shown in Fig. 9b. It was observed that the 
stress distribution is similar with experimental results. 

Numerical Experimental Numerical 

#<»   ■ ■ • -t 

JUM 

(a) 60 u,sec (b) 120 u.sec 
Fig. 9 Dynamic isochromatic fringe 
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4. CONCLUSION 

Stress wave analysis of stiffened cylinder subjected to underwater explosion was investigated by 
two steps such as the macro and micro analyses. The macro analysis was performed to simulate an 
underwater explosion in consideration of fluid-structure interaction. The shock wave caused by an 
explosion was propagated in the water medium. It caused stress wave in the cylinder. Numerical 
results of macro analysis were in a quite good agreement with analytic solution and experimental 
result. 

In the micro analysis, stress wave analysis of stiffener was investigated through experiment by 
dynamic photoelastic methodology and thorough numerical analysis with a finite element method. 
The reflected tensile wave by free edge and stress concentration at crack tip is investigated. 
Numerical results agree well with experimental results. 

As the result of this study, it was confirmed that dynamic fracture analysis of structural members 
could be numerically performed by macro and micro analyses. Furthermore, it is suggested that the 
relationship between stress wave and deformation, stress wave-crack interaction and active 
regulation for relaxation of stress wave should be investigated to complete the study of stress wave 
interactive phenomena. 
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ABSTRACT 

Since the material properties of the functionally graded materials (FGMs) vary continuously with 
the coordinates, it is difficult to analyze their mechanical behavior. The conventional finite element 
method (FEM) treats the nonhomogeneous materials as numerous homogeneous elements, so a very 
fine mesh is required to analyze FGMs. The element-free Galerkin method (EFGM) adopts the 
material properties of the integration point when analyzing the homogeneous or nonhomogeneous 
materials, so it has a good approximation to the actual material properties and requires fewer nodes. 
In addition, EFGM has no strict element concept and nodes can be distributed freely according to 
the need without remeshing. The moving least-squares interpolations can produce the continuous 
results, which have high derivatives. The numerical results show that EFGM has a higher efficiency, 
accuracy and flexibility to analyze FGMs. 

1.    INTRODUCTION 

The material properties of the functionally graded materials (FGMs) are the functions of the 
coordinates, so the mechanical behavior is very complex. The analytical approach can only deal 
with some problems that the distribution of material properties and loads are simple and particular. 
Therefore, numerical methods have to be developed for the analyses of many practical problems. 

Because the material properties in an element of the conventional FEM is constant, FEM often 
treats nonhomogeneous materials as numerous homogeneous elements and takes the material 
properties of some point (such as the center point) in the element as that of the whole element. 
Although it is convenient to form the element stiffness matrix, a very fine mesh is required to 
approximate the actual material properties. Li Chunyu and Zou Z.Z [1] recognized that this 
approach only takes the zero-order for the material property interpolations in the element and it 
couldn't improve the accuracy even with higher order displacement interpolations. In order to 
improve the numerical accuracy, they proposed a multi-isoparametric element method, in which the 
material property interpolations are the same as the displacement "interpolations. In fact, adopting 
the actual material properties at every integration point in FEM is an especial multi-parametric 
element method, and it will improve the accuracy of FEM. 

The element-free Galerkin method (EFGM) [2,3] is very suitable to analyze non-homogeneous 
materials such as FGMs. Firstly, the distributions of the nodes and the integral elements are very 
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free and independent. It is convenient for modeling the crack propagation. Secondly, the moving 
least-squares interpolations, which is not constrained by the element, can produce the local smooth 
approximation and lead to the continuous results which have high derivatives. Thirdly, EFGM 
adopts the material properties of the integration point when analyzing either homogeneous or 
nonhomogeneous materials. This has a good approximation to the actual material properties. The 
numerical results in the present work show that EFGM has a higher efficiency, accuracy and 
flexibility to analyze FGMs. 

2.   ELEMENT-FREE METHOD 

Considering an elastic medium Q, bounded by the boundary T. The equilibrium equations and 
boundary conditions are as follows: 

(1) 

(2) 

(3) 

where ay is the stress tensor, which corresponds to the displacement field ut, b, is the body force 
vector, tij is the outward unit normal components to the domain Q. Ft and «] denotes 
prescribed tractions and displacements on T, and Tu, respectively. 

In order to approximate the displacement, the interpolation basis function pJ'(x) is defined first. 
Here, a linear polynomial basis p' (x) is used. It is expressed as: 

pT(x) = (l,x,y) (4) 

Using the moving least-squares interpolation, the displacement interpolations are obtained as 
follows 

n 

H(X) = ][^,(X)W, (5) 

where the shape function $(x) is defined by 

^W = E^(X)[A-,(X)B(X)]/J (6) 
M 
n 

A(i) = 2>(x - x/)p(xJ)p
r(x/) (7) 

B(x) = [w(x-x1)p(x1),w(x-x2)p(x2),--,w(x-x„)p(x„)] (8) 

w(x - X; )> 0 is the nodal weight function. Here, the weight function is taken as 

'      Je-^cos^-sf) fosrj) (9) 

'     1 o (*>& 
w{, 

in which k is a positive integer (here k = 2); s,=r,lr* is a normalized radius; rt =||x-x,| 
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r* is the radius of the compact support domain for x. 
The partial derivatives of $ (x) can be obtained as follows: 

^=p5A-1B + prAiB + prA-1B-t (10) 

(11) 

Using the variational principle, the total discrete equation can be obtained. In this paper, we adopt 
the following variational principle 

[Se^da- ISufrdQ- [Su^dT, +2a {.*,(«, -üt)dTu =0     (12) 

in which a is a constant much greater than 1. The final discrete equation can be written as 

Ku = f (13) 

and K and / consist of 2 x 2 submatrices Ku and 2x1 submatrices /,, respectively, given by 

Ku = £B[DB^Q + 2a {. <^S 0,dTa (14) 

f; = {. <b,tdr, + ^bdn+2a[ <%Südru (15) 

where 

l-v2(x,y) 

1        v(x,y) 0 
v{x,y)     l o 

0 0       (\-V(x,y))l2 

(16) 

B, 
\*,* 0 " 

0 K> 
W> *iA 

d>.= +i 0" 

0 *,\ 

sx 0] 
S = 

0 •1, 

and 

s,= 

E(x,y) = 

if prescribed w, on r„ 

if no prescribed w, on r„ 

plane stress 

plane strain 

E(x,y) 
E(x,y) 

(17) 

(18) 

(19) 

(20) 

(21) 

l-v2(x,y) 
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v(x,y) = 
v(x,y) 
v(x,y) 

l~v(.x,y) 

plane stress 

plane strain 
(22) 

in which E(x,y) and v(x,y) are Young's modulus and Poisson's ratio at the integration point, 
respectively. 

3.   NUMERICAL EXAMPLES 

Consider a single edge-cracked FGM plate under uniform strain s or stress a along the y 
direction far away from the crack region described in Fig. 1. W za& a are the width of the plate 
and the edge crack, respectively. In this paper, Jf = lm, / = 4m, and a = 0.2m ~ 0.6m. Poisson's 
ratio is taken as constant and Young's modulus is described by: 

where  ß is a positive or negative constant. 
(23) 

y k 

, i 

EM y 

2/ 0 hx 

*£ -H w 

W 
4 k 

1 
c T(S) 

• 

Crack tip 

(a) A single edge cracked FGM plate      (b) path for J-integral 
Fig. 1 Problem statement for a single edge cracked FGM plate 

(0,4) 

(0,1) 

(1,4) 

(0,1) • ■0.1) 

0,1) (0,0) «(1,0) 

(a) nodes between 1 < y < 4 (b) nodes between 0 < v < 1 

Fig.2 Node distribution for the FGM plate 

Because of the symmetry of geometry and load, it is a mode I crack problem, and we will 
evaluate its stress intensity factor K{ under the plane strain condition. Erdogan [4] has given the 
analytical    values    of    Kx    when    / -» oo. According to the Saint Venant principle, there is 
little difference between the present model and one investigated by Erdogan [4], and we can use 
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them to check the accuracy of the results obtained by EFGM. 
Symmetry conditions are imposed on the edge of y = 0, and the load s or a is applied on the 

upper edge of y = A. 
The distribution of 527 nodes is given in Fig. 2: Coarse nodes are distributed uniformly between 

1 < y < 4; Fine nodes are distributed between 0 < y < 1. The domain between 0.5 < y < 4 was 
subdivided into 10x35 square integral subdomain and the domain between 0<j<0.5 was 
subdivided into 20x10 square integral subdomains. 5x5 Gauss quadrature is adopted inside 
every integral subdomain. 

During the whole procedure, we remain the same distribution of nodes and integral subdomains. 
Therefore, we just form the whole stiffness matrix once for a special material parameter ß and 
then modify the whole stiffness matrix according to the position of the crack tip. This greatly 
reduces the numerical costs. 

For the mode I crack problem of homogeneous materials, the J integral is often used to evaluate 
the SIFs because of its integral path independence and high accuracy. When the J-integral path is 
very close to the crack tip of FGMs, the influence of the nonhomogeneity could be neglected. When 
J is obtained, we can get the SIFs from J = K2 IE (for plane stress) or J = K2(l - v2VE (for 
plane strain). Here, E and v are Young's modulus and Poisson's ratio at the crack tip, 
respectively. 

The stress intensity factor is normalized as 

K,=Kxl{fr,4iä) (24) 

in which <jt=a for the load a and at = Es/(l-y2) for the load e. 
The numerical results and its corresponding analytical or approximate values are stipulated in 

Table 1 and 2. In these tables, a is the crack length; K, corresponds to the numerical results with 
1 = 4 obtained by EFGM in this paper; K] are the analytical results obtained with /-»oo by 
Erdogan [4]; and K" are the results obtained from the following approximate equation [5]. 

K" = [l.99-0.41(f) + 18.70(f-)2 -38.48(f)3 + 53.85(f)4 J/v^r"      (25) 

Table 1. Normalized SIF K, for an edge crack in a FGM plate under e 

a 0.2 0.3 0.4 0.5 0.6 

/? = ln(0.1) 
K, 1.2961 1.4919 1.7962 2.2594 3.0544 

*; 1.2963 1.5083 1.8246 2.3140 3.1544 

y9 = ln(0.2) 
K, 1.3145 1.5283 1.8659 2.3877 .3.2910 

K; 1.3058 1.5330 1.8751 2.4031 3.2981 

/? = ln(l) 
K, 1.3951 1.6776 2.1337 2.8626 4.1544 

K; 1.3734 1.6627 2.1065 2.8297 4.0301 

yö = ln(5) 
K, 1.5414 1.9499 2.6238 3.7429 5.7936 

K; 1.4946 1.9118 2.5730 3.6573 5.5704 

y9 = ln(10) 
K, 1.6296 2.1206 2.9398 4.3272 6.9171 

K] 1.5740 2.0723 2.8736 4.2140 6.6319 
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Table 2. Normalized SIF K, for an edge crack in a FGM plate under a 

a 0.2 0.3 0.4 0.5 0.6 

£ = ln(0.1) 
K, 1.3193 1.8642 2.5588 3.5213 5.0726 

K', 1.2965 1.8581 2.5699 3.5701 5.1880 

y0 = ln(O.2) 
K, 1.4188 1.8497 2.4486 3.3234 4.7860 

K'< 1.3956 1.8395 2.4436 3.3266 4.7614 

yS = ln(l) 
K, 1.3951 1.6776 2.1337 2.8626 4.1544 
K? 1.3734 1.6627 2.1065 2.8297 4.0301 

/? = ln(5) 
K, 1.1622 1.3899 1.7746 2.4125 3.5736 

K; 1.1318 1.3697 1.7483 2.3656 3.4454 

y? = ln(10) 
K, 1.0324 1.2499 1.6146 2.2234 3.3371 

K; 1.0019 1.2291 1.5884 2.1762 3.2124 

The present numerical results in Tablel and. 2 coincide with the analytical results obtained by 
Erdogan or the approximate results, and they reveal the relationship between the SIFsand the 
graduation of the elastic properties. Under the uniform strain s, the more the latter is, the more the 
former will increase; under the uniform tension a, the trend is opposite. The little difference 
between the numerical results and the analytical or approximate values show that EFGM has high 
accuracy and flexibility to analyze FGMs and its efficiency is not influenced by the continuously 
variation of the nonhomogeneous material properties. 

4. CONCLUSION 

The FGM plate with an edge crack is studied by using EFGM. The accurate results reveal that the 
efficiency and flexibility of EFGM isn't influenced by the continuous and gradient variation of the 
material properties with the coordinates. It is convenient and accurate to obtain the relationship 
between the graduation of the material properties and the stress intensity factor. While using the 
conventional FEM to analyze FGMs, a great number of nodes and elements are often needed, and it 
is still difficult to obtain the accurate results. It is expected that EFGM will be more widely used to 
analyze the mechanical problem of FGMs. 
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ABSTRACT 

One of the main causes of severe wear or crack initiation in wheel and rail is the contact stress 
due to the wheel-rail contact. Firstly, we obtain contact stress due to the rail mounting slope using 
the finite element method. Secondly, the shape design based on more reasonable contact stress 
analysis rather than a general Hertzian contact theory is investigated in order to reduce the contact 
stress. The optimum design is performed using the simple 2-D finite element model and its results 
are verified by 3-D finite element analysis. 

1.   INTRODUCTION 

The rolling stock is a prominent transportation system characterizing safe, speedy and mass 
transport. Especially, the safety is necessary to its running. The most important thing of rolling 
stock, from a safe point of view, is the wheel-rail interaction as the fundamental condition of 
running. 

A significant number of accidents of rolling stock are caused by the failure of wheel and rail. In 
many cases they are occurred by the severe wear and the crack propagation of wheel and rail. So, 
many researchers are investigating this subject by fracture mechanics to prevent catastrophic 
accidents. However, the fundamental way to reduce the severe wear or the crack initiation in wheel 
and rail is to lower contact stress due to the wheel-rail contact. 

Recently, the need to perform this kind of research is growing as the axle loads increase. Now, 
many researchers have been carrying out a study[l-3] on the shape design. However, the former 
works were based upon the Hertzian contact theory[4] in order to obtain the contact stress 
distribution due to the wheel-rail contact. But since the actual geometry of wheel and rail is 
different from the theoretical one, the contact stress distribution due to the wheel-rail contact is 
likely to differ from that of the Hertzian contact. 

Therefore, in this paper, the contact characteristic between SSW1 wheel and 60kg rail is 
investigated, and the variation of contact stress due to rail mounting slope used at present is studied 
in order to reduce contact stress. Also, the shape design based upon more reasonable contact stress 
distribution rather than a general Hertzian contact theory is investigated. The shape optimization is 
performed using a simple 2-D finite element model and then its results are verified by 3-D finite 
element analysis. 
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2. Finite element analysis (3-D contact stress distribution) 

2.1 Analysis model and method 

Fig. 1. Finite element mesh for wheel-rail contact 

As the material properties of wheel and rail employed in this analysis, Young's modulus(E) is 206 
GPa and Poisson's ratio(v) is 0.3. The finite element model of wheel and rail is shown in the Fig. 1, 
where it exploits symmetry about the running direction, so the half model is considered 

The fixed boundary condition is applied to the bottom of rail, the load is assumed to act on the 
center of axle and then the displacement control is employed. It is assumed that the wheel as an 
elastic body and an axle as a rigid body are in contact with each other since the wheel and the axle 
are assembled by force/shrink fit, so contact surface is able to be kept being in contact. In the 
contact surface of wheel-rail contact, the coefficient of friction^/ ) is Ö.25. PATRAN Ver.7.0 has 
been used for the modelling and the commercial finite element code ABAQUS Ver.5.8 has been 
used for the finite element analysis. 

2.2 Result of finite element analysis (Rail mounting slope=0) 

-20 -15 -10 -5 

contact position (mm) 

Fig. 2. Contact stress distribution about the lateral direction 

The contact stress distribution, when the magnitude of axle load is 42,444N, is given in the Fig. 2 
and Fig. 3. Fig. 2 shows the one about the lateral direction of rail and Fig. f gives one about 
longitudinal direction of rail. In all the graphs, the contact position is the distance between the 
center of rail head as zero and the contact point. 

As shown in the Fig. 2 and Fig. 3, the fact that the contact stress distribution about the lateral 
direction differs from half elliptical one and the contact stress distribution about the longitudinal 
direction is similar to that of theory is known. The reason why the contact stress distribution about 
the lateral direction is not half elliptical distribution is thought as fact that the slope of wheel tread 
exists and the contact position of rail head is eccentric from the central point of radius of curvature. 
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Fig. 3. Contact stress distribution about the longitudinal direction 

2.3 Result of contact stress analysis due to the rail mounting slope(y) 
Generally, 1/40 or 1/20 slope is used for the rail mounting slope in order to reduce contact stress. 

Selecting this slope depends on the type of wheel and rail. This is because determination of the 
mounting slope is related to the wheel tread slope and the radius of curvature of rail head. 

In this study, contact stress between the wheel and the rail is analyzed when the mounting slope is 
1/40 and 1/20, respectively. Analysis method is the same as mentioned in section 2.1. 

Fig 4 and Fig. 5 show contact stress distributions in lateral directions when the mounting slope is 
1/40 and 1/20, respectively. When the result of 1/40 is compared with 0 and 1/20, the contact stress 
distribution in case of 1/40 is almost half elliptical one. This is, in case of 1/40, because the initial 
contact position is located at the center of rail nead and the contact condition is similar to that of the 
Herzian contact. 

-10 -5 0 5 

contact position (mm) 

Fig. 4. Contact stress distribution in lateral direction (y=l/40) 

5 10 15 

contact position (mm) 

Fig. 5. Contact stress distribution in lateral direction (y=l/20) 
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Comparison of the maximum contact stress due to the rail mounting slopes (0,1/40, and 1/20) is 
shown as Table 1. As in Table 1, contact stress of rail with rail mounting slope can be reduced much 
more than one without rail mounting slope. And, In case of SSWI wheel and 60kg rail rail 
mounting slope 1/40 has to be selected in order to reduce contact stress. 

Table 1. Comparison of the maximum contact stress due to the rail 
mounting slope 

Maximum contact stress 
(Mpa) 

Reduction ratio 
(%) 

No rail mounting slope 1810 

Rail mounting slope 
1/40 903.3 50.1 

Rail mounting slope 
1/20 1483 18.1 

3. Optimum design 

3.1 Introduction to optimization 
In this paper, the design variables for the optimum design are the wheel tread slope, the radius of 

curvature of rail head(R) and rail mounting* slope(y), which greatly affect on the contact stress 
distribution due to the wheel-rail contact. The objective function is to minimize the maximum 
contact stress. The constraint for the optimum design is that initial contact position of wheel-rail 
contacts m ± 15mm at rail head center. They constrain the initial contact position and mean the 
model should be analyzed considering manufacturing process. 

Since 3-D analysis is very difficult due to its much time-consuming, analytical invalidity and 
modeling of design variables, a simple 2-D analytical model is presented to perform the 
optimization. SUMT(Sequential Unconstrained Minimization Technique) algorithm is used this 
optimum design. 

3.2 Validity of a simple 2-D analysis model 
Fig. 6 gives a 2-D finite element model used in the optimum design, in which the rail is modelled 

as an elastic body and the wheel is modelled as a rigid element having the slope of wheel tread 
slope m practice. The fixed boundary condition is applied to the bottom of rail and the load acts on 
the rail head by moving the rigid element. 

The advantages of optimum design using this analysis model are to increase the efficiency of 
optimization time, overcome the problem of the initial contact point caused by the variety of design 
variables and simplify a finite element model with the variety of design variables. 

rigid element 

Fig. 6. Finite element mesh for optimization design 



Key Engineering Materials Vols. 183-187 497 

n,KlgL7 s °,ws the ^P*1 whlch Presents *e validity of optimum design using a 2-D model Fig 
7(a) snows the contact stress distribution about the lateral direction of rail using 3-D finite element 
analysis mentioned above and Fig. 7(b) shows the result using finite element analysis of a 2-D 
model tor optimum design. Of course, although two analyses are not performed under the same 
loading conditions, The contact stress distribution of two analysis are similar to each other due to 
the relative variety of load provided that the contact areas are about the same. In addition the 
positions of maximum contact stress are similar to each other, this study focuses on fact that the 
variety of contact stress distribution resulted using a 2-D analysis will show the same tendency with 
one resulted using a 3-D analysis according to the relative variety of load. Therefore In this 
optimum design, we are going to analyses this model, based upon fact that the results by a 2-D 
model give a good agreement with those by a 3-D model. 

2000 

1500    S 
CO 
CO 

1000    I 

500      I 

*- 0 
15 -10 -5 

contact position (mm) 
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2500 

2000   ra 
Q- 

1500    o) 
CO 
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1000    » 
o 
CO 

500     ■£ 
o 

-20 -15 -10 -5 0 

contact position (mm) 

(b) 

Fig. 7. Contact stress about the contact position 
(a) 3-D F. E. analysis       (b) 2-D F. E. analysis 

3.3 Result of Optimization and Conclusion 
During the analysis the shape (R=13) of gage corner in the rail head is kept as it was since this 

optimization is considered in the straight running condition. As the results of optimum design 
conclusions are as follows. ' 

1. The larger is the radius of curvature of the rail head, the lower is contact stress. This result is 
predictable since the contact area became larger. 
\Q £« current 60kg rail, the maximum contact stress is greatly reduced by removing the portion 
of R=50 and lengthening the portion of R=600 to the gage corner, the portion of R=13. 
3. In the current 60kg rail after lengthening the portion of R=600 to the gage corner (the portion of 
K-13) with the portion of R=50 removed, in case of the rail mounting slope 1/40 and the wheel 
tread slope 1/20, contact stress can be most reduced. 

4.3-D finite element analysis for the results of optimization 
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In the results of optimum design, 3-D finite element analysis for two cases is performed, 
respectively. The method to analyze them is the same as one by 3-D finite element analysis 
mentioned above and their results are shown in Table 2. 

Case 1. Rail having R=600 lengthening to R=13 without rail mounting slope and SSW1 wheel 
(wheel tread slope 1/40). . . ,    ., 
Case 2. Rail having R=600 lengthening to R=13 with rail mounting slope 1/40 and wheel with 
wheel tread slope 1/20. 

Table 2. Comparison of the maximum contact stress 

Maximum   contact   stress 
(MPa) 

Reduction   ratio 
(%) 

SSW1 wheel -60kg rail 1810 

Case 1 964.8 46.7 

Case 2 876.9 51.6 

5. Conclusion 

3-D finite element method is used in order to obtain the contact stress distribution between the 
wheel and rail due to the rail mounting slope, and the optimization technique is employed to reduce 
contact stress. Conclusions are as follows. 

l.The contact stress distribution about the lateral direction of rail is not half elliptical one while one 
about the longitudinal direction is half elliptical one. 
2.In case of SSW1 wheel and 60kg rail, 1/40 is more favorable slope for the rail mounting slope in 
order to reduce contact stress. ... 
3. A simple 2-D model is introduced to optimize the wheel tread slope, the radius of curvature ot rail 
head and the rail mounting slope that greatly affect on contact stress. . 
4 In the current 60kg rail profile, the maximum contact stress is greatly reduced by removing the 
portion of R=50 and lengthening the portion of R=600 to the gage corner, the portion of R-l3. 
5 The best way to reduce contact stress is to lengthen R=600 to the portion of R= 13 with the rail 
mounting slope 1/40 and then to change the wheeltread slope of SSW1 from 1/40 to 1/20 
6. This method of optimum design using a simple 2-D model is able to be similarly applied to the 
different kind of wheel and rail. 
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ABSTRACT 

This paper deals with stress analysis of toroidal hole in an infinite body under uniform tension. 

The problem is formulated as a system of singular integral equation with Cauchy-type singularity, 

where the densities of body forces distributing in the r- and z- directions are unknown functions. In 

order to satisfy the boundary conditions along the hole boundary, eight kinds of fundamental 

density functions are introduced in the similar way of previous papers treating plane stress problems. 

Then the body force densities are approximated by a linear combination of those fundamental 

density functions and polynomials. In the analysis, shape of toroidal hole is varied systematically; 

then, the magnitude and position of the maximum stress are shown in tables. The stress distributions 

along the boundary are shown in figures. The accuracy of the present analysis is verified by 

comparing the present results with the results obtained by the conventional method. It is found that 

this method gives rapid convergence numerical results for the stress distribution along the boundary 

and stress concentration factors of toroidal hole are close to stress concentration factors of notched 

round bar and deep notch when a/d—»1. 

1.   Introduction 

It is known that most engineering materials contain some defects in the form of holes, cavities 

and inclusions. To evaluate the effect of defects on the strength of structures, it is important to know 

the stress concentration of defects in a material. Therefore, a lot of useful results of 3-D stress 

concentration problems have been obtained by applying suitable numerical methods. For example, 

stress concentration problems of one and two spherical cavities were treated by several researchers 

[1-3]. However, there is few analyses for more than one ellipsoidal cavity is in a material. Because 

the degree of stress concentration depends on the shape, size, location of the ellipsoidal cavity, the 
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loading conditions and other factors. 

In preceding paper the authors have considered ellipsoidal cavities using singular integral 

equations of the body force method [4]. This method can be applied to the analysis of various 

shapes and spacing of ellipsoidal cavities. In this paper, the method will be applied to a stress 

concentration problem of toroidal hole. Then, stress concentration factor is calculated when the 

shape of toroidal hole is varied systematically. The stress concentration factor of toroidal hole is 

compared with stress concentration factor of notched round bar and deep notch. 

2.  Numerical Solution for Singular Integral Equations 

Consider an infinite body having a toroidal hole under uniform z-direction tension as shown 

in Fig. 1. The problem is formulated in terms of singular integral equations, that is the stress field at 
an arbitrary point (r=d+a cos\|/,z=b sinv|/) when two ring forces act on another points (p=d+a 

cosa,£=±b sina) in an infinite body [5]. The formation is simply based on the principle of 

superposition. The integral equation is expressed by eq. (1), where the body force densities 

distributed along the prospective boundaries in the r-, z-directions are to be unknown functions. 

-(1/2){p;(y0cosy0 + p;(y)siny0} + f"* K2(cc,yr)p'r(a)ds 

+il/2 K"" (a' Ytä (CC)dS = ~°" Sitl2 V» 

-(l/2){-p;V)sinV'o + p°(.yr)wsyr0}+ f*" K^(a,\jf)p*(a)ds 
J—7C/2 

+j^/2K^(a,\i/)p*z(a)ds = -a^smy/0 cos v0 

(1) 

\|/0 is an angle between the r-axis and the normal direction at the point (r,z). Equation (1) is virtually 

the boundary conditions at the imaginary boundary. The first terms of eq. (1) represent the stress 

due to the body force distributed on the 0 boundary. The© boundary means the imaginary boundary 

composed of the internal points that are infinitesimally apart from the initial boundary [6, 7]. 

t     t     t« 
r = d + acosy/ 
z = bsintyf 

p = d + acosa 

f = ±fc since 

I     I     I 
Fig. 1 Toroidal hole in an infinite body. 
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To solve eq. (1) is to determine the body force densities pr(«).Pz(«) in the region of -rc/2< 

a<7c/2. Here, consider auxiliary functions P*i(0*) ~ P*4(0*) and p'zltyk) ~ p'zMk) defined by eqs. 

(2), (3) instead of densities p*(a),p*z(cc), 
p*l(a) = {p'(a) + p*r(7t-a) + p'r(n + a) + p*r(-a)}/4 (2.a) 

p'riW = {p"r(a) + p\{n - a) - p'T(n + a) - p'r(-a)}/4 (2.b) 

pr*3(a) = {p*(a)-pr*(ff-a)-p*(w + a) + p*(-a)}/4 (2.c) 

P*4(a) = {P*(«) - P*(* - a) + P* (* + «)" P*(-«)}/4 (2.d) 

Pd (»)= 0»« («)+ P* <* - a)+ P« <* + a)+ P-*(-a)}7 4 (3.a) 
P*2(a) = {p*(«) + p'M ~ «) ~ P'M + a)~ Pz*(-«)}/4 (3.b) 

P*z3(a) = ip*z(a) ~ p'M - «) - Pz (^ + a)+P.*(-a)}/ 4 (3.c) 
p*4(a) = {p*(a)-p*(ff-a) + p*(w + a)-pz*(-a)}/4 (3.d) 

These new functions p*rl(Qk) ~ p*4(^t) and p*A{<t>k) ~ P*z*(<l>k) must satisfy eqs. (4), (5) because of 

the definition (4), (5). 
P*i (a) = P*i Or - a) = p*, (ff + a) = p*, (-a) (4.a) 

P*2 («) = P*2 &-<*) = -p*2 (n + a) = -pr*2(-a) (4.b) 

P*3(«) = -p'sfr - «) = -P'rifr* «) = P*3(~«) (4.c) 
PM(«) = -P*4 (« - a) = pr*4 (n + a) = -p"r4 (-a) (4.d) 

P*i(«) = p'A(fi - a) = p*zl(n + a) = p*^-«) (5.a) 
p*z2(a) = p"z2{n-a) = -p*z2{7t + a) = -p'z2(-a) (5.b) 

P,*3(a) = -Pzs(» - °0 = -Pzs(» + «) = P*3(-a) (5.c) 
p*z4(a) = -p^Or - a) = p'z4(n + a) = -p'z4(-a) (5.d) 

It should be noted that determining auxiliary functions p*n(<pk) ~ P*4(0*) in the range 0<OC<JT/2 is 

equivalent to determining original unknown densities Pr(«). Pz(°0 in the range -7t/2<a<;t/2. In 

other words, if the auxiliary functions p*,(0t)~p*4(0J are given in the range 0<a<rc/2, original 

unknown functions p*r(a), p*(a) are expressed in the range -%I2«X<%I2 using eqs. (6), (7). 
p'r{a) = p'ri{a) + p'r2{a) + p'ri{a) + p"r4{a) (6.a) 

p*(7t-a) = p'rl(a) + p'r2(a)-p*3(a)-p'M(a) (6.b) 

p*r(7t + a) = pr*,(a)-p;2(a) -p;3(a) + pr*4(a) (6.c) 

p'T(-a) = p"rl(a)-p*r2(a) + p'r3(a) - p*4(a) (6.d) 

p* (a) = p*, (a) + p*2 (a) + p*3 (a) + pz*4 (a) (7.a) 

p"z{n-a) = p*d(a) + p'z2(a)- p"z3(a)- p'z4(a) (7.b) 

p"z(n + a) = p^(a) - p'z2{a) - p*zi(a) + p'z4(a) (7x) 

p"z{-a) = p'zl{a)-p'z2{a) + p"z,(a)-p'z4{a) (7.d) 

The fundamental density functions for the body forces in the r-, and z-directions are defined 

by following expression: 
wn (a) = nr(a)/cosa, wr2 (a) = nr (a) tan a, wr3 (a) = nr (a), wr4 (a) = nr (a) sin a (8) 
wzl (a) = nz{a)l sin a, wz2 (a) = nz (a),wz3 (a) = nz (a) cot a, wz4 (a) = n2 (a) cos a (9) 
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Using eqs. (8), (9), original body force densities are expressed as shown in eqs. (10), (11). 

prj{a) = pTj{a)wrj(a)       j=l,2,3,4 (10) 

p*!j{a) = pzi{a)wzj{a)       j=l,2,3,4 (11) 

where prl(a)~pr4(a) and pzl(a)~pz4(a) are unknown functions, which have been called weight 

functions. Then all prl(oc)~pr4(a) and pzl(a)~pz4(cc) must satisfy eq. (12). 

f(a)=f(7r-a)=f(n+a)=f(-a)f(<t)k): pr](cc)~pZ4(a) (12) 

Finally, original unknown densitiesp,.(«),p,(o:) can be expressed in eq. (13) as linear combination 

of the fundamental densities and the weight functions. 

4 4 

P* («) = 1, Pn (a)wrj (a), p*z (a) = £ p4 (a)Wzj (a) (13) 

By considering the symmetry of the problem, wrl(a), w r3(a), w z2(a), w z4(a) are suitable. 

Unknown functions pr (oc), pz (a) can be expressed by the following equation. 
P* («) = prl(a)wrl(a) + pr,(a)wr3(a),p*z(a) = pz2(a)wz2(a) + pz4(a)wz4(a) (14) 

Here all unknown weight functions can be approximated as shown in eqs. (15), (16) because all of 

these must satisfy eq. (13). 

Mil Mil Mil Mil 

prl(a) = XflA(«).Pr3(«) = I>A(a)>Pz2(«) = !>„?„(«)> P^«) = ^dntn(a) (15) 
n=l n=l n=l »=1 

f„(a) = cos{2(«-l)a} (16) 

Where M is the number of the collocation points in 0<a<27t. Using the approximation method 

mentioned above, we can obtain the system of linear equations for determining the coefficients a„, 

bn, cn, d„. Then, the magnitude and position of the maximum stress are calculated, when the shape of 

the toroidal hole is changed systematically. 

3.   Numerical Results and Discussion 

Table 1 shows the convergence of the values of stress an, CT„ xnl along the toroidal hole boundary 

with increasing the collocation number M when a/b=l, a/d=2/3, v=0.3, a" =1 in Fig. 1. In the 

present analysis, the boundary conditions (CT„=0, Tnt=0), which should be zero along the boundary, 

are less than 10"5 even when M=16. Therefore, the boundary requirements can be highly satisfied 
along the entire boundary. 

In Table 2 the convergence of the stress concentration factors at point A (\|/=0° ) and B 

(\|/=180° ) is shown to be compared with the conventional body force method using step-function 

when a/b=l, a/d=0.9, v=0.3, cr~ = 1 in Fig. 1. In table 2, the symbol co designates the 

extrapolated value using the results M=32 and 48. The present results show rapid convergence than 

the results using the step-function which need the extrapolation. 

In Table 3 the stress concentration factor is shown to be compared with the conventional body 
force method using step-function when a/b=l, v=0.3,<7z°° = 1 in Fig. 1. The solution of the notched 

round bar [5, 8] and the deep notch [9] are also shown in Table 3 for reference. The present results 
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coincide with the results of the conventional body force method in the 4 digits. The stress 

concentration factors of toroidal hole are close to stress concentration factors of notched 

round bar and deep notch when a/d-*l. 

Table 1 Stress distribution along the boundary when a/b=l, a/d=2/3, V=0.3,<T" = 1 in Fig. 1. 

V (deg.) M <J, On t,, 

8 2.69383 1.0 XIO"5 0 
0 12 2.69676 2.3 XIO"5 0 

16 2.69373 9.5 XIO"7 0 
20 2.69373 -3.9 XIO"7 0 

8 1.37277 3.8 XIO"4 3.9 XIO4 

40 12 1.37306 -1.7X10"5 -2.8 XIO6 

16 1.37307 2.0 XIO"7 -1.2 XIO8 

20 1.37307 -3.6X10"8 2.8 XIO"10 

8 -0.62466 2.6 XIO"4 6.9 XIO5 

80 12 -0.62409 -2.9 XIO"5 6.6 XIO"6 

16 -0.62408 -1.5X10"6 7.4 XIO"7 

20 -0.62408 -3.7X10"8 2.1 XIO9 

8 -0.76442 3.5 XIO"4 -5.0 XIO"6 

100 12 -0.76488 -3.3 XI0"5 1.8 XIO"5 

16 -0.76478 -1.5 XIO6 1.3 XIO"6 

20 -0.76478 -3.1 X10"8 5.4 XIO"8 

8 1.65287 1.8 X10"3 -1.1 XIO"3 

140 12 1.65293 -1.7 XIO"5 4.3 XIO'5 

16 1.6528 3.9 XIO"8 -4.6 XIO"7 

20 1.65281 1.3 XIO"9 -9.2 XIO"9 

8 4.30702 1.2 XIO"3 0 
180 12 4.30589 -3.7 XIO"5 0 

16 4.30593 -2.1 XIO"6 0 
20 4.30593 -9.5 XIO8 0 

Table 2 Convergence of the maximum stress when a/b=l, a/d=0.9, v=0.3, oz -1 in Fig. 1. 

M 

Present analy sis Step-function   (pl3, pz2) 

K,A KtR K, KtA KtB K, 

4 2.7032 8.3236 1.0242 2.6894 8.9249 1.0185 
8 2.6529 8.4751 1.0422 2.6446 8.8165 1.0330 

12 2.6373 8.3918 1.0470 2.6387 8.5311 1.0403 
16 2.6343 8.3802 1.0476 2.6368 8.4558 1.0435 
20 2.6338 8.3785 1.0477 2.6353 8.4132 1.0458 
24 2.6337 8.3783 1.0477 2.6347 8.3989 1.0465 
28 2.6336 8.3783 1.0477 2.6343 8.3884 1.0470 
oo 2.633 8.373 1.048 
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Table 3 Stress Concentration factor for toroidal hole when a/b=l, v=0.3, <T~ = 1 in Fig. 1. 
Kt=aa/g„a=F/{n(d-a)2} ] 

Present 

analysis 

Step- 

function 

(P,*P«j) 

Notched 

round bar 

Deep 

notch 

a/d K, K, K,[5] K,[8] K,[9] 

0 3.0000 3.0000 3.065 3.065 00 

0.1 2.5484 2.5484 2.601 2.593 3.1845 
0.2 2.1836 2.1836 2.196 2.191 2.2272 
0.3 1.8803 1.8803 1.869 1.871 1.8052 
0.4 1.6309 1.6308 1.610 1.608 1.5571 
0.5 1.4321 1.4320 1.412 1.411 1.3908 
0.6 1.2820 1.2818 1.270 1.270 1.2705 
0.7 1.1762 1.1761 1.172 1.172 1.1790 
0.8 1.1036 1.1037 1.103 1.101 1.1069 
0.9 1.0477 1.0481 1.048 1.046 1.0484 

4.   Conclusions 

In this paper, the numerical solution of the singular integral equations based on the body force 

method in toroidal hole problem was investigated. The conclusions were summarized as follows: 

(1) The stress concentration problem of toroidal hole was formulated in terms of singular integral 

equations of the body force method. The unknown functions were approximated by the product of 

the fundamental density functions and polynomials. 

(2) The accuracy of the present analysis was verified through examining the boundary conditions 

and the convergence of the maximum stress. The present results could highly satisfy the boundary 

conditions and showed rapid convergence than the conventional body force method. 

(3) The stress concentration factors of toroidal hole were close to stress concentration factors of 
notched round bar and deep notch when a/d->T. 
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ABSTRACT 

During IPIRG-2 program, various experiments and numerical analyses for surface cracked 
elbow had been performed, and thereafter the analytical code named IP2ELBOW was developed. 
However, because of the inherent limitation of this code to predict fracture behavior of cracked 
elbow, the necessity of further investigation was issued. For this reason, in this paper, engineering 
analyses and 3-dimentional finite element analyses for cracked elbow with internal pressure and 
bending load were carried out varying elbow geometry(Rm/t), crack depth(a/t) and crack 
size(2cM)). These analysis results were compared each other and with the corresponding 
experimental data. Finally, additional assessment was also conducted to provide better insight into 
the effect of dead weight load. 

1. INTRODUCTION 

Since 1980's, EPFM technology in nuclear piping has been enhanced through several 
international research programs[1~4]. The emphasis on these programs was the development of 
experimental data and analytical methods to verify fracture behavior of the cracked piping, and 
thereafter considerable products were achieved. During the development stage of these programs, 
several analytical methods and FEM were utilized. However, it was issued that further investigation 
for the several analytical methods was necessary because some discrepancies with the 
corresponding experimental data were observed in the previous studies. Therefore, in this paper, 
numerous engineering analyses and FE analyses were carried out for various elbow and crack 
geometries to find out the optimum method. 

2. ANALYSIS MODELS 

In order to produce elbow fracture behavior data, four elbow tests with surface crack were 

carried out during the previous international piping research program[4]. The tests were performed 

at representative PWR condition and Fig.l shows the two types of test facilities used in these tests. 



506 Fracture and Strength of Solids 
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(a) Piping system elbow (b) Quasi-static elbow 

Fig.l Schematic of elbow test facilities[4] 

2.1. Geometry 
The test specimens contained an internal circumferential surface crack centered at the extrados 

of about 406mm(16inch) nominal diameter and 33mm(1.3inch) thickness, long-radius 90° elbow. 
The nominal planned surface cracked geometry was about 50 percent of the elbow circumference in 
length and 63-68 percent of the elbow wall thickness in depth. 

2.2. Material 
Elbow materials used in these tests were A106 Gr.B carbon steel and TP 304L stainless steel. 

Table 1 shows chemical compositions of the elbow materials. 

Table 1. Chemical composition of test materials 

Identification Fe C Mn P :s. ;YSI   ; :Ni' ■ Cr Mo V Co CU; Al Ti Nb 
A106 Gr.B 

Carbon Steel - 0.17 0.93 0.017 0.003 0.26 0.02 0.03 0.01 - 0.002 0.01 0.03 0.014 0.03 

TP304L 
Stainless Steel 70.5 0.03 1.90 0.020 0.030 0.32 8.30 18.8 0.19 0.05 0.080 - 0.04 0.006 0.01 

2.3. Loading 
The piping system test specimens were subjected to an increasing amplitude single frequency 

displacement-time history forcing function, with a constant internal pressure of 15.5MPa and at a 
temperature of 288°C. The companion quasi-static test specimens were loaded in bending, with the 
same condition. 

2.4. Summary of analysis models 

Table 2 shows the summary for geometry, material, loading and key test results of the cracked 
elbow which were used as base models of fracture mechanics analyses. 
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Table 2. Geometry, material, loading and key test results of base models of cracked elbow 

Identification 2-1 2-2 2-3 2-4 

Test Type Piping System Quasi-Static Piping System Quasi-Static 

Elbow Material A106 Gr.B CS A106 Gr.B CS TP304L SS TP304L SS 

Outer Diameter[mm(inch)] 409(16.1) 406 (16.0) 409(16.1) 406 (16.0) 

Thickness [mm(inch)] 32.1 (1.263) 32.0(1.26) 33.2(1.31) 33.0(1.30) 

M 5.9 5.8 5.7 5.7 

Crack Length/Circumference 0.49 0.50 0.50 0.50 

a/t (Average) 0.67 0.68 0.63 0.64 

Young's Modulus [GPa(ksi)] 196.5(28,500) 196.5(28,500) 182.7(26,500) 182.7(26,500) 

Yield Strength [MPa(ksi)] 209 (30.3) 209 (30.3) 194 (28.1) 194 (28.1) 

Tensile Strength[MPa(ksi)] 448 (65.0) 448 (65.0) 410 (59.4) 410 (59.4) 

a 3.36 3.36 14.78 14.78 

N 4.421 4.421 3.981 3.981 

JIC [kN/m(in-lb/in2)] 361 (2,060) 425 (2,430) 1,359(7,761) 1,087(6,206) 

Mini [kN-m (in-kips)] 562 (4,970) 593 (5,250) 601 (5,320) 536 (4,745) 

M^ [kN-m (in-kips)] 580 (5,132) 608 (5,380) 729 (6,448) 548 (4,850) 

3. FRACTURE MECHANICS ANALYSES 

To verify the validity of the analytical methods developed in the previous studies, a number of 
engineering analyses and FE analyses were performed for circumferential surface cracked elbows 
under the combined load. 

3.1. Engineering Analyses 
Engineering analyses were performed using the SC.ELB[5], NSC[6] and Simplified method[7] 

for both the base models in which experimental data[8~ll] were available and specific models in 
which RJt, a/t, 2dnD parameters were varied. In these analyses, to predict the fracture behavior, 
crack initiation and maximum moments were determined by using the experimental values 
corresponding to the JIC and (dJ/da)^ = (dl/da)™«, respectively. 

3.2. FE Analyses 
Elastic-plastic finite element analyses were 

also performed using ABAQUS code for only 
the base models in same manner with the 

engineering analyses. Fig. 2 shows the 

representative 3-dimensional FE model for the 

circumferential surface cracked elbow and, in 

which 1/2 of the elbow was modeled because 

of the geometric symmetry. As the analysis 

results, crack initiation moment was 
determined by using the experimental values 

corresponding to the JIC. Fig.2 FE model of surface cracked elbow 
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4. ANALYSIS RESULTS 

Fig. 3 shows the fracture ratios obtained by comparison of the engineering and FE analysis results to 

the experimental ones for 4 base models. As shown in these figures, the predicted moments by the 

analytical methods were generally conservative, and the differences between experimental and predicted 

maximum moments were larger than the crack initiation cases. In addition, predicted results obtained by 

the SC.ELB1, NSC, and FE methods were similar to the corresponding experimental values, while the 

SC.ELB2 and Simplified methods underpredict the load-carrying capacities. 
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(a) Crack initiation fracture ratio (b) Maximum fracture ratio 

Fig. 3 Analysis results for base model 

4.1. Influence of RJt 

Fig. 4 shows the predicted moments obtained by the SC.ELB1, SC.ELB2 and Simplified methods 

for the variation of RJt. As RJt increases from about 5.5 to 6.5, the load-carrying capacities tend to 

decrease about 15% and these tendencies were similar in spite of the difference of elbow materials and 
analytical methods. 
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- 2-1(Simpla) 
- 2-4(8lmpla] 

(a) Crack initiation moment (b) Maximum moment 
Fig. 4 Analysis results for variation of RJt 
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4.2. Influence of a/t 
Fig. 5 shows the predicted moments obtained by the SC.ELB1, SC.ELB2 and Simplified 

methods for the variation of a/t. As a/t increases from about 0.5 to 0.8, load-carrying capacities tend 

to decrease about 20% and these tendencies were similar in spite of the difference of elbow 

materials and analytical methods except for Simplified method. 
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Fig. 5 Analysis results for variation of a/t 

4.3. Influence of 2cM) 
Fig. 6 shows the predicted moments obtained by the SC.ELB1, SC.ELB2 and Simplified 

methods for the variation of 2c/nD. As 2c/7tD increases from 40% to 50%, load-carrying capacities 
tend to decrease about 10% and these tendencies were similar in spite of the difference of elbow 

materials and analytical methods. 
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Fig. 6 Analysis results for variation of 2cM) 
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4.4. Influence of dead weight load 
The load-carrying capacities considering the pipe and water weights were reviewed using 

moment equilibrium equation. However, contribution of the dead weight loads for fracture was 

proved to be not significant because the values of less than 2kN were considerably lower than the 

experimental value of about 200kN at crack initiation. 

5. CONCLUSIONS 

In this paper, to find out the optimum analytical method for cracked elbow, numerical analyses 
and synthetic assessment were performed, and the conclusion of this paper was follows: 

(1) In general, the moment prediction results for surface cracked elbow using analytical and FE 
methods were underpredictive. 

(2) FE method seemed to be appropriate to predict load-carrying capacity for surface cracked 
elbow. 

(3) As RJt, a/t, 2cM) increases, load-carrying capacities tend to generally decrease and the effect 
of a/t was most significant among these parameters. 

(4) Effect of the dead weight load was relatively negligible. 
(5) Further investigation will be necessary for the analytical methods because of some inconsistent 

predictive trends. 

REFERENCES 

1. G.M. Wilkowski, et al., Degraded Piping Program-Phase II, NUREG/CR-4082, Vol.l~Vol.8 
(1984) 

2. G.M. Wilkowski, et al., Short Cracks in Piping and Piping Welds, NUREG/CR-4599, Vol.1 
No.l~Vol.4No.l(1994) 

3. G.M. Wilkowski, et al., International Piping Integrity Research Group Program - Final Report, 
NUREG/CR-6233 (1991) 

4. G.M. Wilkowski, et al., Second International Piping Integrity Research Group(IPIRG-2) 
Program - Final Report, NUREG/CR-6452 (1996) 

5. Battelle, Elbow Surface Crack J-Estimation Scheme Computer Program, IP2ELBOW Ver. 1.0 
(1996) 

6. M.F. Kanninen, et al., Mechanical Fracture Predictions for Sensitized Stainless Steel Piping 
with Circumferentially Cracks, EPRINP-192 (1976) 

7. G.M. Wilkowski, et al., Development of Simplified Analysis Procedure for Cracks, 14th 
SMiRT Conference, pp. 227-234 (1997) 

8. Battelle, Data record book entry E-2.2.2.8L1 for IPIRG-2 Experiment 2-1 (1995) 
9. Battelle, Data record book entry E-2.2.2.1ic. 1 for IPIRG-2 Experiment 2-2 (1996) 
10. Battelle, Data record book entry E-2.2.2.8i.2 for IPIRG-2 Experiment 2-3 (1996) 
11. Battelle, Data record book entry E-2.2.2.1ic.2 for IPIRG-2 Experiment 2-4 (1996) 



Key Engineering Materials Vols. 183-187 (2000) pp. 511-516 
© 2000 Trans Tech Publications, Switzerland 

On the Multiple Isoparametric Finite Element Method and 
Computation of Stress Intensity Factor for Cracks in FGMs 

Z.Z. Zou, S.X. Wu and C.Y. Li 

Department of Communication Engineering, Shijiazhuang Railway Institute, 
Shijiazhuang 050043, China P.R. 

Keywords: Crack, Finite Element Method, Functionally Graded Materials FGM, Stress Intensity 
Factor 

ABSTRACT 

In this paper, a multiple isoparametric finite element method is presented, and as an example of 

application of the method, the stress intensity factor for cracks in functionally graded materials 

(FGMs) is computed. The results have shown that the multiple isoparametric finite element method 

is much more efficient in computation of the stress intensity factor for cracks in nonhomogeneous 

materials. 

1. INTRODUCTION 

The worldwide interests in FGMs research are growing rapidly in recent years. The reason is 

that the FGMs have many advantages, such as effectively resisting high temperature and corrosion, 

significantly reducing the residual and thermal stresses in the materials and so on. However, this 

kind of material also brings us some new problems. The foremost challenge that we are faced is that 

the FGMs are nonhomogeneous solids with its material properties varying continuously. From the 

viewpoints of applied mechanics, the nonhomogeneity of FGMs has a great influence on their 

mechanical behavior. Due to the mathematical complexity, most of the existing analytical solutions 

to problems relating to nonhomogeneous solids had to make a lot of simplicity. It was usually 

assumed that the material is isotropic, the Poisson's ratio is constant and only the Young's (or the 

shear) modulus is a specially designated continuous function of the space variable. Such 

idealizations oiier a considerable amount of simplification to the analysis of nonhomogeneous 

materials. Even so, however, the analytical approaches that had been used can only deal with 

unbounded media and simple distribution of material properties, such as an exponential form [1] or 

power form [2]. It is difficult to consider the influences of finite size and complex material property 

distributions on the fracture parameters. Therefore, the numerical methods should be take as 
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powerful tools in analyzing the behavior of FGMs. 

In numerical methods, the most versatile method is the Finite Element Method (FEM) and it has 

been used to solve many practical problems. However, in conventional isoparametric finite element 

method, both the displacement and shape of the element are expressed as the functions of the 

coordinates in one or two order, for the properties of the material, however, only a constant is used 

to present them throughout the element. It is worked very well for the homogeneous materials, but 

not the case for the nonhomogeneous materials, since the properties of the materials are varied in 

the element, and the expansions for the displacements, shape and the properties of the materials in 
the element are not consistent. 

In this paper, we propose a simpler and more versatile finite element formulation. The concept 

of isoparametric transformation is adopted for simulating the variations of the material properties in 

individual finite elements. The properties of the materials in the element are also expressed as the 

functions of the coordinates in one or two order. Because of this consistency of the expansions, 

much higher efficiency and accuracy of the computation is obtained with a little increasing of the 

amount of the computation. As an example of application of the method, the stress intensity factor 
for cracks in a FGMs is computed. 

2. MULTIPLE ISOPARAMETRIC ELEMENTS 

The finite element stiffness equations can be written as 

Keue=Fe (!) 
where 

Ke=f   BeTDeBedQe (2) 

Fc = J^ N'VdQ, + £ N«rt'dT, + k B«rD' tTd€le (3) 

Where Be is the strain shape function, De is the constitutive matrix containing the appropriate 

material properties, be, t and &T are the body force vector, the traction vector and the thermal 

strain veclu« respectively; Qc is the domain of the element and Te is the boundary on which 
traction is prescribed. 

In above finite element formulation, the constitutive matrix Dc, the body force vector be and 

the thermal strain eT have relations with the material properties E (elastic modulus), v (Poisson's 

ratio),p(density) and «(the coefficient of linear thermal expansion) respectively. For 

nonhomogeneous materials, these material properties are functions of spatial coordinates. In order 

to properly describe the variations of material properties in nonhomogeneous media, we introduce 
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the concept of the well-known isoparametric transformation into the interpolation of material 

parameters. It is stated below for two-dimensional problem. 
Consider a m -node plane element. The global coordinates of a point on the element at (£, rf) 

are given by 

m m 

x = 5>,(6>7)x„  y = Y,N,{lti)y,. (4) 
i=i >=i 

Where Af, are the shape functions corresponding to the node i, whose coordinates are (*,,>>,) in 
the global system and (£,,7,) in the local system. As an isoparametric element, the 

displacements within the element are interpolated as follows 

m m 

u^Nfätflu,,     0 = ^,^)0,. (5) 
i=l ;=1 

Where (u,v) are the nodal displacements in x and y directions respectively. Now, we let the 
material properties E, v, p and a at the point (£77) be expressed as 

'=1 '=' (6) 
mm v   ' 

i=\ >=i 

Where (£,, Vj.pj.a,) stand for the material properties at the node i of the element. By using Eq.6, 

the actual variations of the material properties in a specified element can be approximated by 

polynomial forms. We can choose the same shape functions to achieve the same simulating 

accuracy for coordinates, displacements and material properties in an element. We name this kind of 

elements as multiple isoparametric elements. 

Substituting Eq.6 into the element constitutive matrix De(E,v), the body force vector be(p) 

and the thermal strain ^T(a) in Eq.2 and Eq.3 respectively, we obtain the element stiffness matrix 

and the load vector in the domain of the reference element. Because the variations of material 
properties have been simulated properly in the level of element, it insures that the higher accuracy 
can be obtained with relative coarse mesh for the stress analysis of nonhomogeneous media. Clearly, 
the finite element formulation presented above is also suitable for homogeneous medium and 
piecewise homogeneous medium merely by making the value of each material property be the same 
at all of nodes on an element. 

3. NUMERICAL INTEGRATION 

The problem that should be paid attention is the numerical integration of the element stiffness 
matrices and the element load vectors. For a multiple isoparametric element, the order of the 
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integrand is generally higher than the corresponding isoparametric element, because the matrix Dc 

and the vectors be, £r are functions of the coordinates 4 and 77, as shown in Eq.7 and Eq.8. 

The elements of the matrix De are usually rational fractions because they are calculated by E and 

v. Therefore, the minimum number of integration points required by the matrix Ke and the vector 

Fe could not be determined easily. But by considering the first term of the load vector Fe, we can 
say that the errors of the integration formulae may be at least of the order as follows: linear 

elements,0(h3); quadratic elements,0(h5); cubic elements, 0(h7). Thus, the minimum number 

of Gaussian integration points will be, for example, 3x3 for eight-node two-dimensional elements. 

The effect of different integration points on the accuracy of computed results is illustrated in 

Fig. 1 for quadratic quadrilaterals. It can be seen that 3x3 Gaussian points are adequate for quadratic 

quadrilaterals. The increase of the number of integration points has little effect on the accuracy. It is 

revealed that little more efforts in integration for multiple isoparametric elements will be made than 

that for ordinary isoparametric elements. 
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Fig.l. The effect of Gaussian points on the computational accuracy. 
(cr'y is the result of 10x10 points) 

4. APPLICATION TO FRACTURE MECHANICS 

In this section, the multiple isoparametric element method is used to analysis of fracture 

mechanics of functionally graded materials. The studies of the literature [3] have shown that in 

nonhomogeneous materials with continuously varying properties the nature of the stress singularity 

at a crack tip would remain to be identical to that in homogeneous solids. It has been confirmed that 

the result is independent of the form for material properties and the orientation of the crack [4]. 

Thus, we can now use the crack tip finite element developed for the ordinary square-root singularity 

to compute the fracture parameters of FGMs. Following we give out the formulations of the SIF by 

using the triangular crack tip element for FGMs. 

From the displacement fields on the crack surfaces, we obtain 
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V L K(r) + 1 

V L K{r) + \ 

(7) 

Where *- = (3-4v) for plane strain and K= (3-V)/(1 + V) for plane stress, ju = E /2(l + v) is 
the shear modulus. w(r) And w(r) are the displacement components at crack face point r. The 
values of K, and Kn at the tip o can be obtained by linear extrapolation as following 

K^IK, {LI A) -Kt(L) 

Kn=2Kn{LIA)-Kxl{L) 
(8) 

5. NUMERICAL RESULTS AND DISCUSSION 

As an example, an FGM plate with an edge crack is computed by the present method. As 
shown in Fig.2, the plate is assumed under uniform tension. Its Poisson's ratio is constant and its 

elastic modulus is 

£(x) = £0exp(— ln^) w     °    *V    E' 
(9) 

Where E0 and Ew are the elastic moduli at x = Q and x = W, respectively. The reason we 

choose this problem as an example is that it has analytical solutions [1] and hence it is convenient to 
analyze the computational accuracy and efficiency. 

As shown in Fig.2, the crack plane is a plane of symmetry and the crack problem is one of 

Mode I. The finite element division is only needed for the part of y > 0. In the computation, we 

as 
« 3 
.x 
* 1 
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Hi -3 -»■Present Method 

■D-Conventional FEM 
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Relative crack-depth    a/W 

Fig.2. The FGM plate with an edge crack.       Fig.3. The error analysis of computational results. 

(K'j is from reference [1]) 
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used total 184 elements and total 599 nodes. The crack tip elements are six-node triangular quarter- 

point elements. Other elements are eight-node multiple isoparametric elements. The error analyses 

of the computed results are shown in Fig. 3. As comparison, this problem was also solved by using 

the conventional FEM. The crack tip elements were also six-node triangular quarter-point elements 

and other elements were eight-node isoparametric elements. However, to achieve the acceptable 

accuracy, the total number of elements that was used reached 852 and the number of nodes reached 

2229. It is shown that the multiple isoparametric finite element method is much more efficient in 

computation of the stress intensity factor for cracks in nonhomogeneous materials. 

6. CONCLUSION 

In this paper, the technique of isoparametric transformation is adopted for simulating the 

variation of material properties and then a multiple isoparametric finite element method is presented. 

It makes the description of geometry, displacements and material properties be achieved the same 

accuracy. Due to this consistency of the expansions, much higher efficiency and accuracy of the 

computation is obtained with a little increasing of the amount of the computation. Because of the 

expansion for the properties of the materials, the order of the expressions for the stiffness matrix of 

the element is higher than that in the conventional one. But it is proved that the minimum number of 

the points of numerical integration is 3 x 3 for the linear element, and it is also enough for the 

element of second order. As an example of application of the present method, the stress intensity 

factor for an edge-cracked FGM plate is computed. It is shown that the present method provides 

enormous flexibility in meshing and much more efficiency in computation of the stress intensity 

factor for cracks in nonhomogeneous materials. 
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ABSTRACT 

This paper presents the effect of a longitudinal stiffener on the elastic buckling of orthotropic 
web plate under in-plane shear forces. In the study, the edges of web plate are assumed to be simply 
supported. The stiffener is modeled as a beam element and the torsional rigidity of stiffener is 
neglected. The minimum value of shear buckling coefficient of longitudinally stiffened orthotropic 
plate is estimated by the buckling analysis of an infinite long plate with a longitudinal stiffener 
under in-plane shear forces. The buckling analysis of longitudinally stiffened orthotropic 
rectangular plate is also performed and the results are presented in the graphical form. For the 
buckling analysis, the Rayleigh-Ritz method is employed. To verify the results obtained by using 
the ensuing equation, the orthotropic material properties are replaced with the isotropic ones and the 
results are compared with published ones. 

1. INTRODUCTION 

In recent years, pultruded fiber-reinforced plastic (FRP) members have been increasingly used 
in many engineering fields including civil engineering, due to their favorable mechanical and 
physical properties such as light weight, corrosion resistance, and electromagnetic transparency. 
Despite their availability and diversity, analysis method and design tools developed for members of 
conventional materials can not always be readily applied to FRP shapes because of the complexity 
of mechanical properties of composite materials. Thus there is an urgent need to understand the 
behavior of pultruded structural members under various loading and boundary conditions. 

Since the structural members are commonly consisted with plate elements, local buckling can 
be one of the critical failure modes. In order to prevent the local buckling, plate thickness to width 
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ratio can be increased and/or the stiffener may be located on the plate element. In the case of 
slender web plate, longitudinal and transverse stiffeners may be located to increase the local 
buckling strength and each stiffener can be designed under bending and shear stresses, respectively. 
While, the effect of longitudinal stiffener on the elastic shear buckling needs to be considered in 
some practical cases such as the shear webs in thin wings and bridge girders. 

This paper is focused on theoretical investigation of the effect of a longitudinal stiffener on the 
elastic shear buckling of orthotropic web plate. The boundary conditions of orthotropic web plate 
are assumed to be simply supported and the longitudinal stiffener is modeled as a beam element. 

2. THEORETICAL DERIVATIONS 

In this paper, following assumptions in addition to the basic assumptions for the plate are 
commonly introduced at the junction of plate and stiffener. 
(1) The deflection of stiffener is equal to the out-of-plane deflection of plate at the common 

junction of plate and stiffener. 
(2) The torsional rigidity of stiffener is negligibly small. 

In order to derive the instability equation, two different conditions are considered and the 
Rayleigh-Ritz method is employed. For the first case, the plate is modeled as a long plate in order to 
investigate the minimum value of buckling coefficient. For the second case, which is in general, the 
web plate bounded by transverse stiffeners is modeled as a simply supported plate. 

2.1 Longitudinally stiffened long plate 
Fig. 1 shows the orthotropic infinite long plate with a longitudinal stiffener under uniformly 

distributed shear forces at the longitudinal edges. 
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Fig. 1 Orthotropic infinite long plate with a longitudinal stiffener 

Using the axes and notation in Fig. 1, the deflection curve for buckled shape is assumed as [1, 2]: 

.    VLK -T-i   .     .    nay ax -r-i „ 
w = sin—> A„sm——+ cos—> B„ sin 

7VC- nny 
(1) 

In Eq. (1) Ä is the half wavelength of buckled shape in the x-direction, and A„, Bn are the 
amplitude of deflection. The deflection curve of a longitudinal stiffener can be found by replacing v 
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withjv 
Substituting assumed deflection curves into the basic energy equation of orthotropic plate [3], 

one can find the strain energy of bending of orthotropic plate (Up), the strain energy of stiffener (Us), 
and the work done by the applied shear forces (T). Then the total potential energy (n=Up+Us+T) 
can be obtained as a function of in-plane shear buckling coefficient of orthotropic plate ks, the half 
wavelength of buckled shape A, and the flexural rigidity ratio y 

The in-plane shear buckling coefficient of orthotropic plate ks is defined as [4]: 

_ T0tb> 

^VÄ^T (2) 

Therefore the in-plane shear buckling stress rcr can be calculated from the following equation: 

7t2^DnD12 _ u       7t2^EnE. 

b2t * Jb *.=K \r22 = *.   v" *» 0) 
12(l-v12v210 

According to the principle of stationary potential energy, the coefficients A„ and B„ must be 
chosen to make the total potential energy being stationary. Using the Rayleigh-Ritz method, the 
minimization of total potential energy with respect to each A„ and B„ results in two sets of 
simultaneous homogeneous linear equations represented by following equations: 

AÖ„+2>A?
+I>A=0 (4) 

q=\ q=\ 

B„Qn+$lBqNliq+fiAqMliq=0 (5) 
q=\ q=\ 

In Eqs. (4) and (5), n ± q are odd numbers, and Q„, N„q, and M„?'s are given in Appendix. 
Since Eqs. (4) and (5) are homogeneous, the determinant of coefficients of A„'s and i?„'s must 

be vanished to get the solution other than the trivial one. In this study, the factored determinant is 
expanded up to four terms, and it gives good approximation [1]. 

Using the ensuing equation, the minimum value of ks of longitudinally stiffened plate is 
calculated at various locations of stiffener as shown in Fig. 2. In Fig. 2, the minimum value of ks 

approaches the maximum value when the stiffener is located at the middle of plate. 
Fig. 3 represents the trend of minimum value of ks with respect to the flexural rigidity ratio y 

when the stiffener is located at the middle of plate. As can be seen in Fig. 3, increasing the stiffener 
rigidity increases the buckling coefficient of plate, and it indicates that the load needed to buckle the 
plate increases. The dashed-dot line in Fig. 3 indicates the buckling coefficient of one panel of plate 
of which boundaries are simply supported and this value can be assumed to be the upper limit of 
buckling coefficient of an infinite long plate with a longitudinal stiffener. 

In order to verify the ensuing equation, the orthotropic material properties are replaced with 
isotropic ones and the results are plotted with dashed line in Fig. 3. The results obtained coincide 
with the existing ones (Crate and Lo, 1975). 
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Fig. 2 Minimum value of ks at various locations of stiffener 
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Fig. 3 Minimum value of ks with respect to the rigidity ratio yof stiffener and plate (y0=0.5b) 

2.2 Longitudinally stiffened rectangular plate 
Fig. 4 represents the orthotropic rectangular plate with a longitudinal stiffener under in-plane 

shear forces. 

1 
1 
1 

s.s 

En.       U 

1 : : 
yo 

. KX 

S.S s.s L& b 

1 
1 £ 

s 
n 
s 

1 

' 

a 

Fig. 4 Orthotropic rectangular plate with a longitudinal stiffener 
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Since all edges of plate are assumed to be simply supported, the deflection curve for buckled 
shape can be expressed as a double trigonometric sine series as follow: 

v-iT-i ,      .   mm .   nTW 
' = 2SLA™ si«—smir (6) 

In Eq. (6) Am„ is the amplitude of deflection, and as mentioned earlier, the deflection curve of a 
longitudinal stiffener can be found by replacing y with y0. 

Using the same method for the case already mentioned in the previous section, the total 
potential energy of the system must be extremized by the amplitude Am„. Employing the Rayleigh- 
Ritz method, following system of linear homogeneous equations can be derived: 

K n 

2ym4 

~k7 sin nmj0 £ Amr sin rmj0 - £ £ Apq -r-^ 
mnpq 

W^)" (7) 

where, rj,, is the relative stiffener location (rj0=y/b) and m ±p and n ± q are odd numbers. 
Each of the equations represented by Eqs. (7) is associated with a specific pair of values of m 

and n. Since m ± p and n ± q are both odd, m±n,m±r, and p ± q are odd or even at the same time. 
Each of the homogeneous linear equations can therefore involve only the coefficient A, for which i 
±j is either even or odd [6, 7]. 

In this paper, the set of Eqs. (7) is divided into two independent equations, which can be solved 
separately, one group consisting of equations i+j is odd and the other group consisting equations i+j 
is even. Each set of equations is expanded up to ten terms and written in matrix form. Since the 
equations are homogeneous, the determinant of the equations must be vanished to get the solution 
other than the trivial one. By expanding the determinant one can obtain the characteristic equation 
which is a function of ks, flexural rigidity ratio y, and plate aspect ratio tj> (^=a/b). 

Using ensuing equation, the shear buckling coefficient of longitudinally stiffened rectangular plate 
ks with respect to the plate aspect ratio is calculated for each flexural rigidity ratio as shown in Fig. 5. 
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5 The buckling coefficient of longitudinally stiffened plate under pure shear 
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3. DISCUSSION AND CONCLUSION 

The effect of a longitudinal stiffener on the elastic shear buckling of orthotropic web plate was 
investigated. Using the ensuing equation, the graphical forms of results were suggested. 

When the stiffener was located at the middle of plate, the largest shear buckling coefficient of 
plate was obtained. A longitudinal stiffener serves to increase the shear buckling strength of plate 
and the greater the rigidity of the stiffener the greater will be this increase, until the point where the 
stiffener remains straight and only the panels deflect. Thus, the upper limit of shear buckling 
coefficient of longitudinally stiffened plate can be assumed to be the buckling coefficient for one 
panel of the plate for which boundaries are simply supported (dashed-dot line in Fig.3). This is not 
strictly true since each panel tends to stiffen the adjacent one, but gives conservative value. 

In this paper, we discussed the elastic buckling behavior of orthotropic web plate with a 
longitudinal stiffener under in-plane shear forces. 

In general, the web of flexural member resists shear and bending forces simultaneously. 
Therefore, it is necessary to investigate the buckling of longitudinally stiffened web plate under 
shear and bending forces. 
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ABSTRACT 

This paper deals with a row of equally spaced equal elliptical notches and edge cracks in a 

semi-infinite plate subjected to tension. Based on the concepts of the body force method, the notch 

and crack problems are formulated as a system of singular integral equations with a Cauchy-type 

and a hypersingular kernel, respectively, where the densities of body forces distributed in the x- and 

y-directions of semi-infinite plate are unknown functions. In order to satisfy the boundary 

conditions along the notches, eight kinds of fundamental density functions introduced in our 

previous paper are used. Then the body forces densities are approximated by a linear combination 

of the fundamental density functions and polynomials. In the analysis, the shape and position of 

notches are varied systematically; then, the magnitude and position of the maximum stress are 

examined. For any fixed shape and size of notches and cracks, the maximum stress is shown to be 

linear with the reciprocal of the number of notches. 

1.   Introduction 

A lot of useful results, which have been obtained by applying suitable numerical methods of 

analysis, are available in 2-D stress concentration. However, several fundamental and important 

problems are still unsettled because of the difficulty of analysis. As an example, with regard to 

periodic elliptical holes, the maximum stress for arbitrary number of hole was recently given by 

Isida and Igawa [1] although the stress at the central hole in an infinite number of holes has been 

treated in several previous researches [2-4]. In a similar way, the interaction of a row of semi- 

elliptical notches in a semi-infinite plate under tension has been treated by Nisitani using the body 
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force method; then the stress at the central notch in an infinite number of notches has been given in 

tables [4]. However, no one has calculated the maximum stress in an arbitrary number of notches in 

a semi-infinite plate. In these problems, the interaction effect reduces the magnitude of stress 

concentration factor (SCF) compared to the single notch. Then, maximum stress appears at slightly 

outside of the notch-root of the outermost notch. To obtain the maximum stress accurately, 

therefore, it is necessary to calculate the stress distributions along the boundary. 

In this paper, the interaction of an arbitrary number of elliptical notches and edge cracks in a 

semi-infinite plate is analyzed by using the singular integral equations based on the body force 

method [5-7]. In the numerical solution, the unknown functions are approximated by fundamental 

density functions and polynomials. Then, the magnitude and position of the maximum stress are 

examined, when the shape, position and number of notches are changed systematically. Also, the 

stress concentration factor of an infinite number of notches or cracks is extrapolated in terms of a 

linear relationship between the maximum stress and the reciprocal of the number of them. 

2.   Numerical Solution for a Row of Semi-Elliptical Notches 

Consider a semi-infinite plate under uniform tension having a row of semi-elliptical notches 

as shown in Fig. 1. The problem is formulated in terms of singular integral equations by using a 

Green's functions, that is the stress field at an arbitrary point (x,y) when a point force act on another 
point (£,r|) in a semi-infinite plate [8, 9]. The formation is simply based on the principle of 

superposition. The integral equation is expressed by (1), where the body force densities distributed 
along the prospective boundaries in the x-, y-directions are to be unknown functions. Here, <j)k is the 

angle that specifies the points where the body force is distributed. 

-<i/2){p;(e1.)cos0/o+p;(eI.)sin0(O}+5;rr^(0t,e,)p;(^)& 

+ij"C(fc.e,)p;(&)* = -a; sin2 ei0 

-(l/2){p;(0i)sine/o+p;(0i)cos0jO} + XrC(*t.Öi)p;(0t)& 
k=\ 
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Fig. 1 A row of semi-elliptical notches. 
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9i0 is an angle between the x-axis and the normal direction at the point (x,y) on the ellipse. The 

notation means the summation of integrating the body force density on the prospective boundary of 

the semi-elliptical notches. 
Equation (1) are virtually the boundary conditions at the i-th imaginary boundary. The first 

terms of (1) represent the stress due to the body force distributed on the 0 boundary. The Q 

boundary means the imaginary boundary composed of the internal points that are infinitesimally 

apart from the initial boundary [8]. Equations (1) include the singular terms having the singularity 
of the form l/sin{(0r(])k)/2} when i=k [9]. In the case G^ (i=k), the integration should be 

interpreted as the meaning of Cauchy's principle values. The unknown functions in eq. (1) px(0k), 

p'y(0k) are defined by the following equations. 

dFB .„,    dFn 
PM)-^ t P,<*) = -^ (2) 

where dF^, dFn are the components of the resultant of the body force in the x-, y-directions, 

respectively, both acting on the infinitesimal arc length ds. 
To solve eq. (1) is to determine the body force densitiesP*(0*)> Py(0k) in the region of 0< (|)k 

<K. Here, consider auxiliary functions P*xMk\ P*xi(0k)> P*yi(0k)> P*yi(0k) are defined by eqs. (3), 

(4) instead of densitiesp*(^), p*y(0k) • 

p.;i(&)={p;(<y+p>-&)}/2, P.:2(&)={P;(&)-P>-&)}/2 (3) 
p;.(<u={p;(0*)+p>-&)}/2, p;2ow={p;(0t)-p>-&)}/2 (4) 

These new functions Px\(0k) ~ Pyi(0k) must satisfy eqs. (5), (6) because of the definition (3), (4). 

p'Jfa) = Pli(n-</>*), Pliifa^-pliin-fa) (5) 

Pyl (<Pk ) = P'yl («-&),    P*yl (& ) = ~PU fr ~ 0k ) (6) 

It should be noted that determining auxiliary functions p*xl(0k) ~ P*yi(0k) in the region of 0«|)k<7r/2 

is equivalent to determining original unknown densities p'x(0k), p"y(0k) in the region of 0«t>k<7i. In 

other words, if the auxiliary functionsp'jC^) ~ p"y2(0k)
are given in the region of 0<([)k<7c/2, original 

unknown functions Px(0k)<Py(0k) are expressed in the region of 0<(j)k<7T using eqs. (7), (8). 

Px(&) = PUi(0*) + Prf(&) ,   Px(«-&) = Pxi(&)-Prf(&) (7) 

p"y(0k) = P'yl(0k) + P'yl(0k)    '      Py^-<Pk) = p"yMk)-p"yl^>k) (8) 

The fundamental density functions for the body forces in the x-, and y-directions are defined 

by following expression [5, 6, 10]: 

w*i(0k) = nx(0k:)I cos</>k ^ wxl(<j)k) = nx(<j)k) ^ 
w

yi (0k) = n, (<Pk \ w
y2 (0k) = ", (0k)cos 0k (10) 
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Using eqs. (9), (10), original body force densities are expressed as shown in eqs (11), (12). 

pl(fa) = PAfa)™Afa) + P,l(fa)W
Xl(fa) (11) 

Pi (fa) = Pyl (fa ) W,l (fa ) + Py2 (fa )W,2 W* ) (12) 

where p^OW, pX3 (<W> Py2 (<l>k)> Py4 OW are unknown functions, which have been called weight 

functions. Then all p^OK), px3 (W, Py2 (<k), Py4 (<M must satisfy eq. (13). 

f((|)k)=f(rt-(t)k)                         f(<W : px,(<t>k). px3 («W, Py2 (<W, Py4 (<W (13) 

Here all unknown weight functions can be approximated as shown in eqs (14)" - (16) because all of 

these must satisfy eq. (13). 

Mil                                                Mil 

PAfa)=YjaJn(fa),   PAfa)=^bjn(fa) 
»1=1                                                        n=\ (14) 

Mil                                                Mil 

Py1(fa)=JJCj„(fa)>    P,2(0*)=X4AW*> 
n=\                                                      n=\ 

(15) 

f,(^) = cos{2(ii-l)^} (16) 

Where M is the number of the collocation points for each semi-elliptical notch in the range 0<6<7t. 

Using the approximation method mentioned above, we obtain the system of linear equations for 

determining the coefficients a„, bn, c„, d„. Then, the magnitude and position of the maximum stress 

are calculated, when the shape, position and number of notches are changed systematically. 

Numerical solution for a row of edge cracks when a/b=0 in Fig. 1 is omitted. This problem is 

reduced to the hypersingular integral equation [7]. 
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0.7 n ' l l   l    l L 
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5       4 

Fig.2 Relationship between Smax and 1/N when a/b=l in Fig. 1. 
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3.   Numerical Results and Discussion 

Figure 2 shows the relationship between Smax and 1/N when a/b=l, c~ = lwith a/d=0.1, 0.2, 

0.3, 0.4, and Fig. 3 shows the one when with a/bH).^ = * with b/d=0.1, 0.2, 0.3, 0.4. The values of 

Smax shown in Fig. 2, 3 mean the maximum values of Sjmax that occur at the outermost notches and 
cracks. In Fig. 2, Sjmax=C7jmax/o0 is the dimensionless factor, crjmax denotes the maximum stress at each 

notch and o0 denotes the maximum stress of a single semi-circular notch. In Fig. 3, Sjmax defined by 

Sjmax=Fi/ F j | N=1, where F j | N_, denotes the stress intensity factor of a single edge crack. For 

elliptical holes [1] and edge cracks [11], Isida et al. have found the relationship between Smax and 

1/N. The present results for a row of semi-elliptical notches also indicate that the values of Smax are 

nearly proportional to 1/N. 

1.0 

0.9 

0.8 

0.7 
1 1 1 1 1 1 1 
L2 8 5 4 3 2 N 

Fig. 3 Relationship between Smax and 1/N when a/b=0 in Fig. 1. 

Table 1 Maximum stress at the outermost notch and crack in a row of semi-elliptical notches 
or edge cracks shown in Fig. 1. (Number of notch or crack N= oo) 

p/b=(a/b)2 b/a 
°o(*--F,lNJ ^max = ^max^^0' F'> F, |W=1 

b/d=0.0 b/d=0.0 b/d=0.1 b/d=0.2 b/d=0.3 b/d=0.4 b/d=0.5 

0.00 oo 1.1215* 1.0000 0.9620 0.8841 0.8137 0.7631 0.7283 

0.20 =2.24 5.7353 1.0000 0.9596 0.8817 0.8190 0.7775 0.7503 

0.25 2.00 5.2202 1.0000 0.9592 0.8823 0.8181 0.7789 0.7525 

0.40 = 1.58 4.3120 1.0000 0.9579 0.8793 0.8200 0.7825 0.7568 

0.60 %1.29 3.6867 1.0000 0.9571 0.8776 0.8201 0.7855 0.7620 

0.80 = 1.12 3.3166 1.0000 0.9567 0.8762 0.8214 0.7893 0.7667 

1.00 1.00 3.0653 1.0000 0.9549 0.8740 0.8229 0.795 0.771 
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Using relationship mentioned above, Table 1 shows the factor Smax when N^>°o at the 

outermost notches and cracks (p/b=0) with varying the geometrical parameters (a/b)2= p/b and b/d. 

4.   Conclusions 

In this paper, the interaction for semi-elliptical notches and cracks in a semi-infinite plate is 

analyzed by using the singular integral equations based on the body force method. The conclusion 

are summarized as follows: 

1. Numerical solutions of the singular integral equations were considered. To satisfy the 

boundary condition along the notches, new fundamental density functions proposed in our previous 

paper were applied. Then the unknown functions are approximated by the products of the 

fundamental density functions and polynomials. 

2. In the problems of semi-elliptical notches or edge cracks, the maximum values of stress or 

stress intensity factor occur at the outermost notches or cracks. Except outermost notches the 

magnitude of stress at each notch is almost equal and smaller than that of outermost notch. In a row 

of notches and cracks, the interaction effect is mainly controlled by the distance, almost 

independent of the shape and the number except for the case of small number of notches or cracks. 

3. For a row of semi-elliptical notches, the maximum stress is found to be nearly proportional to 

the reciprocal of the number of notches. By using those relationships, the extreme values of 
maximum stress are also estimated and tabulated when the number of notches N-^co. 
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ABSTRACT 

Thermal stresses at ceramic/metal interfaces in ceramic-metal joints are analyzed with emphases 
on assessing residual stresses produced and retained in the joints during joining processes of 

ceramics with metals, and evaluating their redistributions under applied thermal cycles. A thermo- 
elastic plastic finite element method is adopted to compute various physical quantities associated 

with the thermal processes. The computational results demonstrate that the residual stresses on the 

ceramic side in the metal-ceramic joints, generally, increase with increasing peak temperatures in 

the thermal cycles. Also, the higher the peak temperatures are in the thermal cycles, the higher 
values are obtained for intensities (Q) and coefficients (A) of stress singularity near the end point 

along the interface on the ceramic side. 

1. INTRODUCTION 

Joining of ceramics with metals is usually accomplished at elevated temperatures where one of 
the two member materials could remain solid. Upon cooling after completion of joining the two 
materials residual thermal stresses would be inevitably set up in the ceramic-metal joints. This is 
largely due to mismatches between thermal expansion coefficients of the two member materials. 
The residual stresses are known to have strong effects on strengths of ceramic-metal joints. 
Therefore, their distributions and levels are extensively investigated in many cases and relatively 
well understood. However, the stress levels can not remain the same when the joints are used as 
parts of such structures as gas turbines and heat exchangers because of repeated thermal cyclic 
loadings applied to the joints. The applied thermal cycles cause redistributions of the residual 
stresses, but studies on the redistributions of stresses were scanty and their scope has been very 
limited. 

In this investigation a thermo-elastic-plastic analysis is conducted on SiaN^SUS 304 joints with 
Finite Element Method. Single thermal cycle is applied to Si3N4/SUS 304 joints with its peak 
temperature of the cycle varying from 100~500°C. A typical thermal cycle is a thermal path that 
starts from room temperature, reaching peak temperature and returns back to room temperature. 
Based on the computational results effects of the thermal cycles and characteristics of the stress 
redistributions are fully discussed. Also, an elastic-plastic aspect of copper interlayer as well as 
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temperature dependence of yield strength are taken into account in further analyses. 

2. MODELLING AND ANALYSIS 

Initial residual stress distributions induced in the joining processes are, first, analyzed in light of 
a thermo-elastic-plastic theory. In the second step single thermal cycle is applied to the joints which 
already have residual stresses that are formed in the joining processes. The peak temperatures in the 
thermal cycle are varied from 125°C, 225°C, 325°C to 425°C. 

Cu 

'SUS 304 

I 
- 20mm -» 

Si3N4 

.k. 
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Calculation area 

3mm 
i. 

9 
mm 

-> 1.5mm SUS 304 

-10mm ■ 

SislVU 

«-10mm ■ 
-=», 

0.5mm 

Fig. 1. Configuration of specimen and area for analysis 

The dimensions and configurations of specimens for the model are shown in Fig. 1. Basically, 
the specimen (joint) is made of three parts. A thin copper layer is placed at the center with the 
ceramic(Si3N4) on one side of the layer and the metal(SUS304) on the other side of the layer. The 
copper layer acts as an interlayer to minimize residual stresses. The marked area in Fig. 1 is selected 
as the region where computational analyses are applied. In the selection of the area, symmetry of 
the specimen is considered and an assumption is made that level of the stress is negligible beyond 
10 mm from the interface. Fig. 2 shows that fine elements are assigned to the region of stress 

concentrations while coarse elements are used 
for  other  areas.   Table   1   shows  material 
properties    at    room    temperature.     The 
temperature dependences of Young's modulus, 
thermal   expansion   coefficients   and   yield 
strengths are presented in Table 2. Poisson's 

ratios and strain hardening coefficients are taken to be independent of temperature, assumed to have 
constant values. For copper at the interlayer, both isotropic and kinematic hardenings are considered 
in the analyses to compare the results from the two hardening mechanisms. 

Table 1. Mechanical properties at room temperature 

SUS 304 Cu SljN< 
MI i |  1  r| || -j—i   

i m yti ' 1          1 

Fig. 2 . Finite Element Mesh 

Si3N4 Cu SUS 304 
E(kgf/mmz) 31.6xl0J 11.2xlOJ 19xlOj 

V 0.27 0.33 0.3 
a 3xl0-°/°C 17.7xlO"6/°C 16.5x10-°/^ 

a y(kgf W) 2 
H(kgf/mmz) 8.5 

Only single thermal cycles are applied to the ceramic/metal joints to avoid complications that 
could arise from multiple thermal cycles. 
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Table 2. Temperature dependence of mechanical properties of materials 

Young's modus(E) 
(kgf/mm2) 

Yield stressf cry) 
(kgf/mm ) 

CTE(a) 
io-6/°c 

Temp. 25°C 275°C 525°C 25°C 275°C 525°C 25°C 275°C 525°C 
Si3N4 31.6x10' 32.1xlOJ 32.7x10' 3.1 3.1 3.1 

Cu 11.2x10' 10.2x10' 9.2x10' 2 1.5 0.7 17.5 19 21 

SUS 304 19x10' 18x10' 17x10' 16 18 19.5 

It is frequently observed that fracture of the joint (Si3N4/SUS 304) is usually initiated at the 
intersecting point where the interface between copper interlayer and SisN4 meets the lower edge of 
the ceramic (Si3N4) part, this point also becomes the origin of the x-y coordinates as shown in Fig. 
1. The frequent initiations of the fracture at the origin are believed to be the consequence of 
concentrations of the residual stresses (<rx) near the origin in the ceramic part. 

3. RESULTS AND DISCUSSIONS 

3.1 Effects of single thermal cycle on residual stress 
Yield strength of copper is dependent on temperatures, but for simplicity the yield strength is 

taken at a constant value, 2 kgf/mm2 and also isotropic hardening behavior is initially assumed. 
Single thermal cycles with peak temperatures at 125°C, 225°C, 325°C, 425°C are applied to the 
joints(specimens) to determine the stresses a x along the edge in the ceramic side. Fig. 3 shows the 
stress distributions of <rx both before and after the thermal cyclic loadings. The results in the figure 
clearly indicate that over-all trend of stress distributions do not deviate noticeably after the thermal 
loadings, but the residual stresses definitely increase near the interface between the copper 
interlayer and the ceramic. This aspect of the results is in a qualitative agreement with the 
experimental results from an X-ray analysis. The maximum residual stresses resulting from the 
applied thermal cycles are plotted with the peak temperatures in Fig. 4. 
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Fig. 3. Redistribution of a x 
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Evidently the maximum residual stresses near the interface increase with the increasing peak 
temperatures of the applied thermal cycles. This can be attributed to the characteristics of elastic- 
plastic behavior of the copper interlayer as well as the strain hardening effects of copper. 
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Fig. 4. Residual stresses and peak temperatures 
of single thermal cycles 

Fig. 5. Equivalent stresses and strains of 
copper layer with an application of single 
thermal cycle with peak temperature at 325°C 

The Equivalent stresses are plotted against equivalent strains in Fig. 5 for the results from the 
single thermal cycle loading with its peak temperature at 325°C. During the initial stage of joining 
process and subsequent cooling, copper recovering its mechanical strength around 525°C, begins to 
deform elastically, but turns to plastic deformation around 515°C (A) where copper has yield 
strength of 2kgf/mm in tension. With further decrease in temperature plastic deformation develops 
more until room temperature 25°C (B) is reached. At point B where joining process is completed, 
the final residual stresses retained in the joints are around 2.8kgf/mm2. As temperature rises from 
room temperature with the application of single thermal cycle, the level of residual stresses drops 
rapidly, even reversing its sense in opposite direction near 38°C. Equivalent stresses always take 
positive values by definition, but in Fig. 5, negative values are taken to indicate the reverse of the 
direction at points C (38°C), D (47°C) and E (325°C). In this computation isotropic hardening is 
assumed for copper and thus the negative stress of -2.8kgf/mm2 corresponds to the yield strength 
of copper in compression. With further increase in temperature, extent of plastic deformation 
diminishes and during cooling period after the peak temperature (325°C) the equivalent stress 
reverts again to opposite direction, exceeding the yield strength of copper in tension (3.1kgf/mm2) 
around 300°C (F). When the cooling process is completed at the end of the single thermal cycle, the 
final residual stress becomes 3.3kgf/mm2(G) which is 15~20% higher than the equivalent stress 
2.8kgf/mm2(B) before the single thermal cycle is applied. 

Strains of the copper interlayer (£-p) can be related to temperature differences (AT) as 
following: 

fP=(2/3)' '(ccs-ac) ATW/(2t) 

where     s p: equivalent plastic strain 
as: thermal expansion coefficient of SUS 304 (1/K) 
ac: thermal expansion coefficient of S13N4 (1/K) 
AT : temperature difference (K) 
W : width of specimen (mm) 
t: thickness of copper interlayer (mm) 
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From the above relation residual stresses in the ceramic in the joints are seen to increase in 
proportion with the increase in peak temperatures of single thermal cycles. 

3.2 Elastic-plastic singularity of thermal residual stresses 
Residual stresses near the interface between the copper interlayer and the ceramic exhibit stress 

singularity. The lower end point or the point of intersection(origin of x-y coordinate in Fig. 1) is the 
point of stress singularity. The stress distribution (<TX) along the x direction in the ceramic can be 
expressed as 

Where    a x: residual stress along x direction (kgf/mm2) 
x : distance from the origin (mm) 

Q : stress singularity intensity 
A  : stress singularity coefficient 

In the case of elastic bodies intensity (Q) and coefficient (A) of stress singularity depend on 
elastic constants, Poission's ratios and thermal expansion coefficients of the two joining materials. 
Also, when copper at the interlayer yields elastic-plastic behavior of the interlayer should be taken 
into account. The results for intensity (Q) and coefficient of stress singularity (A) are listed in Table 
3. It is seen that the thermal cycles noticeably increase magnitudes of Q and A, but in proportion 
with the peak temperatures of the thermal cycles. 

Table 3. Intensity Q and Coefficient X of stress singularity 

Temp(°C) Q X 
None 22.8 0.27 

125 23.7 0.27 
225 24.2 0.28 
325 25.2 0.30 
425 26 0.31 

3.3 Effect of temperature dependent yield strength of copper interlayer 
In the analysis up to this point the yield strength of copper at the interlayer is assumed to be 

constant for simplicity of the model. The actual yield strengths of copper are shown in Table 2 as a 
function of temperature, and incorporated in the subsequent analysis. 

The results show that the residual stresses in the joints at room temperature after the applications 
of thermal cycles have almost the same values as those at room temperature before the thermal 
cycles are applied. This seems to indicate that the residual stresses at room temperature are mainly 
determined by the yield strength at room temperature, but not influenced by the temperature 
dependence of the yield strengths. 

3.4 Effect of hardening mechanisms of copper 
In the stress analysis, so far, all the applied thermal cycles are limited only to single thermal 

cycles, meaning that a predetermined specific thermal cycle is applied just only once, not many 
times. Also, copper is assumed to follow the isotropic hardening mechanism. From the results with 
the two assumptions, it may be conceivable that the level of residual stresses could increase 
continuously with increasing number of thermal cycles (multiple thermal cycle). This seemingly 
logical, but unrealistic prediction may in fact suggest that the assumed isotropic hardening of 
copper may not be an adequate mechanism. 
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In an attempt to provide more realistic prediction in case of multiple thermal loadings, copper is 
assumed to follow kinematic hardening mechanism for the next computational analysis. Equivalent 
stresses and strains are computed for the single thermal cycle with its peak temperature at 525°C. 
The results show that the equivalent stresses and strains of copper, before and after the application 
of the single thermal cycle are almost identical. The maximum equivalent stress (6.5 kgf/mm2) near 
the interface after the single thermal cycle is indeed very close to the maximum value before the 
single thermal (6.6 kgf/mm2) cycle. This may be interpreted as an indication that the level of 
stresses may not increase continuously even if thermal cycles are applied repeatedly. Consequently 
the kinematic hardening may be considered to be operative at least, at certain stage of the copper 
hardening during cooling at the end of joining processes. 

4. CONCLUSIONS 

A finite element analysis is conducted on Si3N4/SUS 304 joints with a copper interlayer. The 
SUS 304 is an austenite stainless steel. Single thermal cycles are applied to joints. Elastic-plastic 
behavior of copper is incorporated in the analysis. 

The analysis includes both estimations of final residual stresses retained at the end of joining 
processes as well as redistributions of the residual stresses resulting from applied single thermal 
cycles. The following statements can be drawn from the analysis. 

(1) The over-all trend of distributions of residual stresses after the thermal cycles are not very 
different from those before the thermal cycles are applied, but residual stresses near the 
singular point increase with the increasing peak temperatures in the thermal cycles. 

(2) The intensity (Q) and coefficient (Ä) of stress singularity increase in proportion with the peak 
temperatures in the thermal cycles. 

(3) The distributions of residual stresses under the thermal cycles are affected by elastic-plastic 
characteristics of the copper interlayer, especially by the yield strength of copper at room 
temperature. 

(4) Kinematic hardening mechanism may be operative for the deformation of copper in the 
cooling process. 
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ABSTRACT 

Progressive failure analysis was conducted in the present study for the cross-ply and quasi- 
isotropic laminates subjected to axial extension. Stresses and strains are calculated by the 3-d finite 
element method based on the generalized layerwise plate theory (GLPT) in order to consider the 
local effect near the free edges. The types and size of damage in composite laminates are predicted 
in the failure analysis that consist of a set of failure criteria and property degradation models for 
each mode of failure. In case of matrix cracking, the macroscopic stiffness reduction model based 
on the shear-lag method is introduced to the finite element method in order to consider nonlinear 
reduction of stiffness at each strain level. Mesh refinement is conducted both in-plane and through 
the thickness direction in order to predict the failure load and the damage accumulation accurately. 
The failure mechanism and ultimate failure loads of the cross-ply and quasi-isotropic laminates for 
different stacking sequences with the same thickness are investigated. 

INTRODUCTION 

The high strength and stiffness to weight of advanced composite materials often makes these 
materials attractive candidates for weight sensitive structures, especially aircraft structures. The 
damage of laminated composite is characterized by matrix cracking, fiber breakage and 
delamination. The types and extents of damage significantly affect the strength and performance of 
composite laminates. In order to optimally design and accurately assess the damage tolerance of the 
composite structures, the information on the internal damage as a function of applied load as 
critically important as the strength to designers. For investigating the post failure behavior from the 
initiation of damage to the ultimate failure, progressive failure algorithm is developed in the present 
study such that the damaged material with many micro cracks is replaced with an equivalent 
material of degraded properties. Based on this model, a computer code is developed. 

Since computing cost is an important factor, most researchers[l-6] used two-dimensional finite 
element techniques to analyze the progressive failure. However stress singularities may occur at the 
interface between two layers of different ply orientation on the free edges. High magnitudes of 
stresses at the free edge of the ply interface are responsible for failure initiation at those locations. 
Therefore the state of stress near the edge is important and 3-d stresses are required. In the studies 
of progressive failure analysis of composite laminates using 3-d stress field[7,8], they showed the 
exact stress field but used the constant or assumed stiffness reduction method in the failure 
evaluation. 
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In the present study, stresses and strains are calculated by the 3-d finite element method based on 
the generalized layerwise plate theory(GLPT) in order to consider the local effect near the free edge. 
The types and size of damage in composite laminates are predicted in the failure analysis consist of 
a set of failure criteria and property degradation models for each mode of failure. In case of matrix 
cracking, the macroscopic stiffness reduction model based on the shear-lag method[5] is introduced 
to the finite element method in order to consider nonlinear progressive reduction of stiffness at each 
strain levels. In order to predict the failure load and the damage accumulation accurately the refined 
finite element model with 3-d finite element method is used. In the present formulation, a linear 
elastic behavior is assumed and a damaged layer in an element is substituted by a degraded 
homogeneous layer. The effect of damage accumulation is accounted for by degrading the stiffness 
properties of failed element layers in the equilibrium iterations. 

2. FINITE ELEMENT METHOD 

2.1.   Finite Element Formulation 
In the GLPT a piecewise continuous displacement field through the thickness[9] is assumed and 

hence has the ability to capture the interlaminar stress fields near the free edges and supports of 
composites laminates more accurately. Layerwise expansion is used for all three displacement 
components. 

In GLPT the displacement field is expanded as : 

u(x,y,z) = J]U,(x,y)<p' (z) 
.1=1 

N 

v(x,y,z) = Y,V,(x,y)0J(z) (1) 

N 

w(x,y,z) = Y,fvAx,y)0'(z) 

where u,v,w are displacement component along x, y, z directions, respectively, of a material 
point initially located at (x, y, z) in the undeformed laminate, and the reference plane of the plate 
coincides with xy-plane. The laminate thickness dimension is subdivided into a series of N one 
dimensional finite elements (i.e. thickness subdivisions) whose nodes correspond to plane of 
constant z in the undeformed laminates. The 1-D finite element mesh contains a total of N nodes 
distributed through the thickness at function z,(J = \,2,...,N). The function 0'(z) (J = 1,2,...,N) 
are the one dimensional Lagrangian interpolation functions associated with the series of n nodes 
distributed through the thickness of the laminates. The function U,,¥,,!¥, represent the 

displacement components of all points located on the j-th plane (defined by z = Zj) in the 
undeformed laminates. 

The finite element model corresponding to the displacement field of equation (5) is developed by 
applying the principle of virtual displacements to a representative finite element of the plate: 

[friiell)dV=lviöul)dS (2) 

In equation (2),  ov. are the components of the stress tensor,  stj are the components of the strain 

tensor and  T, are the components of surface traction vector. 
The force resultants are given by 
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k=\ L "" 

k=\ 

N-\ 

(3) 

*i,QJ,Mi-I, 
*=i 

Finite element equation can be obtained as 

f^'K.Ov.O d<j>J 

dz 
dz 

Ku = F 

where stiffness matrix K , displacement vector u and external force    F are as belows: 

(4) 

where, 

K=l, 

HTQ"H   HTQ12 H    ] HTQ'3 H HTQINH 
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2.2. Solving Scheme 
At «th load step, stresses are expressed in terms of incremental form 

"o-=""'cr + Acr (8) 
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Then, finite element equilibrium equation can be obtained in a similar manner 

KA"u(/)="F-"P('-" (9) 

where, superscript (i) is the number of iteration, and superscript n is the load step . 

3. FAILURE EVALUATION 

3.1 Failure Criteria 
Failure of composite laminates is evaluated at each laminar in laminates by failure criteria in 

every load step. In order to distinguish the mode of failure, Hashin's failure criteria is used. 

3.2 Stiffness Reduction Models 
If the failure occurs at the laminar in the laminates, the stiffness of that laminar are reduced 

gradually. In present works, the values of stiffness matrix C,y are reduced gradually according to 

the macroscopic failure models as a function of strain values. Fiber bundle failure theory for fiber 
failure and shear-lag analysis for matrix cracking is used as macroscopic failure models. It is 
assumed that the matrix cracks in the shear-lag model are distributed with the uniform spacing 21 
as shown in Fig. 1. 

Fig. 1    Shear-lag modeling of matrix cracked laminate subjected to tensile and in-plane shear 
loading. 

4. RESULTS AND DISCUSSION 

Progressive failure analysis is conducted for quasi-isotropic laminates for different stacking 
sequences with the same thickness. The geometry is 100 mm x 20 mm X 0.6 mm. Using 
symmetry boundary conditions, only quadrant region is modeled. Mesh refinements are conducted 
both in-plane and through the thickness direction as shown in Fig. 2. The material properties of 
HFG-CU125NS graphite/epoxy are used as E,=130.0 GPa, E2=E3=10.0 GPa, GI2=GI}= 4.85 GPa, 
G23=3.62GPa, ^,2=ul3=0.31, U23=0.52, XT=1933 MPa, Xc=1051 MPa, Yr=51 MPa, Yc=141 MPa, 
Q=74 MPa,   R=84 MPa,   S=61  MPa.   4  types  of the  stacking  sequences  are  selected  as 
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[02/902/±452]s, [02/±452/902]s, [02/452/902/-452]sand [±452/02/902]s. 

(a) In-plane refined mesh near free-edge (b) Refined subdivision through the thickness 

Fig. 2 Mesh refinement both in-plane and through the thickness directions of quasi-isotropic 

laminates. 

The distribution of stress along the width in the quasi-isotropic laminates subjected to 0.1% 
tensile strain is shown in Figure 3. From Figure 3, quasi-isotropic laminates are classified into two 
types. In case that the 90 degree layer is located at the mid-plane such as [02/ ± 452/902]s laminates, 
the magnitude of c2 is higher at the free edges compared with that of [02/902/ ± 452]s. 

In case of the cross-ply laminates, matrix failure loads in [0/905]s and [905/0]s laminates at the 90 
layer show the almost same values because the effect on failure due to interlaminar stresses are 
negligible. But the failure initiation load of the quasi-isotropic laminates at the free edges is very 
different according to the stacking sequences. This phenomenon is mainly due to the high 
magnitude and the different distribution of stress through the thickness. Matrix failure load in 
[02/±452/90,]s laminate at the free edges is about 89% (lOOMPa) lower than that of [02/90,/±452]s 

laminate. In order to consider the free edge effect more effectively, mesh refinement through the 
thickness direction is conducted in combined with 2-d in-plane direction as shown in Figure 2. In 
that case, the failure loads of [02/±452/902]s laminate according to the number of subdivisions are 
compared in Figure 4. Delamination onset load of the refined 12 subdivisions through the thickness 
is 23% lower than that of 4 subdivisions through the thickness. And the fiber failure load at the free 
edges in the refined 12 subdivisions is 15% lower than that of 4 subdivisions through the thickness. 

5. CONCLUSION 

Failure analysis is conducted for cross-ply and quasi-isotropic laminates. The damages are 
estimated more progressively when use 3-d stress field and nonlinear stiffness reduction method. 
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Fig. 3      Distribution of stresses, a,, along the width in quasi-isotropic laminates for various 
stacking sequences. 
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Fig. 4    Failure loads of [02/+452/902]s laminate according to the number of subdivisions through 
the thickness. 
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ABSTRACT 

The purpose of this paper is to investigate the influence of plastic deformation on the mixed 
mode fracture toughness of an interface crack. Based on the internal variable theory of 
thermodynamics, a continuum interface constitutive relation between interface traction and 
interface separation has been developed. To simulate the crack propagation of the interface crack, 
this cohesive force model is applied to FEM analyses of the interface crack between two elastic- 
plastic materials. The results show that plastic deformation affects the interface separation ahead of 
the interface crack tip. This effect yields the enhancement of the mixed mode fracture toughness. 
Therefore, in bimaterial systems, the fracture toughness varies with the mixed mode condition at 
the crack tip. The tendency of the fracture toughness curve is roughly consistent with the 
experimentally measured mixed mode fracture toughness. 

1. INTRODUCTION 

Recently, bimaterial systems and composite materials are widely used. Typical examples 
include fiber reinforced materials, adhesive joints, microelectronic devices and so on. The 
performance of these systems strongly depends on the strength of weak interfaces. Therefore, it is 
important to evaluate the interface strength precisely. A lot of experimental researches have been 
performed. Xu and Tippur[l], Ikeda et al.[2] and Liechti and Chai[3] measured the fracture 
toughness of interface cracks covered wide range of mode mixity. They reported that the fracture 
toughness increased with the loading phase angle and had strongly dependence of the mode mixity. 
However, the toughning mechanism of the interface remains unclear. 

The analyses on the elastic-plastic interface crack problems shown by Shih and Asaro[4] and 
Zywicz and Parks[5] gave insight into the possible explanations for the strong mixed mode effect 
due to plastic deformation. Tvergaard and Hutchinson[6] have shown numerically the effect of 
plastic deformation on the interface fracture toughness. They introduced a simple traction- 
separation law to model the fracture process ahead of the crack tip. Swadener and Liechti[7] have 
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classified the toughning mechanism of the interfaces and the plastic dissipation in adhesive layers 
can be main contributor to the variation of fracture toughness with mode mixity. However, plastic 
deformation can be occurred in the adherent materials and this effect can also lead to the 
enhancement of the fracture toughness. 

The intent of this paper is to investigate the influence of the plastic deformation in the substrates 
on the interface fracture toughness under the mixed mode condition. To simulate a crack 
propagation on an interface, it is necessary to decide the fracture criterion of the interface. Ma and 
Kishimoto[8] proposed the interface model based on the internal variable theory of 
thermodynamics. The continuum constitutive relation between interface traction and interface 
separation has been developed. This constitutive model is embedded along the crack tip of the 
interface between elastic-plastic materials. The crack propagation is simulated and the influence of 
the plastic deformation in the substrates is considered. 

2. INTERFACE CONSTITUTIVE MODEL 

The mechanical properties of an interface zone are complicated, as shown in Fig.l(a). The 
interface zone represents the region that includes various microdefects and exhibits inhomogeneity. 
The mechanical response of interface zone can be equivalently modeled by distributed springs as in 
Fig.l(b). These springs are assumed to be able to bear loads in any direction. Based on the damage 
mechanics, Ma and Kishimoto[8] derived the interface constitutive relation between traction force 
and traction separation. This relation can be expressed as follows, 

^=^°(1-^(A-A0) + (A2-^)K 

^-*,0a-A(A-<Ao) + (A2-^))H, (1) 

^-^°a-A(A-^)+(A2-^)K 

where K°,K? and K°b are the initial values of the interface rigidities and A is an equivalent 
interface separation which is defined by, 

A = V3 CM2 + C,uf + CJul 

(2) 

where cn,c, and ch are introduced to characterize the interface anisotoropic state. In this paper, the 
deformation of the interface is assumed to be isotropic. In this case, cn,c, and ch will be unity and 
the interface constitutive relation can be simplified as follows, 

/>„=^0(l-y3(A-A0) + (A2-A2)K 

^=tf0(l-/J(A-A0) + (A2-A2))M, 
(3) 

g    Dc+K-K (4) 
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Crack Tip 

Interface 

Fracture process zone 

Interface 

Interface model 

(a) (b) 

Fig.l. (a) A schematic representation of an interface crack, 
(b) the equivalent spring model for the interface crack. 

where Dc is the critical interface damage, At.  is the critical interface separation and \ is the 
interface damage threshold. 

3. NUMERICAL SIMULATION 

3.1. Finite Element Method 
The crack propagation of an interface crack is simulated by Finite Element Method for several 

material pairs under various mixed mode loadings. Fig.2 shows the simulation model. Young's 
modulus of each material is £, and E2 and Poisson's ratio is v, = v2 = 0.3, respectively. We 
assume that each material obeys the following hardening rule, 

Es =a + a\ — (5) 

where a0 is the yield stresses of the adherent materials and material parameters are assumed to be 
n = 10, a = 0.1. In this paper, the yield stresses of the substrates are same, that is a0 = am = <702. 

Malcrial 1      t _ 

u 

Material 2       <u 
E2. v2 c 

(b) (c) 

Fig.2. (a) Apparatus for mixed mode fracture test, (b) numerical simulation model, 
(c) the property of the interface constitutive model. 
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(L = 2a) 

(b) 

Fig.3. (a) Boundary condition for the analysis of the crack tip region, 
(b) finite element mesh of the crack tip region. 

In this paper, isotropic interface constitutive model is treated. The variation of interface traction 
with interface separation is depicted in Fig.2(c). This model is embedded along the line extending 
ahead of the crack tip. The crack growth initiation can be defined by the interface constitutive 
relation. The ratio of £, and E2 (r= E-JE{) and yield stress (a0/£,) are changed variously and the 
interface fracture toughness is calculated by ./-integral. 

In order to investigate the influence of plastic deformation on the crack tip in detail, the 
calculation model in Fig.3 is also used. In specifying the small-scale yielding problem, the 
asymptotic solution of the interface stress field is imposed. In this analyses, stress intensity factors 
obtained from the calculation results of the previous model(Fig.2(b)) are used in the boundary 
condition. 

3.2. Results and Discussion 
Figure 4 shows the relation between the interface fracture toughness that is characterized by J- 

integral and the loading angles with various yield stresses. In this case, the ratio of Young's 

[xlO4] 2.0 

1.5 

• <T0/£|=0.0025 
A tr0/£,=0.003 
V o-y/£"i=0.006 

. O Elastic Analysis 

r^.    1.0 

0.5, I 
30 60 

Loading Angle 9 [° 

J 
90 

Fig.4. The effect of changing the yield stress on the fracture toughness (T-l). 
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modulus is T= E?]E\=\. Elastic analysis is also depicted in this figure. The result of a0/E1= 0.006 
is almost constant, not depending on the loading angle and is similar with that of elastic analysis. 
On the contrary, in the case of low yield stresses, the fracture toughness varies with the loading 
angles. Misses equivalent stress distribution near the crack tip at 8 = 60° is shown in Fig.5. In the 
case of o0/E1 =0.0025, plastic deformation of the substrates is spread around the crack tip. 
However, in the case of o0 IEX = 0.006, the plastic deformation is confined only near the crack tip. 
Interfacial separations inside the crack tip for a0/E1 = 0.0025 and ojEx = 0.006 are compared in 
Fig.6. Interfacial separation at Jc = 0.3 [J/m2] is shown in Fig.6(a). The effect of plastic 
deformation can be seen in the region less than r/Rb =5xl0~5, Rh is the radius of the outer 
boundary. Interfacial separation at the crack initiation is shown in Fig.6(b). The slopes of these 
curves are same and the condition inside the interface model is almost same. Therefore, the 
enhancement of the fracture toughness in o0/Ei = 0.0025  can be due to the plastic deformation. 

Figure 7 shows the influence of the ratio of Young's modulus on the fracture toughness. In the 
case of cr0/£, = 0.006 (Fig.7(a)), the fracture toughness are not influenced by the loading angle. 
On the contrary, in the case of cr0/E1 = 0.0025 (Fig.7(b)), the fracture toughness depends on the 
loading angle due to plasticity. The effect of changing the ratio of Young's modulus can be seen as 
to be increasing the fracture toughness. Especially, in Fig.7(b), the shape of the fracture toughness 

iff 

ncv 

(b) 

• - :-mwm däSM ^li^lllPllliiSllw 

Fig.5. Misses equivalent stress distribution near the crack tip at the crack initiation, 
(a)cr0 /£, = 0.0025, (b)cr0 /£, = 0.006. 

Z ^ to-1 

irr to 
Distance from the crack tip 

(r/Ab) 

(a) 

10° 10"4 io-; 

Distance from the crack tip 

(b) 

Fig.6. Comparison of the interfacial separation, 
(a)/(. = 0.3[J/m2], (b) at the crack initiation. 
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Fig.7. The effect of changing the ratio of the Young's modulus in bimaterial systems, 
(a)CT0 IE, = 0.006, (b)cr0 /£, = 0.0025. 

curve become asymmetric. That is because the mixed mode condition at the crack tip is not directly 
corresponding to the loading angle. The tendency of these curves are roughly consistent with the 
experimentally measured mixed mode toughness curves[3]. 

4. CONCLUSION 

A continuum interface constitutive relation between interface traction and interface separation is 
applied to FEM analyses for the interface crack between two elastic-plastic materials. The 
propagation of the interface crack is simulated and the effect of the plastic deformation is 
investigated. The results are summarized as following: 

1. Plastic deformation of the substrates affects the interface separation in the region of the interface 
model. This effect yields the enhancement of the fracture toughness. 

2. In bimaterial systems, due to the plastic deformation, the fracture toughness varies with the 
mixed mode condition at the crack tip and this trend is roughly consistent with the experimental 
results. 
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ABSTRACT 

Ironing is drawing of hollow bodies through an ironing ring, with an inner tool (punch) pressing 
against the bottom of workpieces such as cups or cans to reduce the wall thickness of deep-drawn 
cups or cans. This process is currently applied widely in industries requiring more accurate wall 
thickness tolerance and better surface brightness of final products. In this paper, an analytical 
equation incorporating Hill's non-quadratic yield function is proposed to analyze stress states in the 
deformation zone of ironing process, and to compute limit ironing reduction ratios (LIRs) under 
various ironing conditions. The material considered is a tinplate for the production of steel D&I can. 
Forming variables include material anisotropy, friction coefficients and entrance angles of ironing 
die. The computed results are compared with those from both experiments and a finite element 
analysis. 

1. INTRODUCTION 

An ironing process is a kind of plastic forming, in which previously deep-drawn workpieces 
such as cups or cans are pushed by an ironing punch through a stationary ironing die to reduce wall 
thicknesses of cups or cans and increase their heights. This process has been widely used in 
manufacturing cartridges, electronic parts and beverage cans. Among these applications, the most 
important one is for the production of D&I (drawn and ironed) cans. In the D&I canmaking, a coil 
of thin-gauged sheet metal is first blanked into circular disks and simultaneously deep-drawn into 
cylindrical cups, which are then transferred to an ironing press to be redrawn and ironed. A punch 
mounted on the end of ram of the ironing press forces each cup first through the redrawing die and 
then through the ironing dies (usually 3 dies) having successively smaller inner diameters. The total 
reduction ratio of 60 to 70% after the 3 ironing steps is generally obtained in commercial 
canmaking. 

From a viewpoint of economy it is desirable to obtain a large reduction ratio in one step ironing 
because fewer ironing dies would be required. Thus, ironing limits of materials have been a concern 
for the engineers in the field. 
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Earlier studies, which were based on elementary plasticity theories, mainly concentrated on 
computing ironing forces [1,2]. An elastic-plastic finite element analysis attempted by Odell [3] 
drew much attention although effects of material anisotropy were not considered. Shi et al. [4] 
obtained a complete plastic solution on ironing using a two-dimensional axisymmetric shell theory 
incorporated with the Hosford yield criterion, which is generally believed to be suitable to materials 
of low anisotropy (strain ratio) like aluminum. Studies on the ironing limit in canmaking industries 
were focused on evaluating effects of materials and tool factors. Rajagopal [5] and Misonoh [6] 
examined the forming behavior of D&I can under various surface conditions by experimentally 
determining the friction coefficients on the punch side and the die side of the can. 

In this study, a stress analysis on an ironing deformation zone is carried out to determine the 
limit ironing reduction ratio (LIR) without failures of materials under various forming conditions. 
Hill's non-quadratic yield function is combined with the equilibrium equation of the ironing zone in 
order to derive a complete plastic solution for axial stress variations. Material properties entered in 
the computations are those for a tinplate which is a kind of low carbon steel, and is generally used 
in the commercial production of steel D&I can. Factors considered are material anisotropy, friction 
coefficients at the tool-material interfaces and an entrance angle of an ironing die. To compare the 
results from the analytical solutions derived in this work, both the canmaking experiments and the 
finite element analysis using a commercial FE code, ABAQUS are also conducted. 

2. ANALYSIS OF IRONING 

A stress state in an ironing process is shown in Fig. 1. In order to simplify the analysis, the 
following assumptions are made: 1) a material is homogeneous and stresses in the deformation zone 
are constant through the thickness of the material. 2) tangential stresses due to friction are 
proportional to normal pressures. 3) the coefficients of friction do not vary along the length of the 
tool profile. 

r       Ironing die °d 

Punch 

az+daz 

Fig. 1 Stress state in deformation zone of ironing process 

After substituting dl = -dz tan a and neglecting higher order terms while rearranging 
remaining terms in general equilibrium equations, the governing equations along z and r directions 
can be written respectively as 

^ '" -■ (1) dt tan or 
+ 1) + ^ 

tana 

rK + ad(Mj tana -1)}- aet = 0 (2) 
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A combination of the two equations, (1) and (2), yields the differential equation for the axial 

stress <r   as follows: 

da, 
t—- + <rz 

dt /jdtana-l tana     )    tana 
(3) 

The stress az can be obtained by solving equation (3) together with a yield criterion. In this 
study, the widely used Case IV of the nonquadratic anisotropic yield criterion by Hill [7] is chosen 
for its generality and proven capability to model a wide spectrum of sheet materials. Assuming in- 
plane isotropy (normal anisotropy), Hill's criterion becomes 

/zjcTj - a 21   + c|2<r3 - <r, - <J2 (4) 

Introducing the relations  of  h = (1 + 2R)c   and   aM = (c + h)a"   into  equation  (4)  and 
assuming a, )ae )ar, Hill's yield criterion in the ironing process can be expressed as 

(1 + 2R)\az - ae\M + \2ar - az - aef. = 2(1 + R)a, (5) 

where R is anisotropy, aY is a yield strength and M is a yield surface shape factor, which is 
experimentally determined. With the applications of flow rule dsv = dÄ(dF/da0) and plane strain 
condition along the circumferential direction, the following equation can be obtained. 

(l + 2R)]nM-])\a2-al)\ = \2ar 

Substituting equation (6) into equation (5) yields 

(6) 

o"„=o- 2(1 + R)  
(l + 2/?)|l + (l + 2i?)"(M-1)} 

cY — <yz — X\ 

Upon combining equation (5) and equation (7), it follows that 

ar = -„p=*z-fil + 2Rr^+l} = *z-X2 

(7) 

(8) 

By the substitution of equation (7) and equation (8) into the equilibrium equation (3), the 
governing differential equation for the axial stress az is found as 

■ -r i 1 \u _ —  
dt 

• + - 
t r 

where, 
X,= 

2(1 + /?) 
(l + 2/?){l + (l + 2/?),/(M-"} 

ov 

x1=^i+2Ry,iM-x)+i} 

tana 

Y Md+tena 
A, — z 

jud tan a - tan a 

X5=X2(X3+-^-) 
tana 

(9) 

(10) 

The LIR can be determined by numerically solving the differential equation (9) with az = ay. 
A 4th order Runge-Kutta method is applied in the computations. 
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3. FE ANALYSIS AND EXPERIMENT 

3.1. Finite element analysis 
To compare the analytical solution with the finite 

element solution, the commercial code ABAQUS [8] has 
been selected and used to model the ironing process. In 
the simulation the material is modeled as a homogeneous, 
temperature independent and strain rate independent 
elastic-plastic material. According to the experimental 
data from tensile test, a curve for true stresses and 
logarithmic strains of a tinplate is fitted with the power 
function of 

Punch 

Fig. 2 Tool and mesh layout in FEA 

: 0.645(0.00286 + sp)
0A3*  (kN/mm2) (11) 

The material (tinplate) is divided into quadrilateral elements (the CAX4R) in 3 layers as shown 
in Fig. 2. Some interface elements (the IRS21 A) at the material/tool boundary are used to introduce 
the frictional conditions at the boundary. The material is considered to be strained enough to the 
ironing limit when the visible neck or thinning of the material occurs under the conditions of given 
tool and material. 

3.2. Ironing experiment 
An ironing experiment is performed on an ironing press (CMB5000 model) equipped with an 

ironing die of the entrance angle (a) of 7°. In the experiment LIR is regarded to be achieved only 
when all the five tested cans exhibit no fractures in their bodies during one step ironing. Some 
physical properties of the tested tinplate are as follows; thickness (0.245mm), yield strength 
(287MPa), anisotropy (1.1). 

4. RESULTS AND DISCUSSIONS 

Fig. 3 shows the analytical results of the axial stresses for varying degrees of ironing reductions. 
It is observed that the axial stress a2 increases continuously with increasing the ironing reduction. 
According to the analytical solution, the LIR under the conditions given in Fig. 3 almost reaches 
57% at which az I aY becomes unity. The effect of material anisotropy on the LIR is illustrated in 
Fig. 4. As anisotropy of a rolled sheet increases, the LIR decreases linearly. Although a somewhat 
wide range of anisotropy is considered in the analytical solution, it seems that the LIR is not greatly 
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influenced by the material anisotropy. 
Fig. 5 represents effects of entrance angles of the ironing die on the LIRs for different yield 

surface shape factors (M). For all values of M the analytically obtained LIRs show almost the same 
tendency. That is, LIRs increase rapidly with increasing die angles up to about 3 degrees and then 
show a slight decreasing trend. For angles larger than 50 degrees, however, the decrease in LIRs 
becomes more evident. It is observed that the optimum entrance angle of the ironing ring for higher 
values of the LIR is computed to be in the range of 5 to 12 degrees. Regarding the effect of shape 
factor, it is easily seen that the larger the M value is, the higher the LIR is. As mentioned earlier, the 
shape factor should be determined experimentally to reflect the yielding behavior of materials tested. 

Fig. 6 shows how to determine the yield surface shape factor (M) in Hill's non-quadratic yield 
function. The LIRs predicted from the analytical solution of stresses for the different shape factors 
are compared with those from the experiments and the finite element analysis. It can be safely 
concluded that the M value of the tinplate is 2 since the analytical result of M=2, is well within the 
range of the results obtained from the experiments and the finite element analysis. For the 
computations of analytical results, the both friction coefficients on the punch side and on the die 
side are assumed to be same at 0.07 which is taken from Misonoh's experimental data [6] obtained 
from actual canmaking tests with the tinplates. 

The effect of friction coefficients on the punch side (np) is shown in Fig. 7. It is clear that the 
LIRs increase progressively with the increasing np. However, on the contrary, Fig. 8 demonstrates 
that LIRs decrease continuously with the increasing friction coefficients on the die side (nd). From 
these two opposing effects of jup and fid on the LIRs, it is conceivable that an ideal combination 
of high np values and low fid  values could provide even 100% reduction ratio in one step 
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Fig. 9 Variation of axial stress (az) with 
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Fig. 10 Effect of friction coefficients of 
both sides on the LIR 

ironing. The ideal combination may be best expressed in terms of difference (A) between the values 
of np and nd, A=fip-fid, which may be designated as a friction differential. The two opposing 
effects of ftp and /ud can be explained from the state of stresses in Fig. 1. High values of ft 
induce large forces of npap directing toward the die exit, helping the material easily pass the die. 
On the other hand, low values of ftd reduce the frictional resistances of /udad opposing the 
movement of the material toward the die exit. Therefore, in general, the large differences between 
the two values of np and ßd would effectively lower the ironing loads. Fig. 9 shows that the 
computed axial stresses (a,) decrease with the increasing values of ftp. Consequently, low ironing 
loads would result from the low az, thus making greater reductions possible. Fig. 10 shows 
changes in LIRs that would occur when the friction coefficient of fip and nd are the same. As 
expected, the changes in LIRs are very slight, regardless of the values of jup and /jd as long as 
jup and pd take same values, confirming the opposing effects of /up and nd  on LIRs. 

5. CONCLUSIONS 

An analytical equation incorporating Hill's non-quadratic yield function is proposed to analyze 
the axial stress at the exit of ironing die, and to compute the limit ironing reduction ratio (LIR) 
under various ironing conditions. Almost 57% of LIR is predicted in the case of ironing a tinplate, a 
low carbon steel for D&I can production. This is in good agreement with the results from the 
experiments and a finite element analysis. The optimum entrance angles of the ironing die for high 
values of LIR is computed to be in the range of 5 to 12 degrees. The LIR seemed not to be greatly 
influenced by material anisotropy although it decreases slightly as the anisotropy increases. It is 
found that high friction coefficients at the punch-material interface induce increases in the values of 
LIR, while high friction coefficients at the die-material interface cause decreases in the values of 
LIR. 
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ABSTRACT 

FEM is useful for the stress analysis and used widely in general. However, it is still not 
necessarily easy to obtain the highly accurate values of the stress intensity factors by FEM. 
Therefore, many methods, such as the stress extrapolation method, the displacement extrapolation 
method, the hybrid extrapolation method and so on have been proposed until now. However, these 
methods have some weak points. 

Recently, a method for calculating the highly accurate values of stress intensity factors is 
proposed by H. Nisitani, based on the usefulness of the stress values at a crack tip calculated by 
FEM. Although this value at a crack tip by FEM is finite, it is very effective as a measure of the 
strength of singularity at the crack tip. This method is called the crack tip stress method. 

In this study, first the crack tip stress method and its physical background were explained. Then 
the weak points of the extrapolation methods in FEM were made clear by using the exact stress 
distributions near a crack tip obtained by the body force method. Moreover the crack tip stress 
method was applied to the problems of the crack large compared with the strip width, the 
interference of two close parallel cracks in a strip and so on. It is difficult to treat these problems 
through the extrapolation method. Finally the accuracy of the crack tip stress method was discussed 
based on the exact solution obtained by the body force method. 

1. INTRODUCTION 

FEM is useful for the stress analysis and used widely in general. However, it is still not 
necessarily easy to obtain the highly accurate values of the stress intensity factors by FEM. 
Therefore, many methods, such as the stress extrapolation method [1], the displacement 
extrapolation method [1], the hybrid extrapolation method [2] and so on [3-8] have been proposed 
until now. However, these methods have some weak points. 

Recently, a method for calculating the highly accurate values of stress intensity factors is 
proposed by H. Nisitani, based on the usefulness of the stress values at a crack tip calculated by 
FEM [9]. Although this value at a crack tip by FEM is finite, it is very effective as a measure of the 
strength of singularity at the crack tip. This method is called the crack tip stress method. 

In this study, the weak points of the extrapolation method in FEM are made clear by using the 
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exact stress distributions near a crack tip obtained by the body force method (BFM) [10]. Then the 
crack tip stress method was applied to the problems of the crack large compared with the strip width, 
the interference of two close parallel cracks in a strip and so on. It is difficult to treat these problems 
through the extrapolation method. 

2. THE CRACK TIP STRESS METHOD AND ITS PHYSICAL BACKGROUND 

Figure 1 shows the element pattern used for checking the effectiveness of the crack tip stress 
method. The elements near the crack tip are made fine systematically as shown in Fig. 1. The 
element size near the crack tip is 1/243 mm. The width of the strip is 20 mm, and the crack length is 
2,4, 6, 8 or 9 mm. Figure 2 shows the stress distributions calculated by FEM under the condition of 
Ki,reai = constant (= 1 MPav^m). The values of Kijeai are calculated by BFM [10]. 

As seen from Fig. 2, when the real values of K i are the same, the stress distributions are very 
close to each other. Especially the stress values at the crack tip ayo,FEM are almost the same, 
independent of crack length. This means that the stress values at a crack tip calculated by FEM is 
very effective as a measure of the strength of singularity at the crack tip, independent of crack 
length. 

Since the values of Ki^eai /<jyo,FEM are almost constant independent of crack length, Eq.l is 
obtained. In this equation, Ki,rcai stands for the real stress intensity factor, ayo^EM stands for the 
stress value in the y-direction at the crack tip calculated by FEM and the asterisks * mean the values 
of the reference problems. 

Kl.r Ki. 

Ö yCFEM O yO,FEM 

Therefore, we use the next equation in order to obtain the approximate value Ki,aPPr. of the given 
problem. 

K I.appr K,„ 
O" yO,FEM CF yO,FE« 

♦ t t a 
, 

yl 

pr r 
o 

20 

■ 

Crack 

1/81 

1/243 

 :       a = 2, 4, 6, 8 or 9 mm 

Fig.l. Dimensions of the strip and the 
elements near the crack tip. 

(2) 

O yo,FEM i?11.64~11.66MPa 
(KI =constant) 

0-5 
0 0-05 0-1 0-15 

Distance from crack tip   r   mm 

Fig.2. Stress distribution calculated by FEM under 
the condition of Ki =constant (=lMPa/mm). 
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(a)   Mode I (b)   Mode II 

Fig.3. Reference problems (Exact solutions). 

Table 1. Reference values. 

0 * 
or 
X* 

(MPa) 
a* 

(mm) 
e* 

(mm) 

Mode I Mode II 

0 yo.FEM* 
(MPa) F I ,real* 

t xyo.FEM* 
(MPa) FE,real* 

1 0.01 
1 

29.5336 1.00000 16.2991 1.00000 48600 

Fl .real* and Fn,reai* were obtained by BFM. 

In using Eq.2, it should be noted that the same mesh patterns near the crack tip have to be used in 
the calculation of ayo,FEMand  ayo,FEM*. 

The value of K i ,aPPr can be obtained through the value of a yoJEM in the given problem, 
provided that a pair of values K i ,reai* and a yo,FEM* in the reference problem is obtained in 
advance. 

If we use the definition (3), Eq.2 can be transformed into Eq.4. 

F, = - 

T 1 .appr   Ö" yO.FEM X " 

<J yO.FEH 

a*        [7*" 
a        fa 

(3) 

(4) 

(a: half crack-length,   a : loading stress for a strip) 
When the crack tip stress method is applied to the problems having the various element sizes at 

the crack tip, Eq.5 should be used, where e means the element size at the crack tip. This is based on 
the fact that the stress value near the crack tip decreases in proportional to V v r. 

r I .appr CJ y 

FIJI 

O yOJEM a T    a f   e 
(5) 

For the mode II, the following similar equation should be used. 

F„ .appr    T xjO,FEM X- 
Fnj 

T xyO,FEH vxVTxV^ (6) 

Figure 3 shows the dimensions of a strip used for obtaining the reference values. Figures. 3 (a) 
and (b) are the cases of mode I and mode II crack problems, respectively. The half crack- 
lengths of Figs. 3 (a) and (b) are both 0.01 mm. The elements near the crack tip are made fine 
systematically as shown in Fig. 1. The element size at the crack tip is 1/48600 mm. Table 1 shows 
the results of Fig. 3. These values of the reference problems are used for Eq.5 or Eq.6. 

3. WEAK POINT OF THE EXTRAPOLATION METHODS 
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The several extrapolation methods proposed until now [1,2] can be used to obtain the 
approximate values of stress intensity factor in FEM analysis. However, these methods have some 
weak points. Taking as an example of the stress extrapolation method, the weak points of the 
extrapolation methods will be shown in the following. 

Figure 4 (a) shows the dimensions of a strip and the element size near the crack tip of FEM 
analysis. The ratio a/w is 0.4 (a: half crack-length, w: half-width of the strip). The element size at 
the crack tip is 1/243, 1/81 or 1/27 mm. Figure 4 (b) shows the relation between Fi(r) and the 
distance from the crack tip under the conditions of e=l/243, 1/81 and l/27mm. The dotted line 
stands for the exact values calculated by BFM [10]. Figure 4 (c) shows the relation between the 
error of F i ,FEM and the node number from the crack tip. This error stands for the difference of 
F i ,FEM and F i ,BFM. This figure is based on the rearranged data of Fig. 4 (b). 

As seen from Fig. 4 (c), the errors of F i ,FEM are almost the same at each node number, 
independent of the element size. This is based on the fact that the stress value near the crack tip 
decreases in proportional to i/yr. It can be concluded from Fig. 4 (c) that the high accurate values 
of the stress intensity factors can not be obtained from the extrapolation methods even in the case of 
extremely fine mesh pattern. 

♦ t ♦ a 
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e : Element size at a crack tip 
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1-20ra/w=0.4 

1.15 ■ 

1.10 

0.1 0.2 0.3 0.4 
-0.05 

•   e=l/243mm 
■    e=l/81mm 
A    e=l/27mm 

1  

(b)   Stress extrapolation method 

0 5 10 15 

Node number from the crack tip 

(c)   Error of F i ,FEM (F I ,FEM 
— F i ,BFM) 

Fig.4. Weak point of the extrapolation methods. 
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4. APPLICATION OF THE CRACK TIP STRESS METHOD 

In the following, the crack tip stress method in FEM is applied to the several problems to which 
the extrapolation method is difficult to apply. These problems are calculated under the following 
conditions. The elements near the crack tip are made fine systematically as shown in Fig. 1. The 
minimum element size at the crack tip is 1/243 mm. 

The values of F i obtained by BFM [10] are shown in Table 2 ~ 4. The reference values used 
in Eq.5 are shown in Table 1. 

4.1. Large Crack Compared with the Strip Width 
Table 2 shows the non-dimensional stress intensity factors F i of strips with a crack under 

tension. The values of ratio a/w is from 0.1 to 0.99. 
The error is 0.58 % at the maximum Therefore, it can be said that the highly accurate values of 

stress intensity factors can be obtained by the crack tip stress method even in the case of large crack 
and short ligament. 

4.2. Problems of the Interference Effect between Two Cracks in a Strip 
Table 3 shows the non-dimensional stress intensity factors F i of strips with two close parallel 

cracks under tension. In this problem, there exists the mode I and mode II stress singularities at the 
crack tip at the same time. The ratio of p/a is 1/9, 1/3 or 2/3 (p: distance between the cracks, a: half 
crack-length). 

The errors are less than about 0.23 % in all cases. This means that the crack tip stress method is 
very useful even in the case of the interference effect between two close cracks in a strip. 

4.3. General Problems 
Table 4 shows the non-dimensional stress intensity factors F i of the general problems with a 

crack under tension. 

Table 2. Results of a strip with a crack. 

ill 

ETr 
2a 

2w=20 

TTT 

a =lMPa a/w O yO,FEM 
(MPa) F I ,appr RI     (10) 

r I ,BFM 
Error of appr. 
value (%) 

0.10 21.0092 1.0060 1.0060 0.00 
0.20 30.2545 1.0244 1.0246 -0.02 
0.40 46.3200 1.1090 1.1094 -0.03 
0.60 66.6385 1.3027 1.3033 -0.05 
0.80 107.157 1.8142 1.8160 -0.10 
0.90 161.367 2.5757 2.5798 -0.20 
0.95 235.574 3.6599 3.6682 -0.23 
0.99 538.138 8.1898 8.2377 -0.58 

Error=(F I ,aPPr-F I ,BFM)/F I ,BFMX100 (%) 
F,=K,/(<7 V 7trN O 

♦ H O 
i 

Q. 

o 

2a=18 

.  20 . 
' 

MM 

=lMPa 
Table 3. Results of a strip with two close parallel cracks. 

p/a 
Mode I Mode II 

O yO,FEM 
(MPa) F I ,appr E i   (10) 

FI ,BFM 
Error of appr. 
value (%) 

T xyo,FEM 
(MPa) FII ,appr en    (10) 

FH.BFM 
Error of appr. 
value (%) 

1/9 127.412 2.0337 2.0334 0.02 11.2290 0.3268 0.3215 0.23 
1/3 149.626 2.3883 2.3911 -0.12 10.9083 0.3155 0.3122 0.14 
2/3 158.521 2.5303 2.5339 -0.14 4.98826 0.1443 0.1430 0.05 

Error= (Fi„-F,„)/v/irW+F^7 X100 (%), 
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Table 4. Results of general problems. 

Problems 0 yo,FEM 
(MPa) FI ,appr c i   <10) 

FI ,BFM 
Error of appr. 
value (%) 

(a) 85.9319 1.0625 1.0637 -0.11 
(b) 260.495 4.4102 4.4065 0.08 

The errors are less than about 0.11% in these problems. Therefore, it can be said that the highly 
accurate values of the stress intensity factors are obtained by the crack tip stress method in general. 

5. CONCLUSIONS 

The weak points of the extrapolation method in FEM were made clear by using the exact stress 
distributions near a crack tip obtained by the body force method. Then the crack tip stress method 
was applied to the problems of the crack large compared with the strip width, the interference of 
two close parallel cracks in a strip and so on. It is difficult to treat these problems through the 
extrapolation method. The main results are summarized in the following. 
(1) The errors of the non-dimensional stress intensity factor F i obtained from the stress 

extrapolation method are almost constant, independent of the element size. Therefore, the 
highly accurate values of the stress intensity factors can not be obtained from the extrapolation 
methods even in the case of extremely fine mesh pattern. 

(2) It was confirmed that the crack tip stress method in FEM has the sufficient accuracy in the 
problems to which the extrapolation method is difficult to apply. 
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ABSTRACT 

This paper proposes a neural network for the decision-making system for monitoring tool wear 
while working materials such as A16061, SB41, SM45C. The raw cutting forces signals are filtered 
and processed with adaptive AR modeling. The AR parameters and cutting conditions are used as 
input to the neural network along with the frequency band energy. The experimental results show 
that each neural network trained for each specified material can recognize tool wear with a more 
than 85% detection rate. When the normalized tensile strength of each material is used as additional 
input to the unified neural network, the network still has a success rate higher than 80 %. 

1. INTRODUCTION 

In the past decade, there have been numerous reports on monitoring milling tool wear. Ko and 
Cho [1,2] proposed a method that monitors tool wear using time series parameters as input into a 
neural network. Waldorf et al. [3] extracted the features of tool wear by relating the wear to a static 
cutting force model determined experimentally. On the other hand, Elbestawi [4] utilized a cutting 
force component with a particular frequency that varies with tool wear. 

In this paper, we also use a time series model to extract the features of milling tool wear and 
include the normalized frequency band energy in the feature vector. The frequency band energy 
increases with progressive tool wear and it has been used to monitor tool wear in turning [5]. 
Constantinides et al. [6] showed that tool wear is closely related to the power spectral energy 
obtained by frequency analysis of spindle motor power. Ko and Cho [1,2] clarified that the power of 
the tooth passing frequency component increases with tool wear. 

All of this research, however, monitors tool wear when machining a given piece without 
considering the properties of the material being worked. In practice, different materials are 
machined, so the magnitudes and frequency components of the cutting forces will also differ. In this 
regard, this paper estimates the tool wear using the features extracted from measurements of the 
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cutting forces when machining three different materials with carbide tools. The cutting forces are 
first modeled with AR models with an adequate order to obtain the AR parameters and the sum of 
the spectral power at different cutting conditions. Then a neural network is constructed to detect the 
tool wear for different workpiece materials using the AR parameters, spectral power at a particular 
frequency band, and cutting conditions as input. Finally, a new neural network is constructed that 
detects tool wear on-line while machining three different workpiece materials using an additional 
input feature that represents the characteristic of the workpiece material. The workpiece materials 
tested were A16061, SB41, and SM45C, which are all widely used 

2. MODELING MILLING PROCESS 

Since machining is a typical time varying-process, more weight should be put on recent data 
than on older data. We achieved this by adopting the Recursive Least Square (RLS) method [1,7], 
which uses discounted measurement as a forgetting factor. This recursive method updates the model 
whenever a new sampling is made, and follows the progressive changes well. To model the milling 
process, experiments were conducted with a vertical machining center (ACE - V30, Daewoo Heavy 
Industries). The milling cutter was equipped with five inserts. The workpieces were 50 x 70mm 
rectangles made of SB41. The feed directional cutting forces were measured with a tool 
dynamometer (Kistler type 9257B) and recorded on a VHS cassette data recorder while observing 
on an oscilloscope. Each time, 1,024 data points were sampled through an AD converter.. 

In a typical case, the cutting conditions used for modeling were spindle speed 720rpm, feedrate 
120mm/min, depth of cut 1.0mm, and a worn tool was used to cut the SB41 workpiece. To remove 
the DC and run-out component, the cutting force signals were bandpass-filtered between 50 and 
220Hz. The sampling frequency was set at 440Hz. These cutoff and sampling frequencies were 
automatically adjusted to adapt the cutting conditions. The order of the AR model was chosen to be 
8, referring to Ko and Cho [1]. Fig. 1 shows the converging process of the first three model 
parameters, and the power spectra [4] obtained from the 8'h AR model parameters are shown in Fig. 
2. The harmonic components of the tooth passing frequency can clearly be seen. 

|o. 

Time (sec) 

ti pasang frequency (60Hz) | 

| 2ndfroquencyQaOHi)| | 3rdIrequency(160H;)| 

0        20      40      60      80      100    120     140     160     180    200    220 
Frequency(Hz) 

Fig. 1. Convergence of the first three parameters       Fig. 2. Power spectral density of the cutting force 

3. EXPERIMENTS 
3.1. Tool Wear 

According to the tool life criterion recommended by ISO, the average flank wear width (VBm) 
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is 0.3mm and the maximum flank wear width (VBmax) is 0.6mm. In this paper, the former was 
chosen as our tool-life criterion. Due to the axial and radial run-out, every insert wears differently. 
These differences were averaged using Eq. (1). 

VBm=-JdVB„(i) (1) 

where n is the number of inserts in the cutter. In each and every experiment, the tool life was 

investigated using a tool microscope. 

3.2. Frequency Band Energy 
The mean frequency band energy can be written as [7]: 

£     =\iHGx{f)df (2) 

where Gx.(/) is the one-sided power spectral density function of signal x(t), and fLandfH represent the 
lower and higher cutoff frequencies of the band pass filter, respectively. The variance of signal x(t), Ex^ 

(mean frequency band energy) can be calculated directly in the time domain, by applying the sampled time 

;data {x„BPF}a 

~N- 
(3) 

3.3. Tool Wear Experiments and Feature Extraction 
Cutting experiments were conducted under a variety of conditions with cutting speeds ranging from 240 

to 720 rpm, feed rates from 40 to 760 mm/min, and depths of cut from 0.5 to 1.0 mm. Many combinations of 
the cutting parameters were tested. The AR parameters estimated from the new and worn tools are shown in 
Fig. 3. The AR parameters for the worn tool significantly differ from those for the new tool. The parameters 
also varied with different workpiece materials. On the other hand, Fig. 4 shows the variation in the 
magnitude and frequency band energy of the feed directional forces for SB41 and SM45C as tool wear 
progresses. The frequency band energy tends to increase proportionally with the tool wear and with the 
cutting force. Fig. 5 represents the frequency band energy of the new tool along with that of a worn tool, for 
different cutting conditions with three different workpiece materials. For the same workpiece material, a 
worn tool generates greater frequency band energy, while for the same tool state, the band energy increases 

in the order A16061, SB41, and SM45C. 
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(a) AR parameters for new tools (b) AR parameters for worn tools 

Fig. 3. Variation in the AR parameters of three materials 
(Cutting speed: 720rpm, Feed rate: 120mm/min, Depth of cut: 1.0mm) 
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ir langth (mm) Cutting spend (rpm) 

Fig. 4. Cutting force and frequency band energy 
forSB41andSM45C 

Fig. 5. Frequency band energy for different 
materials and cutting conditions 

4. TOOL WEAR MONITORING USING NEURAL NETWORKS 

4.1 Individual Neural Networks for Different Materials 
Error back propagation neural networks were used to classify the tool states [8]. The AR model 

parameters and frequency band energy were fed into the networks as input. Since the experiments 
were conducted under various cutting conditions, the conditions should also be considered as input. 
These cutting conditions were normalized with the maximum usable values to prevent difficulties in 
learning due to early saturation. 

The numbers of selected training patterns were 36, 40, and 38 for A16061, SB41, and SM45C, 
respectively. The frequency band energy was also normalized between -1 and 1. The first step 
toward this is to obtain the following function of the cutting conditions that describes band energy:. 

bandenergy = A(rpm)B(feedratef(depthofcut)D (4) 

Of air the factors affecting the band energy, only the cutting conditions and the tool wear state 
change when machining the same material with the same tool. Therefore, the frequency band 
energy can be represented by a function of the cutting conditions for a given tool wear state. 

The least squares solutions of the coefficients A, B, C, and D in Eq. (4) can be obtained for new 
and worn tools with the same cutting data that were used to evaluate the AR parameters. A typical 
result is as follows and the rest are obtained likewise: 

Al(>06\bandenergyncw„ml = 214.300pm)-''462 '(feedrate)10412 (depthof cut)''"91 
(5) 

For input to the network the band energy for a worn tool was normalized using Eq. (6) whereas the 
normalized band energy for a new tool was taken as -0.5 irrespective of the cutting conditions. 

F = — 0 "5 wnrn toot, Normalized ^'^ 
womtaol newuial 

(6) 

where Enmuml and Emimuml are the frequency band energy for new and worn tools, respectively. 
Then any newly calculated band energy can be normalized using Emm hmlM„mmliwl, which is input to 
the neural network. 

4.2 Results of Tool Wear Monitoring for Various Materials 
As stated earlier, the input to the network were the AR parameters, frequency band energy and 

cutting conditions. Three separate neural networks were constructed for the three different materials. 
Each network has 12 input nodes (8 AR parameters, 1 band energy, and 3 cutting conditions) and 
one output node. To represent the state of tool wear, the output was trained to be 0.1 for a new tool 
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and 0.9 for a worn tool. The recognition results are shown in Table 1. For all three materials, the 
correct recognition rate was higher than 90%. An example of the recognition results is shown for 
AL6061inFig. 6. 

Table 1 Performance in tool wear detection 

Structure of 
hidden layer 

New tool Worn tool 

A16061 
SB41 

SM45C 

14-12 
14-8 
14-8 

98.3% 
98.4% 
94.9% 

100% 
97.2% 
95.3% 

IAI6061 :Newtool| 

c 2 Wnntä 

. . 

I 
a,° 

i 
' ' 

NEWKOI 

oo-l o           ab           ab           «           so           6 71 

IAI6061 :Womtool| 

-" "*    "■   "~ 
|      W„n^ 

1   , 

fr |     NM-BOI 

Fig. 6. Tool wear recognition results using separate neural networks 

4.3 Construction of a Unified Neural Network That Considers Material Properties 
The literature states that the hardness of the workpiece is one of the factors affecting tool life. 

Since the hardness and tensile strength are related, this paper uses the tensile strength as an 
additional input to the network. 

The following equation can be set up using the same pattern that was used to train the tool state 
while cutting A16061, SB41, and SM45C: 

bandenergy = A{rpm)E(feedrate)c(depthofcut)D (tensilestrength) (7) 

The least squares solutions for new and worn tools are 

bandenergy ^„„t = 0.066070m)-' Am\feedratefxm (depthof cut)'1™ (tensilestrength)'™ 

bandenergy mm,mt, = 4.5668(rpm)H'1983 (feedrate)oi5m (depthofcut)'!2m (tensilestrength)' 2294 (g) 

The tensile strength was normalized with respect to SM45C, which has the largest value. Now the 
unified neural network has 13 inputs. They are 8 AR parameters, 1 normalized frequency band 
energy, 1 normalized tensile strength and 3 cutting conditions. Fig. 7 shows the correct recognition 
rate for A16061 as an example of the three materials using a 13-20 -1 structure. The correct 
recognition rates for all three materials are compatible with the three separate neural networks, 
although there is a slight difference (minimum of 83.3% and maximum of 100%). 

A new neural network was constructed from the machining data for A16061 and SM45C, and 
applied to the SB41 test data. The resulting recognition rate is shown in Table 2. Even a new 
material that was not considered in the training could well be recognized. That is, Eq.(9) does 
reflect the property of the material. 
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Fig. 7. Results of tool state classification using a sunified neural network 

Table 2 Results showing the recognition rate for a new material. 
Structure of the 

hidden layer material New tool Worn tool 

14-10 
A16061 
SB41 

SM45C 

100% 
98.4% 
93.6% 

100% 
95.8% 
88.9% 

5. CONCLUSIONS 

Constructing separate neural networks for each material (A16061, SB41, and SM45C) identified 
that the structure and weight values are different for each material. A unified neural network was 
then constructed to detect tool wear irrespective of the work material by considering the work 
material property as an additional feature. It has a 13-20-1 structure and 13 input nodes in total. The 
inputs are 8 AR parameters obtained from cutting force modeling, 1 frequency band energy, 1 
tensile strength and 3 cutting conditions. The resulting correct recognition rate ranged between 83 
to 700%. 
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ABSTRACT 

In this paper, we present three dimensional solutions for steadily propagating as well as 
stationary cracks in thin ductile plate. The phenomena of crack propagation in thin metallic plates 
have certain importance from a view point of structural integrity assessment for many type of 
structures, as structures such as commercial aircraft fuselage are composed of thin metallic plates. 
When a crack propagates in thin metallic plate, deformation field at the vicinity of the crack tip 
(front) is highly three dimensional, as it has been observed in some earlier experimental studies. 
However, there are very few analytical/numerical studies concerning the three dimensional nature 
of propagating cracks, due to difficulties in carrying out the analyses. We apply an Eulerian finite 
element method, and detailed three dimensional solutions for steadily propagating cracks are 
presented. 

1. INTRODUCTION 

In recent years, problems related to the structural integrity of aging structures have attracted an 
attention. Among them, elastic-plastic fracture mechanics to predict the failure of damaged 
structures is one of the major issues that have been concerned. In the scenario of structural failure, 
when it is initiated from a fatigue crack, a certain amount of stable crack growth takes place. And, 
applied load, which drives the stable crack growth, is considered to be the maximum applied load 
that can be carried by the cracked structure. When the applied load exceeds the structure's 
maximum load carrying capacity, a catastrophic structural failure would occur. We can find many 
research outcomes in literature, concerning the stable crack growth problem in thin metallic plate. 
Most of analytical/numerical studies assume the plane stress condition [1]. However, some 
experimental studies suggest that the state of deformation at the vicinity of the crack tip is highly 
three dimensional. Omori et al. [2] pointed out that when a crack propagates in thin aluminum alloy 
specimen, 100% shear lip failure occurred. Also, Dawicke et al. [3] suggested that the crack 
tunneling occur when crack propagates in a metallic plate. 

In present study, we investigate three dimensional deformation field at the vicinity of growing 
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crack tip. However computational effort when a three dimensional elastic plastic finite element 
crack propagation analysis is carried out from the crack propagation initiation through the quasi- 
steady state (via the transient state), may be prohibitively extensive. Thus, in present study, we use 
an ordinary elastic plastic finite element method to analyze stationary crack problems and an 
Eulerian finite element method for steady state crack propagation problems. In Eulerian finite 
element method, coordinate system is embedded at the advancing crack front and we do not need to 
carry out the transient analysis. Thus, detailed deformation field at the vicinity of the crack tip can 
be analyzed at almost the same computational effort as it is required for a stationary crack analysis. 

Solutions that have been obtained in present study, reveal that the deformation fields at the vicinity 
of the crack front are quite different between the cases of stationary and steadily propagating cracks. 
The distributions of effective plastic strain in the case of propagating crack suggest that the pattern 
of deformation be analogous to that of diffused necking of thin plate. It corresponds to the 100% 
shear lip failure at the crack tip. Also, at the center of plate thickness, the magnitude of plastic strain 
is considerably higher than that at the surface, suggesting the occurrence of ductile fracture. On the 
other hand, for the stationary crack case, effective plastic strain distribution does not have much 
variation through the thickness of the plate. Solutions obtained in this study compare favorably with 
the experimental studies in earlier literature [2, 3]. 

2. EULERIAN FINITE ELEMENT METHOD FOR CRACK ANALYSIS 

/ 

2.1 Coordinate Systems 
We assume in this study that advancing crack front 

is straight and perpendicular to the plate and that the 
crack propagates in X\ direction in 0-Xi,x2,X3 

global coordinate system. The current position of the 
crack front is Xi = a and the crack grows at a constant 
velocity d. We consider a moving coordinate system 
0-x\,X2,X3, which is embedded at the crack front, 
as depicted in Fig. 1. The global and the moving 
coordinate systems have relationships: Xi = X{+a, 
X2 = X2 and X3 = X$. 

We formulate the problem using a finite deformation theory as the material at the vicinity of the 
crack tip is expected to undergo a large deformation. The coordinate values of a material point 
before and after large deformation are shown by {xhx2,X3) and by {xi,x2,x3), in the 0-Xi,x2,x3 

global coordinate system. Also, a material point in original and deformed configurations are written 
by [xi,x2,Xj) and by {x{,x'2,xi), in the 0-X{,Xi,X3 coordinate system. 

Fig. 1 Propagating crack and 0-X{,x2,x3 

coordinate system which is 
embedded at the crack front. 

2.2 Evaluation for Stresses in Eulerian Finite Element Method 
We adopt a rate form J2-flow constitutive law. The constitutive law describes the relationship 

between the Jaumann rate of Kirchhoff stress crfj and rate of strains etj, which are the symmetric 

part of the velocity gradients **/&<, can be written to be: 

H-^kti'H -'kiy^iki'U-^kl^Umn^ = Kjkl.^ ~^jkl Aktmn j^ (1) 

where \ykf represent the plastic strain evolution equation (if! =Kijk,iy), tfk(  are the elastic 
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constants representing Hooke's law and v,- are velocities at a material point. Both Efjkf and A,^ 

hold the minor symmetries (Efjk/ = E?ijlk=- and Kijlk = Ap, =••■). By assuming that the volume 

change of material while elastic plastic deformation takes place is negligibly small, we can write the 
relationship between the rate of Cauchy stresses and the velocity gradients, as: 

on =E\ »     «*< ft, Eiik,Ak(mn if" " <% <°kj + °Hk °kj = %^ ~ P!Jkt ^ = %* ^ijkt' äx„ act dx a 
(2) 

where <u,y are the spin tensor (the anti-symmetric part of the velocity gradients). For steady state, we 
can show that: 

dO:; , . dVf. d   I    .dUb\        ■„ d  ( d"k   ^-\\ /i\ 

-» -axx   ^   a^D^r^^ka^i\   m^Kin    () 

where «,- are the displacements and F^  = dXklfoi. Therefore, the stresses can be expressed by: 

^.M)-J*^^-j5^^^-^t-^*^fe^      (4) 

Eqs. (2-4) are slightly different from the case of infinitesimally small strain analysis of [4]. Here it 
is noted that the spatial derivatives <?/*,• and <?/&/ are the same. 

2.3 Eulerian Finite Element Formulation 
Using Eq. (4) to evaluate stresses, one can obtain an Eulerian finite element formulation, as: 

J,0,&*d(«,)+JQ^/dO + Jh^|^ (5) 

where <5wj are the variations of the displacements «,- and F,- are the prescribed tractions on Xit. By 
discretizing the above equation by using an appropriate type of finite element, we can construct a 
system of linear simultaneous equation to solve for the displacements. 

The finite element formulation of Eq. (5) is highly nonlinear due to the third term in its left hand 
side. An iterative algorithm as described in Dean et al. [4] is adopted to obtain the equilibrium. 

Distributed loadcorrespondlno to K, field 

Fig. 2 Problem of cracked plate loaded by Ki 
stresses at its edges. 

Fig. 3 Finite element model. 



568 Fracture and Strength of Solids 

3. DEFORMATION AT THE VICINITY OF CRACK TIP 

3.1 A Thin Plate Loaded by Edge Stresses Corresponding Elastic Crack Solution 
The prescribed tractions corresponding to the elastic Ki stress field are given at the edge of the 

plate, as shown in Fig. 2. We assume that small scale yielding condition is satisfied and that plastic 
zone which develops around the crack tip, is well embedded in elastic Ki stress field. The thickness 
of the cracked plate, which is depicted in Fig. 2, is 1/100 of its total height H. We analyze only one 
fourth of the plate considering symmetries about X\ - Xi and X\ - X?, planes. In Fig. 3, the finite 
element model is shown. There are 8000 eight node brick elements and 9471 nodes. There are 10 
layers of elements in thickness direction. The length of each edge of the elements at the crack front 
is set to be #72000. Ramberg-Osgood type power law hardening is assumed. For stationary crack 
case, HRR [5, 6] field should dominate at the vicinity of the crack tip. The power hardening law is: 

e 
aY & 

ey 
E (6) 

where ay and E are yield stress and Young's modulus, respectively, a and n are nondimensional 
constant and hardening power, respectively. In this study, we let a =1 and « = 4,8,12,24. Ratio 
between yield stress and Young's modulus ayjE = 0.001 is set to be 0.001, which is within a typical 
value among metallic materials. Though the material constants are hypothetical, generic solutions, 
which can be extended to realistic metallic materials, are obtained. 

3.2 Deformation Field at the Vicinity of the Crack Tip for Stationary and Propagating Cracks 
In this section, the results of the analysis for stationary and propagating crack cases are presented. 

Though we have investigated cases with various hardening power n, we present solutions only for 
n = 12  and can find distinctive differences in three dimensional deformation fields between 
stationary and propagating cracks. 

In Fig. 4, the developments of plastic zone at near the center of the thickness and at the surface of 
the plate, are depicted for the stationary crack case. In Fig. 5, the developments of active plastic and 
elastic unloading zones are shown for the propagating crack case (Elastic zone which should not be 
present, exists in region between the active plastic and elastic unloading zones, due to a problem in 
drawing the figure. In reality, the elastic unloading zone is immediately behind the active plastic 
zone.). Obvious difference between the stationary and propagating crack cases is that the plastic 
unloading zone (wake zone) exists in the propagating crack case. However when we check up the 

Fig. 4 Development of plastic zone at the center of 
plate thickness for the stationary crack case. 
(Black: Plastic zone, Dark gray: Elastic zone) 

Fig. 5 Development plastic and elastic unloading 
zones at the center of plate thickness for 
the propagating crack case. (Black: Plastic 
zone, Dark gray: Elastic zone, Light Gray: 
Elastic unloading zone) 
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distribution of effective plastic strains for the propagating and stationary crack cases, we find some 
distinct differences between them. That is, the plastic strain distribution in the cross section of the 
plate parallel to X2-X3 plane at the crack front (A? =0 plane) is somewhat similar to that of 
diffused necking of thin plate, for the case of propagating crack, as depicted in Fig. 6 (a). In Fig. 6 
(b), the plastic strain distribution in X{ = 0 plane for the stationary crack case, is shown. In this case, 
less concentration of plastic strain at the center of the plate thickness is observed, in comparison 
with the propagating crack case. The plastic strain distribution is somewhat more uniform than the 
propagating crack case. Furthermore, the development of band of plastic strain concentration in 
about 45 degree from x2 axis is observed, in propagating crack case. These observations suggest 
that the development of shear band take place for the propagating crack case. On the other hand, 
such concentration of plastic strain is not observed in the case of stationary crack, suggesting that 
three dimensional deformation fields are distinctively different at the vicinity of the crack tip, 
between the stationary and propagating crack cases. 

3.3 T£* Integral as Crack Tip Parameter 
In this section, we present the results of J£* integral evaluation (see Atluri, Nübioka and Nalagaki 

[7] for its theoretical development and Brust et al. [8], Nishioka et al. [9, 10], Wang et al. [11] for 
successful applications). Also an extensive investigation on the behavior of re* integral value for 
two dimensional crack propagation problem was recently presented by Okada and Atluri [12]. 

For thin plate problem, we extend the two dimensional definition to a quasi-two dimensional plate 
problem by using an equivalent domain integral (EDI) method (Nikishkov and Atluri [13]). Instead 
of the integral contour, we consider an integral surface in the quasi-two dimensional case, as 
depicted in Fig. 7 (a) and then the result of integral is divided by the plate thickness t. Thus, the 
quasi-two dimensional definition for T*e integral in present quasi-static problems, can be written to 
be: 
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Fig. 6 The distribution of effective plastic strain in x{ 

plane, (a) for the propagating crack case and (b) 
for stationary crack case. 

7 (a) Moving and elongating integral 
surfaces, (b) T* integral values on 
moving and elongating integral 
surfaces, vs. their size, £ for the 
propagating crack case. 
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As shown in Fig. 7 (a), elongating and moving integral surfaces are used to evaluate r£* integral. 
The size e of AE integral surface is varied and its influences on r£* value are discussed, for the 
propagating crack case. In Fig. 7 (b), variation of T* value with respect to the size c of moving AE 

integral surface is also shown. It is seen that re* value is small compared with far field J integral 
value (which corresponds to the applied £, value [j =K?/E]) but takes almost the same value for 
different e. On the other hand, when T£* integral is evaluated on the elongating Ae integral surface, 
we find that T* integral value strongly depends on the size e of the integral surface. For a large e, 
T* integral value is also large. This is because, as described by Okada and Atluri [12], r£* integral 
with the elongating integral surface, measures the total sum of the energy dissipated inside the 
integral surface and the energy spent to open a new crack surface, per unit crack extension. 
Therefore, for greater volume inside the integral surface, r£* integral takes larger value. On the other 
hand, r£* integral with the moving integral surface only measures energy spent to open a new crack 
surface per unit crack extension. This is why rs* integral with the moving integral contour becomes 
nearly constant. 

4. CONCLUDING REMARKS 

In this paper, near tip deformation fields for propagating and stationary cracks in thin ductile plate 
are presented. It has been found that three dimensional deformation fields of the stationary and 
propagating crack cases are distinctively different. Plastic strain distribution at the vicinity of the 
crack front shows the eventual development of shear band type deformation, which is similar to the 
case of thin plate subjected to tension and corresponds to shear lip fracture. Also, the concentration 
of plastic strain at the center of plate thickness is observed. This may cause crack tunnelling. 

Though we presented some new findings on the deformation behavior at the vicinity of 
propagating and stationary cracks, we must point out that the finite element model was too rough to 
capture the detailed deformation behavior around the crack tip. We need to refine the finite element 
model so that more detailed information can be extracted. In order to do so, we need more 
sophisticate computational strategy, such as parallel computing. We are currently updating our 
analysis code and computational facility. 
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ABSTRACT 

The bending fatigue damage characteristic of carbon and polypropylene hybrid fiber reinforced 
concrete (C-P HFRC) was studied in detail. An experiment was designed to obtain the law on the 
alteration of the C-P HFRC's fatigue life and fatigue strength caused by the fibers. Fatigue equation 
S= A-BlgN was obtained through the linear regression. The C-P HFRC's bending fatigue damage 
characteristic was carried out. The composition and development of the fatigue strain caused by the 
cyclic load were analyzed on the basis of experimental results, and the bending fatigue strain mode 
was supposed. The law of the fatigue damage accumulation and evolution under cyclic load was 
investigated. The fatigue damage model was established. 

1. INTRODUCTION 

The researches on fatigue damage and fracture properties of concrete absorbed more and more 
attention of design engineers in recent years. The first reason was that some new type concrete 
structures appeared which endured serious fatigue loading. The other reason was that some roads, 
sleepers and bridges were working under serious fatigue and damage environment with the 
transportation transfer to heavy load and high speed. But the brittle properties of concrete led itself 
to lower fracture toughness, lower fatigue strength and lower resistance of crack propagation. 

The fracture toughness and the resistance to crack propagation of concrete could obviously be 
improved by using carbon fiber and polypropylene fiber, and so could the fatigue properties. If the 
high modulus of carbon fiber and high extension of polypropylene fiber are fully utilized at 

different stress level, the fatigue strength and resistance of fracture of the C-P HFRC would 

considerably improved. 
The entire C-P HFRC specimens, where the volume fraction of carbon fiber and that of 

polypropylene fiber were 0.5, 1.0, 1.5 and 0.5, 0.7, 0.9, respectively, were subjected to a constant 
amplitude and high frequency fatigue loading. The law of fatigue residual strain, cyclic strain 
ranges and total fatigue strain range was analyzed. With the help of fracture mechanics' theory and 
Weibull's statistic methods, the fatigue life equation of the C-P HFRC were proposed. A fatigue 
damage model was established, which could easily be used in civil engineering. 
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2. EXPERIMENTAL PROCEDURE 

2.1. Samples 
The basic concrete was made up of the ordinary Portland cement, the sand, the crush roast 

aggregate and the water reducer. C: S: G: W=l: 1.81:2.83: 0.53. The C-P HFRC's samples were 
made of the I -type carbon fibers(CF) and the polypropylene fibers(PF). The volume fraction of 
the CF and that of the PF were 0.0, 0.5, 1.0, 1.5 and 0.0, 0.5, 0.7, 0.9, respectively. The diameter 
and aspect ratio of the CF were 6.0 u m and 500, respectively, and those of the PF were 10.0 u m 
and 800, respectively. The size of the C-P HFRC prism was 100 X 100 X 300mm and the strain 
gauges were stuck on the surfaces of the concrete prism. 

Table 1 shows the relationship between the organizing into groups of the C-P HFRC and the 
volume percent of the CF and the PF. 

Table 1. Relationship between the sample's groups and the volume percent of the hybrid fibers 
No. 1 2 3 4 5 6 

CF(Vol. %) 0.0 0.5 0.0 0.5 1.0 1.5 
PF (Vol. %) 0.0 0.0 0.5 0.5 0.7 0.9 

2.2. Experiment Equipment 
The bending fatigue experiment was tested on a PLG-100CF high frequency fatigue-testing 

machine controlled by a computer. The data were collected and recorded by a Y8DL-2 dynamic 
resistance strainometer fitted with a SC16A photoelectricity oscillograph. The strain gauges stuck 
points were shown in Fig. 1 (a). Three-point bending method was adopted shown in Fig. 1(b). 

IS! 

H- 
_A_ 

^H 
30 '   120 120 30 

Side face Bottom   face 
a) b) 

Fig. 1. Schematic diagram of a) strain gauges stuck points; b) locations of load head and two of 
bearing points. 

2.3. Experiments 
The bending fatigue samples were first bent by a static load, whose maximum value was not 

over 4kN, and then unloaded. After the preloading test, tests were conducted using a constant range 
of fatigue loading with a 105Hz sinusoidal waveform. 

When the number of cycles reached 2,5,10,20,50,100,150,200,500,1000 and 2000 thousand, the 
samples were unloaded and the fatigue strain amplitude and the residual strain were measured. 
After the measurement the samples were reloaded and the fatigue cyclic test continued until the 
specimens failure occurred. 
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3. EXPERIMENTAL RESULTS AND DISCUSSION 

3.1. Results of Fatigue Life 
The fatigue lives of the C-P HFRC were summarized in Table 2. 

Table 2.   Fatigue lives of the C-P HFRC 
No. S N No. S N No. S N 
1-1 0.50 1843752 3-1 0.50 1897655 5-1 0.55 1251579 
1-2 0.55 305947 3-2 0.55 316722 5-2 0.60 328019 
1-3 0.60 48982 3-3 0.60 55061 5-3 0.65 75599 
1-4 0.65 8197 3-4 0.65 9452 5-4 0.70 18492 
1-5 0.70 1419 3-5 0.70 1973 5-5 0.75 4573 

2-1 0.50 >2million 4-1 0.55 916737 6-1 0.60 550723 
2-2 0.55 638992 4-2 0.60 243620 6-2 0.65 142975 
2-3 0.60 185103 4-3 0.65 49819 6-3 0.70 36862 
2-4 0.65 31997 4-4 0.70 11499 6-4 0.75 9395 
2-5 0.70 7328 4-5 0.75 2713 6-5 0.80 2423 

A = C + DVcf+EVpf 

B = C' + D'Vqf+E'Vpf 

Notes: N is cyclic number to failure. 

As the general fatigue life equation of plain concrete and steel fiber reinforced concrete was 
given by [1,2] 

S=A-BlgN (1) 
in which S is the ratio of maximum stress to minimum stress, TV the bending fatigue life, A and B 
liner regression coefficients, the fatigue life of the C-P HFRC must have the same type of Eq. 1. 
Inasmuch as A and B had well liner relation with Fc/and Vpfi the following equation are assumed: 

(2) 
(3) 

where C, D, E, C", D' and E' could be derived by the liner regress on analysis fatigue life data, 
Vcf and Vpf are the volume fraction of the carbon fiber and that of the polypropylene fiber, 
respectively. 

The data of the C-P HFRC fatigue life, whose survived life percentage exceeded 90%, were first 
treated by Weibull's statistic methods [3], and then fitted by the liner regression to the S-lgN type 
equation. The results were shown in the following: 

No. 1. S=0.901-0.0641gN No. 2. S=0.997-0.0771gN No. 3. S=0.913-0.0661gN 
No. 4. S=1.021-0.0791gN No. 5. S=1.050-0.0821gN No. 6. S=1.088-0.0851gN 

Substituting these values of six equations into Eqs. 1 and 2, and using the liner regression, one can 
obtain the following equations: 

A = 0.901 + 10.8KC/ + 2.78Fp/ (4) 

B = 0.064 +124Vcf + 0.276Fp/ (5) 
The fatigue life equation of the C-P HFRC are finally given by: 

S = A-BlgN 
^ = 0.901 + 10.8^+2.78^ 

B = 0.064 +1.24^ + 0.2761^ 

(6) 

Table 3 lists in the six groups of the C-P HFRC experimental values and calculated values from 
Eq. 6 (S=0, 60) of fatigue life. From Table 2 and 3, we can find out that the fatigue life of the C-P 
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HFRC can increase with the increase of fiber volume fraction. When the volume fraction of the 
carbon fibers exceeds 1.0 and that of the polypropylene fiber exceeds 0.7, the experimental fatigue 
life does not increase largely. 

Table 3.   Experimental values and calculated fatigue lives of the C- P HFRC 
1 2 3 4 5 6 

Experimental values 48982 185013 55061 243620 328019 550723 
Calculated values 50480 204969 59048 264887 359381 542537 

Relative error 3.2% 9.7% 6.0% 8.1% 8.7% 2.0% 

3.2. Law of Accumulated Residual Strain of the C-P HFRC 
When the C-P HFRC was tested by the bending fatigue loading, the amplitude of tensile strain 

and the compress strain gradually increased with increasing the number of cycles up to the 
specimen failure. The material failure was mainly due to the tensile strain, which was composed of 
the cyclic strain and the residual strain. 

The bending fatigue residual strain was made up of plastic cyclic strain and creep, which were 
caused by the average stress. In general, the developing process of residual strain could be divided 
into three stages: decelerating, steady-state and accelerating stages. 

The residual strain rate, er, can be describe by the following equation: 

£r=Ba"mt> (7) 
in which am is the average stress, t the time variable, n the cyclic number, B and ß are parameters 
which are related to material physical states. 

Integrating Eq. 7, one can obtain the value of sr: 

£, = 
Bal Mß 

'       l + ß 
(8) 

If Nr' is the onset cycles of the fatigue residual strain reach the steadying stage, s'r is the 

corresponding residual strain and f is time, the following equation similar to Eq. 8 can be obtained: 

,     Ba" !L(t'\l*ß 

'       1 + /? 
(O (9) 

t      N 
Comparing Eq. 8 with Eq. 9 (— = —-), Eq. 9 is rewritten as: 

sr=e'r{—t" r      rKN'r ' 

Considering decelerating stage (ß+Kl), and defining  A = ß+1, Eq. (10) can be reduced to: 

'      r N' ' 

(10) 

(11) 

in which sr is the residual strain of the C-P HFRC. 
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3.3. Evolution Law of the Cyclic Strain Range 
From the analysis on the data of the C-P HFRC bending fatigue life, the evolution of cyclic 

stain could be divided into two stages: steady-state and increasing stage. Simulating the 
experimental data as curve, the evolution law of cyclic strain range would be described as 

As = 
As0 

As0(\ + a\gN) 

N<Na 

N>N 
(12) 

in which A e is the cyclic strain range of the initial stage, Ncr is the critical threshold cycles at the 
opening of initial cyclic strain range evolution, a is the parameter related to the material physical 
states, which could be determined by experiments. 

3.4. Evolution Law of the Total Fatigue Strain Range 
The total fatigue strain of the C-P HFRC, which was caused by the fatigue loading, was 

composed of the residual strain and the cyclic strains. The evolution of total fatigue strain range on 
the C-P HFRC also has three stages as shown in figure 2. 

Therefore, the total fatigue strain range of the C-P HFRC caused by the bending fatigue loading 
can be described as: 

s = As + sr = r 

A£o(\ + algN) + s'rA
X 

N<NCI 

N>N„ 
(13) 

0.8 

0.4 

0.2 

Number of 
0.2      0.4     0.6     0.8 

Cycles (N/N) 

Figure. 2. The evolution of the C-P HFRC 
total fatigue strain range 

Figure. 3. Curve of the fatigue damage evolution 
with the cyclic numbers 

3.5. C-P HFRC Bending Fatigue Damage Model 
- When the C-P HFRC was tested by the fatigue loading, the damage occurred as the internal 

crack initiation and crack propagation. The damage was accumulated at each cycle by much 
nonrecovery minute damage. Obviously, the evolution of damage was related to the cyclic number, 
the fatigue stress ratio and the fiber percent. Figure. 3 gave the curve of the C-P HFRC fatigue 
damage evolution vs. cycles at a certain stress ratio. Inasmuch as fiber could hinder crack 
propagation, the C-P HFRC resistance to fatigue deformation and the fatigue damage characteristic 
were improved by using the carbon fiber and the polypropylene fiber, which exhibited the 
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prolonged steady-state stage of damage and the decrease of damage developing rate. 
By the help of the above analysis, the fatigue damage variable D was defined by a function of 

cyclic number N, the average stress <rmand the stress ratio S, namely, D=j{D, N, S, <rj- Based on 
the experimental data, the following relation can be obtained" 

l^ßd-DriO- (14) 

As 
in which D = \——r-, Q = f(N),   ris the parameter related to the material physical states, 

which could be determined by experiments,  and   a   the  function of cyclic  characteristic 

R:a = (\-R)af (af was the static bending strength of the C-P HFRC, R was the ratio of 

minimum load to maximum load). 
Separating the variables and integrating Eq. 14, the value of D can be expressed as: 

i 

D = 1 - [1 - (y +1)10* f' f(N)dNY+l (15) 

in which NF is the number of cycles to failure. Since NF=N, D=DF, Eq. 15 is rewritten as: 

as = lgi-(i-y+'_lg r^f(N)dN (16) 
y + 1 J1 

v+i 

r 
Comparing S=A ~BlgNF with Eq. 16, one can obtain: 

D = l-[l-(y + l)10aSNaBY+1 (17) 

Eq. 17 is the fatigue damage model of the C-P HFRC. 

4. CONCLUSIONS 

The following conclusions could be drawn from the present study: 
(1) The fatigue properties of concrete were improved by using the carbon fiber and the 

polypropylene fiber at two fields: the initial values of cyclic strain developing raise and the former 
fatigue residual deformation rise too. 

(2) The main reason of the improved fatigue properties on the C-P HFRC was the hybrid fiber 
that could hinder crack propagation. 

(3) The fatigue life of the C-P HFRC precisely predicted using parameter y, which was 
determined by experiments. The application of the C-P HFRC to structures needed to use the stress- 
strain relation, which is still not apparent. 
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ABSTRACT 

A stainless steel casting is used in pipes and the valves are subjected to high pressures and 
temperatures. The primary coolant system of a nuclear power plant is made of stainless steel 
casting and the operating temperature is in the range of 290~330°C. If the coolant system is 
exposed to this temperature range for a long period, degradation of the material may occur. 
The present investigation is concerned with the degradation characteristics of CF8M(cast duplex 
stainless steel), exposed to temperatures of 326 °C, 430 °C and 700°C, respectively. After the CF8M 
specimens are maintained at the given temperature for the particular thermally degraded specimens, 
all specimens are water quenched. Each degraded specimen of the thermally degraded materials is 
classified into four or five classes, depending on holding time at the given temperatures. In order to 
investigate the characteristics of degradation, microstructure, micro vickers hardness, tensile and 
impact tests are performed for each class of specimen. From the present investigation the following 
results are obtained: 1) the difference between the thermally degraded specimens can be understood 
and distinguished through their microstructures, 2) hardness and tensile strength are increased with 
degradation, while elongation, and impact energy are decreased by increased degradation. 

1. INTROUCTION 

When fossil or nuclear power generation or petroleum distillation equipment is exposed to a high 
temperature environment for a period of time, degradation of the equipment must be considered. 
This degradation results in variations of microstructure and mechanical properties, including 
strength, hardness, impact characteristics, fracture toughness and fatigue crack growth. These 
variations, during normal operational conditions, can cause catastrophic failure of equipment. 
Thirty-five percent of the total failures of power generation equipment, subjected to high pressure 
and temperatures in a nuclear power plant, is caused by material degradation[l] while the majority 
of failures result from poor maintenance. The frequency of failure is increased with the degradation 
of equipment in the reactor coolant system[2] of nuclear power plants. 
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Thermal embrittlements can be observed in reactor coolant pump bodies(RCP), reactor coolant 
pipes and fittings, surge lines, and the spray heads of pressurizers and so on, which belong to the 
primary pressure boundaries within a nuclear power plant. These materials are made of duplex 
austenite-ferrite cast stainless steel(CF8M). When a CF8M specimen is exposed to temperatures 
ranging around 700 °C for a long period, it is found that the material degradation is caused by a- 
phase[3, 4]. The material degrades through thermal embrittlement when the material is exposed to a 
long period of temperatures below 500 °C. This thermal embrittlement is identified as 475 °C 
degradation[4-8]. Thermal embrittlement is maximum at 475 °C. Material degradation can also be 
observed in pressurized water reactors when the operating temperatures range from 290~330°C 
[9,10]. Thermal embrittlement is caused by the a' phase which is called the precipitation of a Cr- 
rich bcc structure[6-8]. It is important to consider the factors associated with material degradation in 
a nuclear power plant. The degradation is caused by 1) thermal embrittlement in the materials 
structural integrity and 2) the life prediction of the primary coolant system. In the present paper, the 
effects of both a' and a-phase embrittlement on the variations of the mechanical properties are 
investigated using the aged specimen(CF8M) and varying the aging times. 

An accelerated method to degrade the virgin material of CF8M is developed in the present paper. 
In order to reduce the aging time, the specimens for thermal embrittlement were prepared at 430 °C. 
The specimens for the a-phase degradation were prepared at around 700 °C. The specimens for both 
thermal embrittlement and a-phase degradation were divided into five separate classes, depending 
on the aging time. Four classes of the degraded specimen were at 326 °C depending on the aging 
time. They were compared with the degradation of the mechanical properties of the aged specimen 
at 430 °C  and 700 °C, respectively. 

2. ARTIFICIALLY DEGRADED SPECIMEN PREPARATIONS 

The specimens used in the present investigation are ASTM A351 grade CF8M cast stainless steel. 
This type of steel is used in making many different types of equipment, such as pipes, which are 
subjected to high temperatures and pressures. The chemical composition of CF8M including the 
ferrite content which gives major effect on degradation mechanism is given in Table 1. The 
mechanical properties of virgin CF8M material are shown in Table 2. All specimens used in this 
investigation were prepared in the laboratory using a method to accelerate the degradation of the 
material. 

Based on this premisefll, 12], the specimens are prepared at a temperature of 430°C and 700°C, 
respectively, in order to reduce the aging time. They can be escalated rather rapidly to attain the 
appropriate state of degradation. 

Table 1 Chemical composition of CF8M. 

Composition, weight % 

C Mn P S Si Ni Cr Mo Ferrite Content (%) 

0.074 1.21 0.0318 0.0126 1.14 9.59 18.67 2.73 9.6 

Table 2 Mechanical properties of CF8M. 

0.2% Proof 
Strength (Mpa) 

Tensile Strength 
(MPa) Elongation (%) Reduction Area 

(%) 
318 525 68.6 46.5 
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The specimens are prepared at 326 °C, in order to compare the degradation characteristics 
between the a-phase and those specimen at a 475 °C degradations temperature. The 326 °C 
degraded specimens are held 2000, 4000, 6000 and 9000hrs at 326 °C, respectively. The 430 °C 
degraded specimens are held 100, 300, 900, 1800 and 3600hrs at 430 °C, respectively. The 
specimens associated with the a-phase degradation are held for 20min, 5, 15, 50 and 150hrs at 
700 °C, respectively. All of the degraded specimens are quenched in water. It should be noted that 
virgin material in the investigation is defined as material which has not experienced any degradation. 

3. EVALUATION OF DEGRADATION 

3.1 Microstructure of the Degraded Material 
The degraded material from a piece of equipment that has been used for a long period can be 

analyzed and understood through observation of the microstructure. The microstructures of the 
virgin specimen and the degraded specimens that had been subjected to temperatures of 326°C and 
430 °C, respectively, were compared using an optical microscope. These specimens were prepared 
by electrolytic etching using 5 volts for 30sec in a solution of oxalic acid. The etched specimens 
were magnified 400 times through an optical microscope. The microstructure variations in the 
ferrite phase are shown in Fig. 1 (a, b, c). Fig. 1 (b, c) is a specimen that has received maximum 
degradation. The Cr-rich a' , Ni-rich, Si-rich G phases and M23C6 carbide are major elements that 
cause thermal embrittlement. They increase in the ferrite phase or in the grain boundary with aging 
time. These observations are consistent with the results obtained by [5,6]. Therefore, Fig. 1 (b, c) 
can be considered as an identical thermal embrittlement mechanism. The major elements that cause 
thermal embrittlement are precipitated in the entire ferrite phase of the aged specimen at 430°C. 
Those major elements are precipitated in the grain boundary of the austenite-ferrite in the specimen 
that ha been aged at 326 °C 

Similarly, the microstructures of the virgin and the five degraded classes of the specimens at 
various aging times, that were caused by a-phase degradation, were also compared. In order to find 
the amount of a-phase precipitation, an etching reagent which is able to selectively etch a-phase 
degradation was prepared. The etching reagent was a solution of HCl(80ml), HNC>3(5ml), 
H2O(20ml) and CuCi2(lg). The five classes of the specimen degraded by the a-phase, and the virgin 
specimen, were etched in the prepared solution for 30 sec, and then the specimens were magnified 
400X by an optical microscope. These structures are shown in Fig. 1 (d). Fig. 1 (d) is the maximum 
degraded specimen. The a-phase precipitation in the etched specimen are also observed in Fig. 1 (d). 
The amount of a-phase precipitation increase with aging time is shown in Fig. 1 (d). The a-phase 
appears inside the ferrite grains, but the a-phase does not modify their external shape. 
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(a) Virgin (b) 326°C-9000hrs. (c)430°C-3600hrs. (d) 700°C-150hrs. 

Fig. 1 Optical micrographs of virgin, 326 °C, 430 "C  and 700 °C  degraded materials. 
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3.2 Tensile and Hardness Characteristics of Degraded Specimens 
The virgin and degraded tensile test specimens, associated with 430 °C and 700 °C degradation, 

were prepared based on ASTM E 8M-95a (KS B0801) specimen standards i.e. gage length, 10mm, 
width, 5mm, distance of parallel portion, 30mm, radius of the corner, 15mm, thickness and 3mm. 
The elongations, reduction of area and tensile strength of the CF8M (both virgin and degraded 
specimens) were found from the relationship between load and displacement obtained from the tests. 

The tensile strength variations with respect to the aging time of the specimens aged at 326 °C, 
430°C and 700 °C, respectively, are shown in Fig. 2. The strength of the aged specimen at 326 °C 
increases very slowly with aging time and it shows a smaller value than those aged specimens at 
430 °C and 700 "C, respectively. The tensile strength of the aged specimen at 430 °C increases 
rapidly until 300hrs is reached, while it decreases until it arrives at an aging time of 3600hrs. The 
strength of the aged specimen at 700 °C increases rapidly to a maximum strength at 430 °C. 

The elongation variations of the aged specimen at 326 °C decreases slower than those aged 
specimens at 430 °C and 700 °C, respectively, as shown in Fig. 3. Those values are larger than those 
aged specimens at 430"Cor 700°C under identical aging times as shown in Fig. 3. 

The hardness variations of the precipitated phases, (the ferrite, austenitic matrix and a-phases) 
that have been caused by degradation, are measured by a CCD camera that has been attached to the 
micro vickers hardness tester. The hardness tests, applying a load of 10g, were performed using the 
etched specimen prepared for microstructural observation. The measurements were repeated 
twenty(20) times for each degraded specimen. 

The average hardness values of the ferrite phase, associated with aging temperatures at 326 °C 
and 430°C, respectively, are shown in Fig. 4. This includes those a-phase values of the specimen 
aged at 700 °C. The experimental formulas the relationship between the average hardness values and 
aging times for the specimens aged at 326 °C, 430°C and 700 °C, respectively, are shown in Fig. 4. 
The average hardness values of the a-phase increases rapidly with aging time. Hence, it is difficult 
to correlate with the aged specimen at 326°C, while the hardness values aged at 430°C can be 
compared with those aged at 326 °C. The average hardness values aged at 326 °C can be predicted 
using those values aged at 430°C. 

• 326 °C 
■ 430 °C 

i A 700 °C 

"--» 

2000 4000 6000 

Degraded time(hrs) 

2000 4000 6000 

Degraded time(hrs) 

Fig. 2 Tensile strength variations with 
respect to aging times at various aging 
temperatures. 

Fig. 3 Elongation variations with respect 
to aging times at various aging 
temperatures. 
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3.3 Degradation and Impact Characteristics 
Impact tests were performed to study the mechanical property variations caused by degradation. 

The specimens were prepared following the specifications given in ASTM E 23-96. 
The charpy impact energy variations with respect to aging time and the aging temperatures of 

326 °C, 430 °C and 700 °C and room temperature are shown in Fig. 5. The experimental formulas of 
the relationship between charpy impact energy and aging times for various aging temperatures are 
shown in Fig. 5. The impact energy of the aged specimen at 700 "C decreases rapidly with the 
increase of aging time, while the specimen aged at 430 °C can compare with that aged at 326 °C. 
Upper shelf energy decreases depending on the degradation. The amount of upper shelf energy 
decrease varies significantly depending on the aging temperature, i.e. 326 °C, 430°C and 700°C. It 
should be noted those results are not shown in the present results. 

This phenomenon shows a significant difference from Cr-Mo alloy degradation behavior, where 
the FATT moves toward higher temperatures, depending on the aging time, and without variation of 
upper shelf energy values[13]. 

Hv(t3)=205.2000*93.2045(1-exp(-0.0662*t3)) •     326 °C 
■    430 °C 

350 A    700 °C 

*•} J(t,)=163.4509+186.270 3exp(-0.0003-t,) 

o5   300 _j,J(t2)=162.8611+181.5964exp(-0.0022*y 
(D 
c 
CD 

^C^J(t3)=188.0250+163.2936exp(-0.2606't3) 

CO    250 

E 

i M     s^ 
\^» 
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2000 4000 6000 

Degraded time (hrs) 

2000 4000 6000 

Degraded time (hrs) 

Fig. 4 Vickers hardness variations caused 
by aging time for various degraded 
materials   depending   on   aging   time. 

Fig. 5 Charpy impact energy variations 
with respect to aging times at various 
aging temperatures(at room temperature). 

4. CONCLUSIONS 

The degraded CF8M specimen used in reactor coolant systems(RCS) are prepared by an 
artificially accelerated aging technique. The specimens are aged at 326°C, 430 °C and 700°C, 
respectively, and at various aging times. Microstructure observations, hardness and impact tests are 
performed using degraded specimens aged at various temperatures and aging times. Through a 
series of tests the following results are obtained: 
1. The degradations at 326 °C, 430"C and 700 °C can be distinguished by microstructure 

observations. Mechanisms of degradation at 326 °C and 430 °C are considered on identical 
degradation mechanism. 

2. Hardness and tensile strengths increase with aging time, while elongation decreases. 
3. Upper shelf energy values decrease with the increase of aging time and those values are 

significantly lower depending on degradations than that of the virgin specimen. 
4. The experimental formula between the hardness and aging time relationship is obtained. The 
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mathematical relationship between impact energy and aging time is found. These results can be 
referred to predict those values that have aged at various temperatures. 

5. Degradation at 326 °C of the component(CF8M) used in the RCS can be evaluated using the 
results of 430 °C degradation rather than using the degradation results at 700 °C. 
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ABSTRACT 

In the present study, in order to evaluate the effects of temperature on the damage behavior of 
an adhesively bonded joint, the stress-strain relations for two types of specimens have been 
measured under cyclic loading tests at various testing temperatures. One of the specimens is an 
adhesively bonded butt joint specimen (joint specimen) and the other is a bulk one. Rubber 
modified epoxy (RM-epoxy) adhesives with three different rubber contents were used for the 
specimens. From the results of the experiments, a damage parameter D which is defined as the 
reduction in the elastic modulus from the initial value was obtained, and the damage behavior of the 
specimen was evaluated by the values of D. The effects of temperature on the damage behavior of 
the adhesive layer in the joint specimen and the bulk specimen with different rubber contents were 
then compared and the damage behavior of the adhesive layer in the joint specimen was 
investigated. 

1. INTRODUCTION 

In recent years, rubber modified epoxy (RM-epoxy) adhesives have been widely applied to the 
structure fields owing to its high toughness. The toughening function in RM-epoxy resin is due to 
energy dissipation caused by the microdamage formations such as micro crackings and cavitations 
around the rubber particles. These microdamage formations occur in the vicinity of the crack tip 
[ 1,2]. These damages make the materials toughened, but they are the factors of strength reduction. 
Hence, to apply RM-epoxy adhesives to structural adhesive bondings with high reliability, it is 
necessary to clarify their damage behavior. However, it has not yet been clarified. Additionally, 
it is considered that temperature is very important among the parameters affecting the damage 
behavior of the adhesives. Recently, damage in materials is evaluated by using acoustic emission, 
variations of the elastic modulus, ultrasonic wave propagation, and so on [3]. When the damage 
behavior of the adhesive layer of bonded joints is investigated, a damage parameter D designating 
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the degradation of the elastic modulus is convenient for evaluating damage due to the easiness of 
their measurement. The stress-strain curves of the bulk adhesives are usually used when the stress 
analysis of the bonded joints is performed. It is predicted that the damage behavior of the adhesive 
layer in the bonded joints differs from that of the bulk adhesives, since the deformation of the 
adhesive layer having a very thin thickness is constrained by the adherends. 

In this study, in order to evaluate the effect of temperature on the damage behavior of 
adhesively bonded joints, the stress-strain curves for two types of the specimens have been 
measured under uniaxial cyclic loading tests at various testing temperatures. One of the specimens 
is an adhesively bonded butt joint specimen (joint specimen) and the other is a bulk one. From the 
results of the experiments, the damage parameter D which is defined as the reduction in the elastic 
modulus was obtained [3]. The effects of temperature on the damage behavior of the adhesive 
layer in the joint specimen and the bulk specimen with different rubber contents were then 
compared, and the damage behavior of the adhesive layer in the joint specimen was investigated. 

2. EXPERIMENTAL PROCEDURE 

2.1. Materials and Specimens 
The adhesives used for the specimens are shown in Table 1. They are unmodified epoxy 

(UM-epoxy) (Asahi Denka Kogyou: EP4100-E), and three kinds of RM-epoxy (JSR: XER-91) in 
which the rubber particle weight fractions (R) are 3%, 7%, and 14%. The curing agent used in the 
experiments is piperidine. The average diameter of the rubber particles is 70nm. The RM-epoxy 
with R=3% and 7% were prepared by mixing UM-epoxy resin with the RM-epoxy in which rubber 
particles of 14% were included. Fig.l shows the shape and dimensions of the butt joint specimen. 
The material used for the adherend is JIS S45C steel. The adhesive layer thickness was controlled 
to be nominally 0.3mm. The adherend surfaces were treated for bonding by dry polishing with 
320-grade emery paper and washing with acetone. The bulk specimen has a dog-bone shape and 
the details are defined in JIS K7113. The bulk and joint specimens were cured in a furnace for 5 
hours at 160*0. 

Table 1 Adhesives used for the specimens. 

Name Rubber contents 
(wt%) 

Composition of adhesives (gr.) 

R14 14 
* Xer-91                                    50 
* Piperidine                              1.6 

R7 7 

• Xer-91                                     25 

• EP-4100                                 25 

• Piperidine                             1.6 

R3 3 
• Xer-91                                io.7 

• EP-4100                             39.3 

• Piperidine                             1.6 

UM-epoxy 
' EP-4100                              50 

• Piperidine                           2.5 
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Fig.l. Shape and dimensions of butt joint specimen. 

2.2. Measurements of damage behavior 
The bulk and joint specimens were tested by a universal material testing machine at testing 

temperatures (T)=23'C, 40X3 and öCTC under uniaxial cyclic loading conditions. The specimens 
with various rubber contents were loaded at a constant crosshead speed of 0.5mm/min. In the 
uniaxial cyclic loading tests, the specimens were loaded until showing nonlinear behavior and then 
were unloaded until the stress-strain curve became straight. The specimens were then reloaded 
and unloaded repeatedly until they broke, as shown in Fig.2 designating the stress-strain curves in 
the experiments. The strains of the bulk specimens and those of the joint specimens were 
measured by a strain measurement system using a CCD camera and the electric resistance wire 
strain gauges, respectively. Since the measurement area of the strain gauges includes the 
adherends, as shown in Fig.l, the strains of the adherends are included in the measured values. 
Therefore, the strains of the adhesive layer were calculated from the measured values of the strain 
gauges. From the obtained stress-strain curves, the damage parameter D which is defined as the 
degradation of the elastic modulus was obtained. The damage parameter D can be expressed by 
the following equation [3]: 

£>=!- 
E (1) 

where E and Eeff show the initial value of the elastic modulus and the degraded one during reloading, 
respectively. 

3.RESULTS AND DISCUSSION 

3.1. Influence of rubber contents 
Fig.2 shows the stress-strain curves of the bulk specimens with various rubber contents at 

T=23'C. The stress-strain curves of R7 and R14 indicate nonlinear behavior. In their cyclic 
loading tests, the stress-whitening phenomenon was observed after they indicated nonlinear 
behavior, but it was not observed in the case of the R3 and UM-epoxy specimens. Therefore, the 
nonlinearity of the stress-strain curves of R7 and R14 are interpreted as a result of the damage. 
For the purpose of investigating the damage behavior of the bulk specimens, the values D are 
plotted against the total strain as shown in Fig.3.   The values D increase with increasing R.   In the 
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Fig.5 Comparison between the damage parameters 
D of the bulk and joint specimens (T=23°C). 

case of R14, the maximum value of D is 0.42. This value is too large, so both void nucleation and 
micro crackings are expected to cause damage in the bulk specimens. The relation between D and 
the total strain of the joint specimens is summarized in Fig.4. The values D of R14 are higher than 
those of R3 and R7 and the damage behaviors of R3 and R7 indicate almost the same. The 
damage behavior of the bulk and joint specimens are summarized in Fig.5. The value D of the 
joint specimen starts to increase at a smaller total strain than that of the bulk specimens. Since the 
deformation of the adhesive layer is constrained by the adherends, the stress state of the joint 
specimens is triaxial. From the results shown in Fig.5, it can be stated that the values D of the 
joint specimens are higher than those of the bulk specimen. Additionally, it is known that the 
stress state changes from the plane strain to the plane stress in the damage zone [4]. The degree of 
the stress triaxiality in the adhesive layer decreases with increasing damage around the rubber 
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particles. It can be stated that the values D designating the degradation of the elastic modulus in 
the joint specimens are attributed to both an increase of void nucleation and micro cracking and a 
decrease of stress triaxiality. Therefore, it is considered that the values D of the joint specimens 
show higher values than those of the bulk specimens. 

3.2. Influence of testing temperature 

Figs.6 (a) and (b) show the stress-strain curves of the bulk specimens with two rubber contents 
at various testing temperatures (T). The elastic moduli decrease with increasing T for all 
specimens. The degree of decrease in the elastic moduli of the R7 specimen is more remarkable 
than that of the R14 specimen. The stress-strain behavior of R14 is affected by the rubber particles 
more than that of R7, since the rubber particles of R14 are more than that of R7. From the 
experimental results and the effect of the rubber particles on the stress-strain behavior, it is 
considered that the rubber particles make the specimen soft at T=23t) and make it hard at T=60t:. 
The effects of the temperature on the damage behavior of the bulk specimens are shown in Fig.7. 
The values D decrease with increasing T in both specimens. These decreases can be explained by 
the damage due to micro cracking which tends to decrease with increasing T for the increasing 
ductility of the matrix. Fig.8 shows the effect of temperatures on the damage behavior of the joint 
specimens. The values D increase with increasing R, but no significant difference is observed in 
the damage behavior of the joint specimens. This is a questionable result, because the damage, 
such as micro cracking in the adhesive layer, is expected to decrease with increasing T for its 
increasing ductility. Therefore, it is considered that there is another reason why the damage 
behavior of the joint specimens are not affected by T. One of the expected reasons is the effects of 
the stress triaxiality on the damage behavior in the joint specimens. To evaluate the effect of 
temperature on the damage behavior of the joint specimens more exactly, the effects of stress 
triaxiality in the adhesive layer should be investigated in detail. 
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Fig.6 Stress-strain curves of the bulk specimens at various testing temperatures 

for the R7 and R14 specimens. 



588 Fracture and Strength of Solids 

1 

P0.8 
4> 
13 
§0.6 
X a, 
|>0.4 
e 
Q0.2 

0 

AT=23t:' 
R14    [■T=40'C 

• T=60CC 

R7     LoT=40t) 
OT=6(TC 

*■    A 

A 

D» 

0 
JIDI .jffi.. *9. 
12      3      4      5      6      7 

Total strain (%) 

Fig.7 Damage parameters D of the bulk specimens at the various temperatures. 

QO-8 

Ö 

6 0.6 
cd 

Ü 
ao.4 

°0.2 

R14 

R7 

>' 

tAT=23'C 
■T=40°C  -I 
•T=60"C 
[AT=23t: 
01=40^ : 
OT=60t: • 

0 

#A 

. A. . i . 

0      12     3      4      5      6      7 
Total strain (%) 

Fig.8 Damage parameters D of the joint specimens at the various temperatures. 

CONCLUSIONS 
In this study, the effects of temperature and the rubber contents on the damage behavior of the 

adhesive layer in joint specimens have been investigated. We can give the following conclusions. 
Due to the reduction in stress triaxiality of the adhesive layer, the damage of the joint specimens 
evaluated by the elastic modulus is higher than that of the bulk specimens. The values D of the 
bulk specimens decrease with increasing temperatures, but there is no significant difference in the 
damage behavior of the joint specimens. In order to make these results clear, further investigation 

is needed. 
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ABSTRACT 

A series of tests with three groups of low carbon alloy steel were performed and the influence of 
yield strength (ay), crack depth /specimen width (a/W) on COD-decrease-parameter m is studied. 
Results show that, m decreases with increasing ay and the decreasing rate is getting smaller when ay 

increases further. The curve of m versus ay is hyperbolical and the equation may be given as 
m=o-y(1.57cjy-753). Results also show that the stretched zone width 1 which is implicated in the 
plastic zone R, may affect m values significantly, and that 1 increases with decreasing a/W and 
decreasing oy. Further analysis is discussed and show that the COD value is more sensitive to a/W 
than the J-integral value, that is, when a/W decreases further, COD value increases faster than J- 
integral value. Thus, the lower a/W ratio which has a lower oH, yields a lower m value. 

1. INTRODUCTION 

J-integral and COD, as two important fracture-characterizing parameters in elatic-plastic fracture 
mechanics are already well developed and used in industrial applications. It is of significance to 
study the relationship between these two parameters for both theoretical investigation and 
engineering practice. Theoretical and experimental results suggest that the J-COD relation is 
normally represented as 

j=mOy6 (1) 

where ay is the yield strength . 
From Eg.l, we can see that the value of m is important for learning J-COD relation. Many 

factors affect the value of m, among them, the parameter oy and the ratio of crack depth/specimen 
width (a/W) are the most important ones. 

Some works have previously shown the effect of o"y and a/W on m [1-5]. However, the equations 
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about these parameters are not available yet. Some testes were therefore performed and an equation 
is given in this paper. 

2. EXPERIMENTAL PROCEDURE 

Three groups of low carbon alloy steel 20Cr2Ni4A, 17Cr2Ni2Mo and 12CrNi3A (represented as 
A, T, W respectively) are used. The chemical composition are given in Table 1, and Table 2 gives 
their heat-treatment process. 

Table 1 Chemical Composition of Three Steels 

Si        Mn        Cr        Ni        Mo 

20Cr2Ni4A 
(Steel A) 

17Cr2Ni2Mo 
(Steel T) 

12CrNi3A 
(Steel W) 

0.17      0.30      0.45      1.42      3.75 0.20       0.023 

0.18      0.32      0.52      1.65      1.55      0.29      0.021      0.028 

0.13      0.29      0.51      0.81      2.95 0.008       0.022 

Table 2 Heat-treatment Process of Specimens 

Specimen 
number Heat-treatment process 

A181,T181 
A185,T185 

A501J501 
A505.T505 

A551,T551 

A601,T601 
A605,T605 

A655,T655 

T1-T5 
W1-W5 

920 °C oil quench+180 °C temper 

920 °C oil quench + 500 °C temper 

920°C oil quench + 550°C temper 

920 °C oil quench + 600 °C temper 

920 °C oil quench + 650 °C temper 

920°C pseudo-carburizing air cold + 650°Ctemper 
+ 840 °C oil quench + 180"C temper 

Specimens for tensile test are of O 8 * 40 (mm) and the three-point single-edge notched bend 
(SENB) specimens are of 12.5 * 25 * 120 (mm). The crack depth /specimen width ratio (a/W) are 
0.1,0.2,0.3, 0.4 and 0.5 respectively . 

The tensile properties and toughness tests were carried out on an Instron 1341 testing machine of 
100 KN capacity and a MTS.810 one of 250KN capacity respectively. P-V and P-A plots were 
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recorded simultaneously by two X-Y recorders.   After the tests, specimens were marked by heat 
tinting and then broken at low temperature.   The crack length a and crack extension Aa were 
measured with an optical micrometer with 0.001 mm per division. 

All tests were made at room temperature. 

3. EXPERIMENTAL RESULTS AND DISCUSSION 

The relationship of m and ay is shown in Fig.l and 2. m versus a/W ratio is represented in Fig.3 . 
Figure 4 shows the relation of stretched zone width 1 and a/W. Figure 5 gives a relation of 1 versus 
cjy and Figure 6 gives m vs 1. 
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From Figs. 1 and 2, we may see that the curve of m versus a is hyperbolical, and we have the 
regression equation as follow (for a/W=0.5) : 

m = CTy/(1.57cy-753) (2) 

That is, m decreases with increasing cry (and the decreasing rate is getting smaller when ay 

increases further). 
From Fig. 3, we may see that m is affected by a/W,but not very apparent. 
Figs. 4, 5 and 6 shows the effect of stretched zone width 1, which is implicated in the plastic 

zone R. We may see that 1 increases with decreasing a/W and also with decreasing yield strength ay, 
and that m increases with increasing 1 apparently. 

4. FURTHER ANALYSIS 

4.1 The effect of a/W on m: 
Shin [6] has shown that 

m= 0.364 r,/[ (l+n)rp] (3) 

Where rp is the plastic rotational factor, r\ is the correction factor and 

r\= 13.65 (a/W)/(1+4.63 a/W) (4) 

therefore 

m = 4.97 (a/W)/ [(1+4.63 a/W) (1+n) rp] (5) 

We may see that m is affected by a/W, n and rp. For ductile low / medium strength steels, rp is 
about 0.45, and for the steels used present, we may take n=0.1, then Eg.5 may be as follow: 

m= 4.97 (a/W) / (0.495+2.29 a/W) (6) 
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From Eg.6, we may see that m increases with increasing a/W. However, D.Z.Zhang [7] has 
shown that rp increases with increasing a/W, which means that m increases more slowly or even 
decreases when a/W further increases (from Eg. 5 ). Our experimental results are in agreement with 
it. But we may not conclude any general trend about m vs a/W simply. Since besides rp, m is also 
affected by the hardending exponent n. Further study is needed. 

4.2. The effect of both 1 and a/W on m: 
Previous work [8,9] have shown that when a/W decreases, the hydrostatic stress erfand also the 

stress field intensity) decreases. The present work shows that, when a/W decreases, the stretched 
zone width 1, (and also the plastic zone R) increases, therefore, the Ap and Vp values which 
determine the J and COD values, increase accordingly. (Ap— the load-point displacement, Vp—the 
crack mouth displacement). 

However, J increases more slowly than COD since J is affected by both the increasing Ap and the 
decreasing CTH (and also the decreasing stress field intensity), whereas COD is affected mainly by the 
increasing Vp: 

5 = (1 -o2)K2 / 2 Gy E + rp (W-a) Vp/[(rp (w-a) + a +z] (7) 

We may therefore conclude that the COD value is more sensitive to a/W than the J-integral 
value. In another words, when a/W decreases further, COD increases faster than J-integral. Thus, 
the lower a/W ratio which has a lower CTH, yields a lower m value. 

This conclusion may also explain the results of Q.F.Li [10], where Jj values for a/W =0.17 are 
about 1.6 that for a/W=0.5, whereas 8; values are about 2. 

4.3. The relation of ory and m: 
Robinson [11] pointed out that m increases with increasing plastic zone R. In our test ( Fig 1, 2 

and 5 ), with increasing temperature, ay decreases and 1 increases rapidly, and the hardening 
exponent n increases accordingly. It means that lower ay (i.e, larger 1 or R) yields higher m values 
(when a/W is constant). This is in agreement with Robinson. 

From the formula given by Chen Chi [ 12]: 

J=m'Gy5e + (-^-x— )ay5p (8) 
1+ n     ay 

We have 

J=m'ay8e+a0y8„ (9) 

where m' is the elastic factor and a the plastic. Normally m'#oc. Compare Egs.l and 9, we 
know that m is interrelated with m' and a. However, for ductile meterials, the elastic component is 
negligible, we therefore have 

m« a= o/[(l+n)ay] (10) 

We may easily see that m increase with decreasing ay. 
We deduced the Eg.2 from the test data by regression analysis. Further tests were made to check 

their correctness. The error is about 7.6-8.9%, which means that the equation is usable in 
engineering practice.    However, it is on condition that 0.04 <n< 0.10.    For other n values, 
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correction is necessary. 

5.   CONCLUSION 

(l)COD-decrease-parameter m decreases with increasing <jy, and the curve of m versus ay is 
hyperbolical. 

(2) The effect of a/W on m is not very apparent. 
(3) Stretched zone width 1 may affect m values significantly and m increases with increasing 1 

linearly. 
(4) COD value is more sensitive to a/W than J-integral value. 
(5) The regression equations of m and oy in this paper is usable in engineering practice. 
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ABSTRACT 

Ni-base Alloy 600 has been widely used as a steam generator (S/G) tubing material in nuclear 

power plants because of its good mechanical and corrosion properties at high temperatures. 
However, degradations of S/G tubes due to intergranular attack (IGA) and intergranular stress 

corrosion cracking (IGSCC) during normal operation were frequently reported. In particular, Alloy 
600 can be very susceptible to IGA/IGSCC in some sulfur-bearing environments by sensitization. 

In this paper, the beneficial effects of laser surface melting (LSM) to intergranular corrosion of the 
sensitized Alloy 600 is presented from the results of the double loop electrochemical potentiokinetic 

reactivation (DL-EPR) test. The DL-EPR test was performed in de-aerated 0.01 M H2S04 + 20 
ppm KSCN at a scan rate of 0.5 mV/sec at room temperature. The degree of sensitization (DOS) of 

the sensitized Alloy 600 measured from the DL-EPR test was considerably reduced by LSM. The 
sensitized Alloy 600 after LSM also exhibited a relatively low DOS, comparing with that of the 

sensitized but not laser treated Alloy 600. From the microscopic observation, it was found that the 
microstmctural changes by the LSM process, especially changes in the precipitation behavior of 

grain boundary Cr-rich carbides, caused the improvement of resistance to intergranular corrosion of 
the laser treated Alloy 600. The resistance to IGSCC of the laser treated Alloy 600 in sulfur-bearing 

environments was also discussed from the results of measured DOS and micro structural 

examination 

1. INTRODUCTION 

It is now well recognized that Ni-base Alloy 600 is susceptible to inter-granular 
attack/intergranular stress corrosion cracking (IGA/IGSCC) under pressurized water reactor 
operating conditions [1]. In particular, the precipitation of Cr carbides and the resultant creation of 
Cr depleted zones in the vicinity of the grain boundaries (commonly called 'sensitization') is known 
to play an important role in determining the alloy's susceptibility to IGA/IGSCC [2]. Once being 
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sensitized, Alloy 600 can suffer a vital intergranular fracture in the sulfur-bearing environments 
such as sodium thiosulfate (Na2S203), and sodium tetrathionate (Na^Cy solutions even at low 
temperatures [3]. 

Laser surface melting (LSM) is one of the laser application techniques to improve the surface 
properties of materials such as corrosion and wear. LSM can be applied to repair the tubes degraded 
by IGA/IGSCC during normal operation of the nuclear power plants, since the laser beam can easily 
be directed to the failed parts through a beam transmission system such as an optical fiber. From the 
previous studies, it was demonstrated that LSM improved the resistance to IGA/IGSCC of the 
sensitized Alloy 600 in sulfur-bearing environments [4], mainly due to the metallurgical changes 
induced by the laser treatment [5]. During the failure by IGSCC, a crack starts at the free surface 
and propagates through a connected pathway of the susceptible grain boundaries. Therefore, the 
corrosion resistant surface formed by LSM can provide an effective barrier between the corrosion 
environment and the underlying sensitized alloy. 

The double loop electrochemical potentiokinetic reactivation (DL-EPR) test, originally proposed 
by Umemura et al. [6], was found to be fast, quantitative, and reproducible in measuring the degree 
of sensitization (DOS) of alloys. The DL-EPR method has also been used for providing an 
indication of sulfur compound attack susceptibility to IGSCC by measuring DOS in the alloys 

The present work was aimed to investigate the effects of LSM on the intergranular corrosion of 
the sensitized Alloy 600 by DL-EPR test. The measured DOS under the given DL-EPR testing 
condition was analyzed in terms of the microstructural changes caused by the LSM process. Finally, 
the resistance to IGSCC of the laser treated Alloy 600 in sulfur-bearing environments was evaluated 
from the experimental results. 

2. EXPERIMENTAL PROCEDURES 

2.1 Specimen Preparation 
Mill annealed Alloy 600 plates 1.6 mm thick were used in this study, and the alloy composition 

is shown in Table 1. The specimens were sealed in a quartz tube, solution annealed at 1050 °C for 
30 minutes, and then water quenched (hereafter, referred to as SA Alloy 600, in short). Some of the 
SA Alloy 600 were subsequently sensitized at 600°C for 24 hours and then followed by furnace 
cooling (hereafter, SA+SEN Alloy 600). 

Table 1. Chemical composition of the specimen used (wt%) 

Ni        Cr       Fe        C N S Si       Mn       Al        Ti       Nb      Mg 

Bal.     15.9      7.6     0.04      0.04    0.002    0.15     0.17     0.12     0.21       tr.      0.008 

A continuous C02 laser beam was used, and the details of the LSM procedure are described 
elsewhere [5]. Some of the LSM specimens (hereafter, LSM Alloy 600) were also subsequently 
sensitized under the same conditions as for the SA+SEN Alloy 600 (hereafter, LSM+SEN Alloy 
600). The specimens for scanning electron microscopy (SEM) observation were made by etching 
the polished samples with a solution of 2 % HC1 and 98 % methanol at 6 V for about 3-5 seconds. 

2.2 DL-EPR Test 
Cu-wire was spot-welded to one side of each specimen, mounted in epoxy resin, and ground to 

2000 grade silicon carbide. To avoid crevice corrosion, the specimen-mount interface was carefully 
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coated with a thin film of silicone sealant. Approximately 1 cm2 of the surface was exposed to the 
test solution. All solutions were prepared from double-distilled water and the chemicals of 
analytical-grade reagents. Test solution chosen for the evaluation of DOS in Alloy 600 was 0.01M 
H2S04 with addition of 20 ppm KSCN. The test solutions were de-aerated by purging with purified 
N2 gas, before and during each DL-EPR test. 

The DL-EPR test was performed using a three-electrode cell system consisting of a saturated 
calomel electrode (SCE) as a reference, a platinum (Pt) electrode as an counter, and a specimen as a 
working electrode. The sample was kept immersed in the test solution for 0.5-1 hour at open- 
circuit potential. After obtaining the stable corrosion potential (Ecorr), the potential was raised in the 
anodic direction, from the value of Econ to a potential in the passive range, at a scan rate of 0.5 
mV/sec. After attaining the pre-determined potential (600 mVSCE), it was followed by a reactivation 
scan back to Ecorr All the potentials are referred to a saturated calomel electrode (SCE). All the tests 
were performed at a room temperature of 25 °C - 27 °C. The DL-EPR test in different solutions 
was repeated at least twice for each specimen to ensure reproducibility. 

3. RESULTS 

3.1 Results from DL-EPR Test 
Before a DL-EPR test, an immersion test of C-ring specimens was primarily conducted to 

confirm the effects of sensitization heat treatment on the fracture behavior of Alloy 600 in 0.1 M 
Na2S40 6 solution. After 18 hours of immersion, cracking was found to start on the outer-diameter 
side, and the maximum-length crack propagated into approximately 80% of the thickness of the Co- 
ring after 86 hours of immersion. The fracture surfaces after C-ring tests revealed a fully 
intergranular type, as shown in Fig. 6.1(a). From the above results, it can be concluded that the 
sensitization treatment at 600 °C for 24 hours was suitable to exhibit a high susceptibility to IGSCC 
for Alloy 600 in the sulfur-bearing corrosive environments. 
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Fig. 1 (a) Fracture surface of the SA+SEN Alloy 600 after C-ring test, (b) a typical DL-EPR curve, 
and (c) DOS measured from the differently treated Alloy 600. (b) and (c) were obtained in 0.01M 
H2S04 + 20 ppm KSCN solution at a scan rate of 0.5 mV/sec at room temperature. 

Fig. 1(b) shows a DL-EPR curve typically obtained from the SA+SEN Alloy 600 under the 
present DL-EPR testing conditions. DOS is defined, in Fig. 1(b), as the percent ratio of the 
maximum current density in the reactivation loop (Ir) to that in the anodic loop (Ja), i.e., Ir I Ia x 100. 
It is evident from Fig. 1(c) that the measured DOS values from the LSM Alloy 600 and LSM+SEN 
Alloy 600 were considerably reduced by the laser treatment. The average DOS value of the LSM 
Alloy 600 was measured as 3.42, which was considerably lower than 16.5 of the SA+SEN Alloy 
600. The average DOS value of the LSM+SEN Alloy 600 was measured as 8.71, which was still 
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lower than that from the SA+SEN Alloy 600. From the above results, it can be concluded that the 
LSM Alloy 600 and the LSM+SEN Alloy 600 are more resistant to intergranular corrosion than the 
SA+SEN Alloy 600 in the given corrosive environment. 

3.2 Microstructural Examination 
Fig. 2(a) shows a typical distribution of intergranular Cr-rich carbides in the SA+SEN Alloy 

600. By the sensitization treatment, nearly continuous Cr-rich carbides were precipitated on most of 
the grain boundaries, excluding the special boundaries such as coherent twin boundaries and low- 
angle grain boundaries, as shown in the Figure. The high DOS values of the SA+SEN Alloy 600 
should, therefore, reflect the distribution morphology of Cr-rich carbides and the severe Cr 
depletion along the grain boundaries in the alloy. The typical microstructures of the LSM Alloy 600 
and the LSM+SEN Alloy 600 are shown in Fig. 2(b) and 2(c), respectively. 

.(a) (b) (c) 

Fig. 2 Typical microstructures of (a) the SA+SEN Alloy 600, (b) the LSM Alloy 600, and (c) 
LSM+SEN Alloy 600, etched in a solution of 2% HC1 and 98% methanol. 

Fig. 2(b) shows the particles formed in the laser melted zone (LMZ) during the LSM process. 
No Cr-rich carbides are seen on the grain boundaries in Fig. 2(b). This result is originated from the 
fact that pre-existing Cr-rich carbides of the sensitized Alloy 600 had been completely 
melted/dissolved due to the high energy density of a laser beam. Moreover, Cr-rich carbides were 
not re-precipitated during cooling due to the high cooling rate during the LSM process [5]. 
Therefore, low DOS of the LSM Alloy 600 is caused by the de-sensitization (or, disappearance of 
the Cr depletion zones) due to the LSM process. The tiny particles along the cell boundaries, 
identified as TiN and MgS, are formed by dissolution and subsequent re-precipitation of the pre- 
existing coarse TiN and MgS inclusions in the commercial Alloy 600 during the LSM process [7]. 

The second phases in the LSM+SEN Alloy 600 are shown in Fig. 2(c). There were no 
noticeable changes in the tiny particles of TiN and MgS, by the sensitization treatment. However, 
some Cr-rich carbides are seen on some grain boundaries in Fig. 2(c). They were identified as Cr- 
rich M23C6 and Cr7C3 [8], the same is found in the case of the SA+SEN Alloy 600 [5]. The average 
size of the Cr-rich carbides precipitated on the grain boundaries in the LSM+SEN Alloy 600 was 
much smaller than that in the SA+SEN Alloy 600. Moreover, they were sparsely distributed on 
grain boundaries, and were found only on some high angle grain boundaries. The degree of Cr 
depletion on the grain boundaries was, therefore, not severe. The minimum Cr concentration on the 
grain boundaries was measured as 12 wt% [8], which was considerably higher than 7.3 wt% of the 
SA+SEN Alloy 600 [5]. Therefore, it can be concluded that the laser treatment suppressed the 
precipitation of grain boundary Cr-rich carbides in Alloy 600, and this led to the low DOS value of 
the LSM+SEN Alloy 600. 
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3.3 Surface Morphologies after DL-EPR Test 
The grain boundary attack in the SA+SEN Alloy 600 after the DL-EPR test is shown in Fig. 3. 

The grain boundary attack was clearly revealed by the addition of 20 ppm KSCN, without any 
intergranular and intragranular pitting (Fig. 5(3)). It demonstrates that the DL-EPR testing 
conditions employed in the present experiment were suitable for measuring the degree of 
sensitization of the fully sensitized Alloy 600, i.e., grain boundary attack occurred without any 
noticeable general corrosion and pitting corrosion in the matrix. 

i(a)r. MWs:m II !(C)?' 
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Fig. 3 SEM micrographs showing the surface morphologies after DL-EPT test (a) for the SA+SEN 
Alloy 600, (b) the LSM Alloy 600, and (c) the LSM+SEN Alloy 600, in 0.01M H2S04 + 20 ppm 
KSCN solution at a scan rate of 0.5 mV/sec at room temperature. 

The grain boundary attacks in the LSM Alloy 600 and the LSM+SEN Alloy 600 after the DL- 
EPR tests are shown in Fig. 3(b) and 3(c), respectively. The LSM Alloy 600 did not experience any 
grain boundary attacks, as shown in Fig. 3(b). The white contrast along the cell boundaries in Fig. 
3(b) resulted from the different dissolution rates of the elements. Chromium was more enriched 
along the cell boundaries due to the micro-segregation formed during the laser treatment [5]. The 
regions around the cell boundaries were, therefore, more corrosion resistant due to the enriched Cr 
content than those inside the cells in acidic solutions. Fig. 3(c) shows the grain boundary attack in 
the LSM+SEN Alloy 600. As shown in the Figure, only some grain boundaries were discretely 
attacked, and the attacked morphology denotes exactly the distribution of grain boundary Cr-rich 
carbides (Fig. 2(c)). 

4. DISCUSSION 

Ahn et al. [9] suggested the optimized DL-EPR testing conditions be performed in de-aerated 
0.01 M H2S04 + 20 ppm KSCN solution at a scan rate of 0.5 mV/sec at room temperature, to 
predict the susceptibility to IGSCC in Na^O,; solutions by the measured DOS. However, the 
optimized conditions can be varied from test to test due to the different heat treatment procedures 
resulting in the different extents of grain boundary Cr depletion in the alloys. In the present study, 
the best results were obtained with the addition of 20 ppm KSCN, i.e., clean grain boundary attacks 
and suppression of general and pitting corrosion. 

The average DOS value was considerably reduced, and grain boundary attack was not observed 
in the LSM Alloy 600 (Fig. 1(c) and Fig. 3(b)). From the microstructural examination, it was 
demonstrated that the microstructural changes of the grain boundaries in the sensitized Alloy 600 
by the LSM process resulted in the improvement of the resistance to intergranular corrosion of the 
alloy. Suh et al. [4] found that the fracture mode of the sensitized Alloy 600 was changed by LSM, 
i.e., from a brittle intergranular fracture of the SA+SEN Alloy 600 to a typical ductile transgranular 
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failure of the LSM Alloy 600. Moreover, the stress corrosion cracks propagating from the free 
surface into the center of the sensitized specimen were arrested by the laser-melted track, making 
the further propagation into the laser treated region impossible [4]. 

Any continuous grain boundary attack was not observed in the LSM+SEN Alloy 600 with the 
sufficiently reduced DOS value (Fig. 1(c) and Fig. 3(c)). Was et al. [10] found, from Heuy and 
Streicher tests, that severe IGA occurred when the measured Cr concentration on the grain 
boundary was below 9 wt% with a nearly continuous distribution of grain boundary Cr-rich 
carbides. Therefore, the LSM+SEN Alloy 600 should have a high resistance to IGA in acidic 
environments. Kai et al. [2] showed that the critical Cr concentration to prevent the IGSCC failure 
was around 8 wt% from the constant load test with the applied stress of 390 MPa, pH of 3, and the 
Na2S203 concentration of 0.001 M to 0.1 M at room temperature. Therefore, it can also be expected 
that the LSM+SEN Alloy 600 have the high resistance to IGA/IGSCC in sulfur-bearing 
environments as well. 

5. CONCLUSIONS 

1. The sensitization treatment of Alloy 600 at 600 °C for 24 hours induced a severe brittle 
intergranular fracture in neutral 0.1 M Na2S406 solution, due to the precipitation of nearly 
continuous grain boundary Cr-rich carbides and the severe Cr depletion on the grain boundaries. 
The present DL-EPR testing conditions revealed the high DOS value in the sensitized Alloy 600 
with suppression of other types of corrosion such as general and pitting corrosion. 

2. LSM improved the resistance to IGA/IGSCC of the sensitized Alloy 600 by sufficiently 
reducing the average DOS value. The average DOS value of the LSM+SEN Alloy 600 was also 
much lower, comparing with that of the SA+SEN Alloy 600. From these results, it can be expected 
that the LSM Alloy 600 and the LSM+SEN Alloy 600 have a high resistance to IGA/IGSCC in 
acidic and sulfur-bearing environments. Consequently, the LSM technique was shown to be an 
attractive method to repair the failed S/G tubes in the nuclear power plants. 
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ABSTRACT 

Prior to catastrophic fracture for notched FRP plates under static load, the damage appears and 
grows near the notch root. The validity of the failure criterion based on idea of severity near the 
notch root for evaluating the damage of notched FRP plate is investigated experimentally in this 
paper. An experimental method is presented which examines the effect of notch geometry on the 
initiation and growth of the damage near the notch root of FRP plates subjected to tension. The 
investigation was accomplished by obtaining experimental data on the tension test of a glass fiber- 
reinforced polycarbonate plate containing notches for wide range of notch geometries. To evaluate 
the damage near the notch root, we measured successively the luminance distributions by means of 
the luminance measurement technique with a CCD camera. The experiment shows that the 
process of the initiation and growth of damage near the notch root is determined by both the 
maximum elastic stress and notch-root radius for sharp-notched specimens. On the other hand, for 
blunt-notched specimens, the process of the initiation and growth of damage is determined by the 
terms of a combination of the maximum elastic stress, notch-root radius and width of notch section. 
On the basis of the idea of severity near the notch root mentioned above, the experimental results 
can be explained. 

1. INTRODUCTION 

Because of their importance in design applications, the strength and fracture behavior of 
notched FRP plates have been the subject of much research. In the studies on the fracture behavior 
of notched FRP plate, it is noted that the intention is mainly to reveal the fracture mechanism near 
the crack tip. Our goal is to elucidate the fracture behavior of FRP plates containing stress 
concentrations in various notch geometries and to develop a limiting condition for predicting the 
load at failure. 

Studying stress distributions near the notch root, we have obtained a fracture criterion for 
notched polycarbonate bars under static loading [1]. The criterion is based on the concept of 
severity near the notch root. Many experiments have shown that the fracture criterion is applicable 
to notched FRP plates over a wide range of notch geometries and dimensions of specimens [2]. 

The aims of the present study are to provide experimental evidence of the validity of the 
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fracture criterion mentioned above and to develop a limiting condition of the initiation and growth 
of damaged zone for notched FRP plates under static tension. 

To evaluate the damage near the notch root, we measured the luminance distributions by 
means of the luminance measurement technique with a CCD (charge coupled device) camera [3]. 

2. SEVERITY NEAR THE NOTCH ROOT 

The effects of notch geometry on the stress distributions near the notch root were examined 
by using the finite element method for a thin, orthotropic, notched plate in tension. The results of 
an analysis are shown in Fig. 1. The parameter u is the distance from the notch root and a max is 
the maximum tensile stress at the notch root (u = 0). The coordinates x and v are principal axes of 
the lamina. Material constants (Young's modulus E, Poisson's ratio v and shear modulus G) are 
represented in Fig. 1. 

Figure 1 shows that the relative-elastic-stress distribution near the notch root is independent 
of the value of bl p in the range of b I p > 3, where b is the half width of notch section. 
Furthermore, we have shown the relative-elastic-stress distribution is independent of the notch 
depth a in the range of a I p > 1 [4]. According to the results mentioned above, it is assume 
that the elastic stress distributions near the notch root are the same in all sharp-and-deep-notched 
plates for which both the maximum elastic stress a max and notch-root radius p are equal in all 
cases. Therefore, it is theoretically predicted that the maximum elastic stress at failure of a sharp- 
and-deep-notched plate is determined by the notch-root radius p. The failure criterion for a 
sharp-and-deep-notched specimen is expressed as [2]: 

:(p) (1) 

where a max is the maximum elastic stress at failure and is determined as the product of the nominal 
stress and the geometrical stress-concentration factor. The parameter a maxc is the material 
constant, which is governed by the notch-root radius p only, while it is independent of other notch 
geometries. 

al p=\ 

ul p 

Fig. 1    Relative-elastic-stress distributions near the notch root. 
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On the other hand, the situation is much more complex for blunt-and-shallow-notched plates. 
The stress distribution near the notch root depends on the value ofblp in the range ofb/p ^1 
as shown in Fig. 1. It is appropriate to discuss the severity near the notch root for blunt-and- 
shallow-notched plates in terms of a combination of the maximum elastic stress a max, notch-root 
radius p and width of notch section. The failure criterion for blunt-and-shallow-notched plates 
for which b I p   ^ 1 is expressed as: 

£Jmax = 0'n,ax,c(P b/p) (2) 

The parameter  a maxc on the right-hand side of Eq. 2 is governed by the notch-root radius  p 
the half width of notch section b. 

and 

3. EXPERIMENTAL PROCEDURE 

The material used was a glass fiber-reinforced polycarbonate (GF/PC). Idemitsu 
"Toughlon" PC was applied to the matrix. The plates of GF/PC were molded by injection molding. 
The dimensions of the plates were 70 mm width, 270 mm long, and 3 mm thick. The plate 
contains 30 % E-glass fiber (about 0.013 mm in diameter) by weight. The plate is highly 
anisotropic and the unnotched specimens fail in a brittle manner as shown in Fig. 2. 

All specimens were notched in a U-shape on both sides at the midpoint of their length. The 
notch-root radius P were varied from 0.25 mm to 2 mm for sharp-and-deep-notched specimens. 
On the other hand, the value of P ranged from 10 mm to 15 mm for blunt-and-shallow-notched 
specimens. 

Tension tests were performed by an Instron-type testing machine at constant cross-head speed 
of 0.5 mm/min in a temperature controlled room at 22°C. 

To evaluate the damage of notched FRP plates in static tension, we measured successively the 
luminance distributions near the notch root during test. The luminance-measuring system with a 
CCD camera is shown in Fig. 3. 

1501-    GF/PC 
aB=114MPa 
£B=1.94!S 
E =8.2 GPa 

1 2 
Strain    e 

o-B=76.0MPa 
CB=3.04% 
E =4.2 GPa 

Fig. 2   Tensile stress-strain curves of unnotched specimens 
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Fig. 3    Luminance-measuring system for tension tests. 

4. RESULTS AND DISCUSSION 

The experimental results on the fracture tests of notched GF/PC plates for a wide range of 
notch-root radii have been published previously [5]. 

Prior to fracture for notched GF/PC plates, the damage zone appears and grows near the notch 
root. To evaluate the damage, the luminance near the notch root was measured. We observed the 
decrease of luminance according as the growth of damage. It is evident that the decrease of 
luminance near the notch root was associated with irreversible damage and microfracture of 
composites. Applying the luminance measurement technique to evaluate the damage near the 
notch root, we attempt to develop a limiting condition of damage initiation and growth for notched 
GF/PC plates under static tension. 

Figure 4 shows the luminance distributions at the damaged zone. The patterns with light and 
shade correspond to the value of luminance that was made at four steps: 90, 85, 80 and 75 %. The 
value of relative luminance is the ratio of the luminance at a stress to the luminance before testing. 
The damage is accumulated severely at the region where the value of relative luminance is small. 

Fig. 4    Luminance distribution at the damaged zone. 
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Fig. 5    Growth of the area of damaged zone. 

Luminance measurement revealed the configuration and the area of damaged zone near the 
notch root. It is evident that the damage depends on the severity near the notch root. As 
mentioned before, the severity is determined by both the maximum elastic stress at the notch root, 
o max and notch-root radius P for sharp-and-deep-notched specimens, and a max, p and b for blunt- 
and-shallow-notched specimens. It is conceivable therefore that the damage near the notch root is 
governed by  o max,  p and b, where b is the half width of notch section. 
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The relation between the area of damaged zone and the maximum elastic stress o max is 
represented in Fig. 5. For sharp-and-deep-notched specimens, as shown in Fig 5(a), three different 
values are given for the notch-root radius p . Notch depth a was varied from 2 to 5 mm for each 
value of notch-root radius. It can be seen that the area of damaged zone has a one-to-one 
correspondence with a notch-root radius p, and it is independent of notch depth a. 

For blunt-and-shallow-notched specimens, the experimental result is shown in Fig. 5(b). 
There are two different values for b/ p. The experiment shows that the area of damaged zone has 
a one-to-one correspondence with the value of bl p, and it is independent of notch depth a. 

The experimental results mentioned above conform well to the prediction based on the 
concept of severity near the notch root. 

5. CONCLUSIONS 

To provide the experimental evidence for the validity of the concept of severity, tension tests 
on notched GF/PC plates were carried out for a wide range of notch-root radii and notch depths. 
The initiation and growth of damage near the notch root were investigated by means of the 
luminance measurement technique using a CCD camera. 

The configuration of damaged zone near the notch root is determined by the maximum elastic 
stress and the notch-root radius for sharp-and-deep-notched specimens. For blunt-and-shallow- 
notched specimens, the damaged zone is governed by the maximum elastic stress, notch-root radius 
and width of notch section. 

The experimental results mentioned above can be explained by the concept of severity near 
the notch root, and the limiting condition for predicting the load of failure, Eq. 1 for sharp-and- 
deep-notched specimens and Eq. 2 for blunt-and-shallow-notched specimens, is applicable to an 
anisotropic FRP plates. 
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ABSTRACT 

Effects of neutron dose on the mechanical and magnetic properties in SA508-3 nuclear pressure 
vessel steel using ball indentation test and magnetic Barkhausen noise (BN) measurements were 
studied. The samples were irradiated in a research reactor up to a dose of 1018 n/cm2 (E>1 MeV) at 
70 °C , and 4.5 xlO19 n/cm2 at 290 °C. The change of mechanical properties showed a characteristic 
trend with neutron dose, especially near the plateau, rapid increase and slow increase. The BN 
profile in the specimen irradiated at 70 °C decreased markedly, but that in the specimen irradiated at 
290 °C was hardly changed. The BN of the specimen irradiated at 70 °C varied in a reverse manner 
against ball indentation results, a slow decrease up to a neutron dose of 1016 n/cm2, followed by a 
rapid decrease up to a dose of 1018 n/cm2. The change of mechanical properties and magnetic BN 
can be explained by the pinning effects of moving dislocations and domain walls from the 
irradiation induced defects. 

1. INTRODUCTION 

Reactor pressure vessel (RPV) steel degrades due to the irradiation of high energy neutrons. The 
degradation due to neutron irradiation is characterized by the irradiation embrittlement, resulting in 
a decrease in the fracture toughness and an increase in the ductile-to-brittle transition temperature. 
Currently, the degree of degradation is being monitored by an RPV surveillance program with 
approved models and guidelines [1]. However, the models and surveillance program do not always 
provide enough information to support decisions for system integrity to the end of its life [2]. Under 
these circumstances, nondestructive measuring methods are being required to assess the RPV 
integrity directly or to aid the assessment by giving enough information from the aged RPV steel 
[3]. There are a variety of non-destructive evaluation (NDE) techniques that have shown some 
correlation with embrittlement and other types of material degradation, which are ultrasonic 
attenuation, eddy current techniques, magnetic Barkhausen noise [4] and magnetic acoustic 
emission, and automated ball indentation (ABI) technique. The ABI test technique is particularly 
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advantageous for localized testing (e.g. welds and heat-affected zones), for effective use of limited 
test material, and for providing more test results for statistical analyses [5,6]. On the other hand, 
magnetic Barkhausen noise (BN), which is due to the discontinuous motion of a magnetic domain 
wall, is drawing attention as an NDE method in ferromagnetic structural materials. In the present 
study, the ABI tests and BN measurements have been carried out for the neutron irradiated RPV 
steel samples irradiated at various neutron doses, and the results were explained as a pinning of 
dislocations and the magnetic domain wall by irradiation induced defects. 

2. EXPERIMENTAL 

2.1. Material and Neutron Irradiation 
The material tested in the present study is SA508-3 forged steel for nuclear pressure vessels 

produced by the Korea Heavy Industries and Construction Co (HANJUNG), and the chemical 
composition is shown in Table 1. The specimens were irradiated in a research reactor at 70 °C and 
290 °C, respectively. The accumulated doses for the specimens irradiated at 70 °C were 1012 to 1018 

n/cm2, and those for the 290 °C specimens were 4.5x10" n/cm2 (E > 1 MeV), where an iron wire 
was employed to determine the neutron dose. 

Table 1. Chemical composition and heat treatment history of SA508-3 steel studied. 

Element C Si Mn P S Ni Cr 
wt% 0.17 0.004 1.42 0.004 0.003 0.98 0.22 

Element Mo Al Cu V Co As Fe 
wt% 0.58 0.003 0.045 0.003 0.006 62ppm Bal. 

* Heat Treatment History 
1143 °K/4.5 hr Water Quenching (Quenching, Q) 
930 °K/9hr Air Cooling (Tempering, T) 
923 °K/24 hr Furnace Cooling, (Simulated post-weld heat treatment (PWHT)) 

2.2. ABI Test 
The ABI test was conducted with the specimens irradiated at 70 °C using a system of ATC 

(model: PortaFlow-Pl). Details of the ABI test technique are given in references [5,6]. The load 
versus depth curves (P-h curves) were obtained using a tungsten carbide ball indenter of 0.508 mm 
diameter. The indentation tests were performed at room temperature with an average strain rate of 
about 9 x 10'V. For each specimen three points were tested and the results were averaged. 

2.3. Magnetic Property Measurements 

Magnetic properties were measured in the same specimen using a specially designed yoke 
magnet with an amplified sinusoidal wave current of 1 and 5 Hz. The maximum current intensity 
was set sufficiently high to extend the hysteresis loop beyond the range of approach to saturation. 
The detected BN signal by the same pick-up coil was amplified and passed through a wide-band 
filter of flat response between 18-19 kHz. The B-H loop and the BN signals including Barkhausen 
noise energy (BNE) and Barkhausen noise amplitude (BNA), where BNE is defined as the time 
integration of the squared BN voltage for a magnetizing cycle, were measured as a function of the 
neutron fluence. The measured data were processed by a computer via a digital storage oscilloscope. 
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3. RESULTS AND DISCUSSION 

3.1. Indentation Data 

Fig. 1 shows the indentation load-depth curves of SA508-3 steel samples un-irradiated and 

neutron irradiated. For a given indentation depth, the applied load increases at a low rate as the 

neutron fluence increases up to 1016n/cm2 and it increases at a higher rate in the fluence range of 

lO'Vcm2 to 1017 n/cm2. Finally, the load is nearly saturated at a fluence above 10" n/cm2. 

The true stress-true plastic strain curves in Fig. 2 were calculated from the indentation load- 

depth curve in Fig. 1. The data points in the flow curves correspond respectively to the unloading 

points in the load-indentation depth curves. In each flow curve the yield point at a plastic strain of 

0.002, the first point, was calculated from the material yield parameter according to the ABI model 

[6]. The other stress-strain data points in the flow curves are in the plastic strain range of 0.07-0.16. 

Fig. 3 shows the change of yield strength (YS) with neutron fluence, which were obtained from the 

load-depth curves in Fig. 1. It is known that the ABI test data agree well with tensile test data with 

sufficient accuracy [6]. In Fig. 3, YS increases with the neutron dose of 1012 n/cm2 and it is nearly 

constant in the dose range of 1012 n/cm2 to 1016 n/cm2. However, YS increased rapidly in the dose 

range of 10'6 n/cm2 to 1017 n/cm2 and increases slowly above this dose. 
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Fig. 1. The indentation load-depth curves of     Fig. 2. Stress-strain curves according to the neutron 

un-irradiated and neutron irradiated SA508-3    fluences (n/cm2, E > lMeV). 

steel samples. 

According to the radiation damage model pertinent to the present study, the point defect clusters 

such as interstitial and vacancy clusters, could provide a major source of RPV steel hardening due 

to matrix damage, particularly at low irradiation temperatures and high displacement rates, because 

commonly studied copper-rich precipitates could not be developed at such a low temperature [7]. It 

is also known that the formation of both interstitial and vacancy clusters lead to significant 

hardening by acting as obstacles to dislocation motion. The increase of YS with the initiation of 

neutron irradiation may result from the precipitation of metastable carbides and nitrides at radiation 

induced nucleation sites [7]. Significant increase in YS does not appear when the neutron dose is 

less than 1016 n/cm2. This dose level seems to correspond to the condition where defect clusters 
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reaches an appreciable fraction [8]. 
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Fig. 4. The BN profiles for as-received and neutron 

irradiated samples at a temperature of 70 °C and 290 °C. 

The significant change of strength occurs between the neutron doses of 1016 n/cm2 and 1017 

n/cm2. The slow increase of YS at a higher fluence agrees with the model that YS is proportional to 

the square root of the total neutron fluence [9].The difference of YS between the specimens 

unirradiated and lO'Vcm2 irradiated was 140 MPa, and it increases with increasing neutron fluence. 

The difference of YS in the specimen irradiated at 290 °C was 20 MPa, which is similar to the result 
of the IAEA phase 2 program [9]. This difference, Aay =140 MPa, is very a large quantity 

compared with the result of the irradiation test performed at ~ 290 °C and a dose of 4.5x 1019 n/cm2 

(E>1 MeV). However, the calculated value of Aay after irradiation at 60 "C to a dose of 10"2 dpa (~ 
6.7 x 1018 n/cm2) is about 600 MPa. It is known that embrittlement decreases with increasing 

irradiation temperature [10] and SA508-3 steel is fairly insensitive to irradiation at high irradiation 

temperatures [11]. The present results also imply that degradation is more severe for irradiations at 

lower temperatures. 

The absolute values of strengthening are model-dependent, because the fraction of defects 

surviving are very sensitive to temperature, dose level, initial sink strength and matrix 

recombination [12]. The solid line in Fig. 3 is calculated value by Stoller [8] in the condition of 

60 °C and 10"7 dpa/s. The predicted change of YS after irradiation also showed a characteristic trend 
with neutron dose, namely near the plateau, rapid increase and slow increase. Considering the 

absolute values of strengthening are model-dependent [13], the predicted dependence on 

displacement rate is qualitatively in accordance with our experimental results. 

3.2. Change of Barkhausen Noise 

The BN profiles during a magnetization cycle for as-received and neutron irradiated samples at 

a temperature of 70 "C and 290 °C are shown in Fig. 4(a) and (b), respectively. The BN profile in 
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the 70 °C irradiated specimen decreased markedly, but that of the 290 °C irradiated one changed 

hardly. The decrease of BN in the 70 °C irradiated specimen is in agreement with the results of 
Sipahi et al. [14]. The BN is released as a result of the change in the magnetization associated with 

the domain wall motion. The induced voltage due to the domain wall displacement decreases with 

the presence of a retarding barrier [15]. The defect clusters induced in the irradiated sample act as a 

retarding barrier to wall displacement, decreasing the Barkhausen voltage of the specimen irradiated 

at 70 °C [16]. The sizes of defect clusters increase with increasing irradiation temperature[12], and 
the large size defects are less effective to the domain wall pinning [17]. Therefore, few changes of 

the BN profile in the specimen irradiated at 290 °C are attribute to the sizes of defect clusters. 

The changes of BNE and BNA 70 °C irradiated specimen are shown in Fig. 5 as a function of 
neutron dose. The BNE decreased rapidly with the initiation of neutron irradiation, then remains 

nearly constant up to 1016 n/cm2, followed by a rapid decrease to 43% of the emission from the as- 

received sample at a neutron dose of 1018 n/cm2. The change in BNA also shows a similar trend, but 

the rate of change is less than that of BNE. The profound effects of irradiation on BN appear above 

a neutron dose of 1016 n/cm2 and correspond to the rapid increase of the YS. 
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3.3. Correlation Between YS and Barkhausen Noise 

The relationship between YS and BN characteristic including the BNE and BNA, is shown in 

Fig. 6 giving some insight into the relation between mechanical and magnetic properties. The 

present BNE and BNA show linear relationships with YS in the magnetization region. A similar 

relationship between Barkhausen parameter and hardness was obtained by the same authors [16]. 

Radiation strengthening is due to dislocation pinning by small defect clusters, whereas BN is 

associated with the domain-wall pinning by defect clusters, and consequently a good correlation is 

found in the parameters. The relation suggests that the radiation embrittlement can be evaluated 

non-destructively by using the Barkhausen noise parameter. Despite the substantial dimensional 

difference between the dislocation and domain wall, it is anticipated that the increased density of 

defect clusters due to irradiation dose causes the increase in YS, resulting in the lower magnetic 

Barkhausen emissions because the increased number of defect pinning centers impedes both the 
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movement of magnetic domain walls and dislocations. 

4. CONCLUSION 

The ABI test technique and magnetic Barkhausen noise measurements were applied in the 

neutron irradiated pressure vessel steel samples both as-received and irradiated with doses of up to 

1018 n/cm2 (E > lMeV). The change of YS, the amount of hardening, showed a characteristic 

trend with neutron dose; namely, near plateau, rapid increase, and slow increase. This result is in 

qualitative agreement with the prediction by computer simulation performed by Stoller. The BN 

profile in the 70 °C irradiated specimen markedly decreased, but that of the 290 °C irradiated one 

was hardly changed. The difference of BN profiles for the 70 °C and 290 °C irradiated specimen is 

attribute to the size of defect clusters. The linear relationship between BN and YS in the 70 °C 
irradiated specimens suggests that the change in mechanical properties, like the YS associated with 

radiation strengthening, is evaluated nondestructively by using the magnetic techniques of 

Barkhausen noise measurements. 
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ABSTRACT 

In this paper, the reliability of welded pipe with circumferential surface crack was calculated 
by using the 3-D stochastic finite element method. This method has overcome the shortcomings of 
conservative results in safety assessment with deterministic fracture mechanics method. The 
calculation of reliability was based on 3-D elastic-plastic perturbation stochastic finite element 
program which was developed by ourselves. The effects of variables such as fracture toughness 8C, 
external load(including bending moment M and inner pressure P) and the depth of the 
circumferential surface crack A on the structure reliability were also discussed. The calculation 
results indicate that among the four variables (SC,M P,A) , the bending moment M has the 
greatest effect on the reliability of the welded pipe. The next important influence factor is fracture 
toughness. The third one is the depth of the circumferential surface crack A . The inner pressure P 
has lower effect on the reliability of the welded pipe than both Sc and A. The method has put 
forward a new way for safety assessment of welded pipe with circumferential surface crack. 

1. INTRODUCTION 

Safety assessment of welded structure with cracks based on "Fitness for Purpose" principle has 

widely been studied in China and aboard. Although series of assessment criteria such as 

IIW/IIS-SST-1157-90, WES—2805, R/H/R6-Ver.3 and PD6493-91 have been set up, all these 

criteria are based on deterministic fracture mechanics. In engineering structures, there are many 

uncertain factors such as material properties, structure's geometry and external loading (wind, 

earthquake etc.). Because the uncertain factors can not be overlooked, the responses of structures 

became uncertain as well. Recently, calculating the reliability of engineering structures by using 

stochastic finite element method(SFEM) which combined the FEM with reliability analysis has 

become an area of extensive investigation for its high efficiency and accuracy1 13] . In many 

situations, cracks are the essential cause that leads to structure failure, however the references about 

calculation of 3-D elastic-plastic SFEM have seldom been reported. 
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In this paper, the iteration approach of 3-D elastic-plastic perturbation stochastic initial stress 
finite element method (PSFEM) has been presented by using incremental method and the 
perturbation stochastic finite element program has been developed. The reliability index and 
probability of failure of welded pipe with a circumferential surface crack has been calculated. The 
program can be used to deal with uncertainties of material properties, geometry and external 
loading simultaneously. The effects of stochastic variables on the reliability of welded pipe with an 
circumferential surface crack were also discussed. We hope that this work has put forward a new 
way for reasonable and accurate safety assessment of welded pipe with circumferential surface 
cracks. 

2.THE ITERATION FORMULAS OF 3-D ELASTIC-PLASTIC INITIAL STRESS FEM 

In displacement method of finite element method, the control equations of structure system can 

be written as: 

[Kp}={F} (1) 

where [K] is the global stiffness matrix; {u}is the generalized displacement vector; {F}IS 

the generalized external force vector. The global stiffness matrix is assembled from the 
contributions of the standard and enriched elements. For the elastic-plastic problem, here the 
iteration formulas were given out by using initial stress finite element method based on incremental 
method: 

[K]A{U}M=A{F} + {R}, (t = 0,1,2,-) (2) 

where {i?}, is the initial stress vector. The formula of calculating {R}" can be written as 

{Ry=-[[B]eTA{aB}dV (3) 

in which [ßf is the matrix determined from the shape function and geometric condition of the 
element and{cr0} is initial stress. 

4r0 }=-[/>]„ A{*} (4) 

in which A{f} is increment of strain and [D]P is the plastic matrix. Introducing Eq.(4) into Eq.(3), 
the formula of calculating  {R}" can be changed as 

W = KHA^ (5) 

In formula (2), if we take A{u}0 = 0, {R}Q = 0,  A{u}' = A{u}t - A{C/},_,    (i = 1,2, ), the 
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whole iteration formulas can be written as 

Aa,=[DL[B]*AMr, 

[K^{U}M=A{R}', 

A{*}'={4-{4-„ 
A{U},=AP}'+A{U}M, 

A^KW'AW, 

(6) 

3.THE ITERATION FORMULAS OF 3-D ELASTIC-PLASTIC INITIAL PSFEM 

If there is a small random perturbation in material properties or in geometry in Eq.(l), the 
global stiffness matrix [K] becomes uncertain. There may also be a small random perturbation in 
external force vector {F} , so the generalized displacement vector {£/} is random . 

Supposing Z is a random perturbation factor, the quantity of perturbation can be expressed as a 
small random variable, that is to say, Z can be expressed as the sum of mean value and the 
deviation part: 

Z = Z0(l + a) (7) 

Where Z0 is the mean value of Z, a = (a,, a2 ■ ■ •, a„) is a random field with zero mean value, 
which indicates the variability of randomness of Z. Z can be expanded in the Taylor series form by 
truncating the third order: 

Z = Z0+£z,a;-t-i£z>- 
2£ 

a,av (8) 

The symbol n stands for the total amount of variables in a vector. Where / , k stand for 
partial derivatives of a,, ak, respectively. 

Because every kind of variables can be expressed by using perturbation method, the 
perturbation stochastic finite element method has widely been used, especially for geometry 
randomness. The references [4) indicate that despite the second order perturbation stochastic finite 
element method is more accurate than the first order method, the practical use of the former has 
extremely been restricted for its lower efficiency. In this paper, the perturbation stochastic finite 
element method recursive equations are obtained by using the first order perturbation method. 
According to the Eq. (8), all the parameters in Eq. (6) are expanded in the Taylor series form by 
truncating the second order and are straightened out. The iteration formulas of 3-D elastic-plastic 
initial stress PSFEM can be written as 
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(ACT,), =M),WA{£/}; +[Z)Lt4);A{f/K + M.W M) 
(A{C/}'1=W((A{ä}'),-«AM'

+1
) 

(AW),=({4),-({4-,), 

(A{tf};),=(A{t/}')+(A{£/},,), (9) 

(A-,), =R), WAM;+K(W),A{t/};+[Z)LW(A{C/},), 

({t/L),=Z(A{t/U 

M=5:(^I), 
'=1 

(t0Ü=(fcü-H),^(K), = (K(*^ 
Here the ([Z)]p ((jt_, + cr,,,)) can be obtained by using difference method. 

(Tni r«- +«• fl      .,H(g+gg)-[fll(g)) UDU°*-' +CT->)it.i+CT,.i) —  

For 3-D problem, because there are 6 stress components, 6 times difference calculations must 

be taken. In this paper, high precision results can be obtained when a is taken as 0.001. 

4. FAILURE FUNCTION AND THE FORMULAS OF CALCULATING RELIABILITY 

In this paper, we aimed at the welded pipe with a circumferential surface crack which was 

existed inside the weld. The performance function was determined as: 

g(X) = 8c-5 (10) 

Where Sc is the fracture toughness of weld and <5is the crack opening displacement. 
X = X,(z' = 1,2,••-,«) are variables which have effect on the performance function g(X). The 
variables may be correlated and non-normal distribution. In either case, a transformation must be 
made to change them into uncorrelated variables and normal distribution. Supposing the mean 
values and variances of X,and g{X) are E(X,.),E(g(X))and V(X,), V(g(X)), respectively, 
the formula of calculating the reliability index ß can be written as 

ß = E(g(X)) I V(g(X)) = [E(SC) - E(S)]/ yjV(Sc)-V(S) (11) 

HereE{SC)andV(SC) are the mean value and variance ofSc. E(S)andV(S) are the mean 
value and variance of S. In order to get the reliability index ß, E{SC),V{SC),E{5) and V(8) 
have to be obtained first. E(SC) and F(£c)can be determined by using experimental method. 
E(S) and V(S) have to be obtained by using 3-D elastic-plastic PSFEM. In this paper, in order to 
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reduce the calculating time of reliability index ß, all the factors in equation (9) are expanded in the 
Taylor series form at the mean value point. 

5.   THE CALCULATION OF RELIABILITY INDEX OF WELDED PIPE WITH CRACK 

5.1. Calculation Model 

Considering a circumferential surface crack in the welded pipe, one-fourth of the pipe was 

considered by taking full advantage of symmetry. In order to account for the stress and strain 

singularities caused by the crack, 20 nodes singularity element at crack tip was used. 20 nodes 

isoparametric element was used at non-crack area. The model is divided into 198 elements and the 

total number of nodes is 1297. The calculation model is shown as Fig.l. 

X 
Crack 

2W 

2L 

Fig. 1.    Calculation model and geometry size 

5.2. The Chosen Variables 

In this paper, the fracture toughness Sc, external loads (including bending moment M and 

inner pressure P) and the depth of the circumferential crack A are determined as variables. The 

Young's modulus E and Poisson ratio y are described as constants. Here the Young's modulus E 

is equal to 2.1xl05 MPa and the Poisson ratio/is equal to 0.3. The mean values of fracture 

toughness, bending moment, the inner pressure and the crack depth are equal to 0.21mm, 15000Nm, 

1.5MPa and 5mm, respectively. The pipe material is X60 and the welded electrode is E8010-G, 

which yielded stress as is equal to 470MPa. The coefficients of the four variables are taken as 

from 0.1 to 0.15, and Z)=120mm, rf=100mm, 2(9=180° in Fig.l. 

5.3. Calculation Results and Analysis 
The calculation results of 3-D elastic-plastic PSFEM perturbation about the reliability index ß 

and the probability of failure according to the combinations of different coefficient of variations are 

shown in Table 1. The calculation control tolerance is 0.01. 

From Tablel it can be seen that when all variable coefficients (SC,M ,P, ^) are equal to 0.15, 

the failure probability of the welded pipe with a circumferential crack (,4=5mm, 20=180°) is still 

very low (1.9367xl0"3). It shows clearly that the welded pipe still has high reliability. Among the 
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Tablet. Reliability index and failure probability at different combinations of the variations 

Combina-      Coefficient of Coefficient of Coefficient of Coefficient of Reliability        Probability 

tions variation( 8C) variation (M) variation( A) variation( P) index ß      offailure Pf 

1 0.1 0.1 0.1 0.1 4.3494         6.8913xl0~6 

2 0.1 0.15 0.1 0.1 3.1891         7.1025x10"" 

3 0.1 0.1 0.15 0.1 4.1981          1.3836xl0~5 

4 0.15 0.1 0.1 0.1 3.7954         7.3961xl0~5 

5 0.1 0.1 0.1 0.15 4.3038         8.5349xl0"6 

6 0.15 0.15 0.15 0.15 2.8881          1.9367xl0"3 

four variables, the variation of bending moment has the greatest effect on the reliability. The second 

effect factor is fracture toughness. The third effect factor is crack depth. The inner pressure has 

lower effect on the reliability than that of bending moment, fracture toughness and crack depth. As 

a result, in order to maintain this welded pipe with high reliability, the first thing should be done is 

to reduce the variation of bending moment M .The second thing should be done is to reduce the 

variation of fracture toughness 5C by controlling the metallurgy quality of weld. The third control 

factor is crack depth A. The last control factor is the inner pressure P. 

6. Conclusions 

(1) 3-D elastic-plastic perturbation SFEM is implemented and the program is developed. 
(2) The failure probability of welded pipe with a crack is calculated, the results show that inspite 
of containing the crack, the pipe still has lower failure probability. This method has overcome the 
shortcomings which is appeared in safety assessment by deterministic fracture mechanics. 
(3) Among the four variables, the variation of bending moment has the greatest effect on the 
reliability. The second effect factor is fracture toughness. The third effect factor is the depth of the 
circumferential surface crack. The inner pressure has the smallest effect on the reliability. 
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ABSTRACT 

A phased array transducer is a multi-element piezoelectric device which offers a method of 
dynamic ultrasonic beam focusing, in which the focal length of the ultrasonic beam varies as the 
pulse propagates through the material. There are various design parameters of the phased array 
transducer, playing a decisive role in the efficiency of transducer, such as the number of elements, 
inter-element spacing, frequency specification and element size etc., In this paper, full-field 
ultrasonic pressure are computed and visualized on the basis of the Huygen's superposition 
principle to investigate the influence of design parameters for linear phased array. For the 
simulation, a linear phased array is considered as an array of single elements of finite width and 
each element is assumed to be made of a large number of simple line source excited at the same 
time. The wave generated from piezoelectric elements are considered as simplified transient 
ultrasonic waves which are constructed with the cosine function enveloped with a Harming window. 
The effects of inter-element spacing and size of element on beam directivity and ultrasound 
pressure field are discussed. 

1. INTRODUCTION 

Ultrasonic testing is one of most common nondestructive evaluation(NDE) technique, which is 
used to evaluate defects in structure and mechanical properties of materials[l,2]. A phased array is a 
multi-element piezoelectric device whose elements are individually excited by electric pulses at 
programmed delay time. Comparing to conventional ultrasonic single-element transducer in NDE 
application, the phased array transducer provides a method of rapid beam steering and sequential 
addressing of a large area of interest without requiring mechanical scanning which is particularly 
important in real time application[3,4]. 

There are some designing parameters of phased array transducer, playing a decisive role in the 
efficiency of transducer, such as the number of elements, inter-element spacing, frequency 
characteristics and element size. However, for their effective use of phased array transducer in 
NDE, the use of phased arrays must be carefully weighed for each application by understanding the 
influence of key transducer parameters on the steering directivity and the dynamic focusing. In our 
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previous study[5-7], the ultrasonic beam profile due to the variation of the number of elements, 
inter-element spacing and frequency characteristics was studied. However, the piezoelectric 
elements were considered as point source for this simulation. This is our extended work for the 
previous study by taking into account the effect of element size. For the simulation, a linear phased 
array is considered as an array of single elements of finite width and each element is assumed to be 
made of large number of simple line source excited at the same time. It is also considered for 
practical situation that each element generates a transient wave that is constructed with the cosine 
function enveloped with a Hanning window. 

2. PRINCIPLE OF PHASED ARRAY TECHNIQUE 

The phased array transducer is a multi-element device as shown in Fig. 1. In the phased array 
technique, piezoelectric elements are excited by each electric pulse that is delayed as much as a 
calculated delay time in an electronic circuit for the purpose of beam steering and focusing without 
mechanical movements of transducer. Since there are no mechanical movements that require much 
time to scan, the phased array technique can scan wide sectors in real-time. 

element ' 

iBeäj.ü|: focal point 

defeet 

center of array transducer 

Fig. 1 Phased array transducer 

In Fig.l, the width of piezoelectric element is a. The number of elements is N. The focal length 
from center of transducer is/ The steering angle of ultrasonic beam is a. The distance from n+lth 
element to the center of transducer is D as shown in Eq. (1), and to the focal point is / as shown in 
Eq. (2), when the inter-element spacing is d. 

D 
In - N + 1 (1) 

/ = ^f + D2 - 2fD sin a (2) 

As shown in Eq. (3), the delay time of pulse which excites the piezoelectric element, T[n] is the 
value of (f-l) divided by the ultrasonic velocity C. The constant t0 is large enough to avoid negative 
time delays. 

^ ■,      f - A//
2
 + D2 - 2fl) sin a 

T[n] = -^ : - + t„ 
C (3) 

Ultrasonic waves are radiated from each piezoelectric element, by the excitation of each pulse, 
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which are delayed as much as the delay times calculated with Eq. (3). Then, an ultrasonic beam 
steered and focused is constructed by the superposition of these waves according to Huygen's 
principle. 

There are various design parameters for a linear phased array transducer, such as frequency, 
frequency bandwidth, the number of piezoelectric elements, inter-element spacing and the width of 
the piezoelectric elements. In previous our study, an ultrasonic beam spreads widely and has a low 
focusing effect, when the number of piezoelectric element is small. On the other hand, when the 
number of the piezoelectric elements is large, an ultrasonic beam has a high quality focusing effect, 
but the instrument will be more complex and it is more costly to manufacture it. Instead of 
increasing the number of element to enhance the focusing effect, the inter-element spacing can be 
enlarged when the frequency bandwidth is broad. The grating lobes arise when the inter-element 
spacing is larger than a half wavelength. These grating lobes and side lobes are suppressed in broad 
frequency bandwidth[5-7]. 

3. NUMERICAL SIMULATION PRINCIPLE 

Hanning window function described in Eq. (4) was used to approach realistic ultrasonic 
waveform. Wave number is k and frequency is w. The frequency bandwidth of transient waveform 
is controlled by variation of Hanning window width, B. 

win _ f(r, t) = 0.5 + 0.5 aJ^ ~ "* j (4) 

Directivity function of each piezoelectric element is shown in Eq. (5) when the wavelength is A. 
This equation was verified with the experiments by previous researcher[8]. 

' 7m sin 6 
sml 

Hisinö 

The ultrasonic wave directivity of each piezoelectric element shown in Fig. 2 represents the 
effect of directivity due to the variation of element size. 

u(r, t) = A(0) cos(kr - wt)win _. f(r, t) (6) 

A transient ultrasonic waveform shown in Eq. (6) has directivity represented with Eq. (5). 

P„{x, y,ri) = ^^- u(r, n),        r = Jx2 + y2 (7) 
r u0 

Ultrasound pressure of one element is represented in Eq. (7). The ultrasound pressure field is 
represented by the maximum magnitude of summation of the ultrasound pressure that are radiated 
from each element as shown in Eq.(8). 

p(x, y) = MAX\ £ p„(x, y, n) (8) 
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Fig. 2 Ultrasonic wave directivity of each piezoelectric element 

4. SIMULATED RESULTS AND DISCUSSION 

The ultrasonic beam directivities and the ultrasound pressure fields were calculated when the 
number of elements, JV, was 32 and the focal length was 50mm. The center frequency used in this 
study is 5 MHz and the shear wave speed in aluminum is 3,200mm/s. The ultrasonic beam 
directivity and pressure field represents intensities of ultrasound pressure at each azimuth angle and 
in full field of medium, respectively. 

-a = 0 

■ a = 20° 

- a = 40° 

a = 60" 

Angle (degree) 

Fig. 3 Ultrasonic beam directivity 
(a=0.2A,B=\0A,d=l.5A) 
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Fig. 4 Ultrasonic beam directivity 
(a=0.M,B=2A,d=l.5A) 

The characteristics of ultrasonic beam directivity due to change of design parameters were 
represented in Fig. 3 and Fig. 4 when the inter-element spacing is 1.5 times of wavelength. Figure 3 
shows the ultrasonic beam directivity at four different steering angle for the condition of a=0.2A, 
5=10A, and d=l.5A. Since the inter-element spacing is larger than a half wavelength, there are some 
deleterious grating lobes at the azimuth angle of-40°, -20°, 0° and 20° respectively, as shown in Fig. 
3. Furthermore, some side lobes around main lobes are also observed, which result in spurious 
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ultrasonic signal and degradation of steering quality. It is also found that the amplitudes and widths 
of main lobes are same for all steering angles. It is interesting to note that the simulated result at 
a=0.2A is almost same with the ultrasonic beam directivity presented from the point source, which 
are already reported in our previous study[6]. However, the grating lobes are eliminated and the side 
lobes are suppressed for the larger width of element(a=0.82) and broad bandwidth (B=2A) as shown 
in Fig. 4. Comparing this simulated result with that shown in Fig. 3, the amplitude of main lobe is 
gradually decreased with the increase of steering angle. 

IE ED 90 IQD       110        1ZQ        130        HD        150        160        17D 

Distance, X (mm) 

Fig. 5 Ultrasound pressure field 
(a=0.U, 3=2/1, d=l.5Ä, o=40°) 

ID 80 90 IDE       110        120        130        11D        ISO        160        110 

Distance, X (mm) 

Fig. 6 Ultrasound pressure field 
(a=0.U, B=2Ä, d=l.5Z, a=60°) 

100 120 140 180 180 

Distance. X (mm) 

Fig. 7 Ultrasound pressure field 
(a=0.U, B=2A, d=l.0A, CF=40°) 

Distance. X (mm) 

Fig. 8 Ultrasound pressure field 
(a=0.U, B=2A, d=\M, CF=60°) 

Ultrasound pressure fields for d=l.SA, and d=\M are represented in Fig. 5, Fig. 6, Fig. 7 and 
Fig. 8, respectively, where the other parameters are set as a=Q.%A, B=2A and a=40 ° or 60 °. The 
main lobe is constructed at steering angle which is 40° and 60° respectively. As shown in Fig. 5 and 
Fig. 6, the width of main lobe beam at d=l.5A is narrow and ultrasound pressure is high at the focal 
point, resulting in good focusing effect. However, there is deleterious grating lobe where steering 
angle is o=40° as shown in Fig. 5. This grating lobe which is influenced from ultrasonic beam 
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directivity of each element whose width is larger than 0.2A arises where azimuth angle is 0° and 
disappeared due to the increase of steering angle as shown in Fig. 6. Since the direction of grating 
lobe is related with the inter-element spacing, the inter-element spacing must be controlled to 
eliminate grating lobe where azimuth angle is 0°. 

Ultrasound pressure fields shown in Fig. 7 and Fig. 8 for the inter-element spacing d=1.0A 
demonstrate that there is no grating lobe observed in Fig. 5. Since the inter-element spacing is 
reduced to 1.0A, the focusing effect is worse than the ultrasonic beam of Fig. 5 and Fig. 6. However 
available focusing effect is provided, since width of ultrasonic beam is narrow and ultrasound 
pressure is high at the focal point. The deleterious grating lobe where azimuth angle is 0° is 
prevented by the decrease of inter-element spacing which makes the angle between main lobe and 
grating lobe larger. 

5. CONCLUSION 

It was found that the ultrasonic beam directivities and the ultrasound pressure fields at the 
smaller width of element less than 0.2A showed the almost same results simulated for the point 
source. The ultrasound pressure field at the larger width of element more than 0.2A showed that 
there was the grating lobe that could not be suppressed by broadband frequency when the inter- 
element spacing was 1.5/1. In order to eliminate this grating lobe, the inter-element spacing needs to 
decrease less than l.(U. As a guideline for optimal design from this study, the inter-element spacing 
must be one wavelength and the width of element must be 0.8A to enhance the focusing ability and 
the intensity of beam without introducing deleterious grating lobes. 
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ABSTRACT 

Metal matrix composites (MMC) achieve high yield stress, high strength and high stiffness by mixing stiff 
reinforcement SiC particles/whiskers into the aluminum alloy. The density of this composite material decreases 
with increasing volume of SiC particle/whiskers. For these advantages, this material is attracting attention for 
potential applications. However, the use of this material is limited by its low fiacture toughness and ductility. For 
its improvement, both experimental and computational studies have been conducted by many authors [1]~[10]. 

In this study, the constraint effects of SiC particle volume fractions and the specimen geometry are analyzed 
by conducting tensile tests with changing the SiC particle volume fraction as 0%, 2% and 10% and tensile 
specimen notch radius as 0.5, 1.0, 2.0, 4.0, 8.0 and 16.0 mm. The smooth specimen was also tested for SiC 
particle reinforced 2025 aluminum alloy composites. The effect of constraint on the void configuration and 
coalescence are investigated experimentally using the 3-dimensional SEM fracture surface observations and 3- 
dimensional image analysis. The average and local void volume fraction at fracture is measured using 3- 
dimensional image analysis technique and the new modified Gurson model is proposed. 

1      TENSILE TEST SPECIMEN AND SEM FRACTURE SURFACE 

Fig. 1 shows the tensile test specimen with notch. Two kinds of SiC particulate reinforced aluminum alloys 
are made by powder metallurgy by changing the volume fraction of SiC particle to 2% and 10%. They are 
called SiC2% and SiC10% specimen, respectively. A specimen of base matrix aluminum alloy is also tested, 
which is called SiC0% specimen. The tensile test is 
conducted by changing the notch radius as 0.5mm, 1.0mm, 
2.0mm, 4.0mm, 8.0mm and 16.0mm, respectively. A 
smooth specimen is also tested. The average diameter of SiC 
particles is 4um. The tensile test is conducted by MTS 
machine keeping the cross-head speed at 0.5mm/min. 

Geometric constraint due to elastic-plastic deformation 
gradient in the notch produces inhomogeneous stress-strain 
states in the notch region when uniaxial load is applied. 
Stress triaxiality a is quantified by oWo-e, where oi* is mean Fig. 1 The Tensile Test Specimen with Notch 

ÜL *£ JL. 
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stress and ae is the effective stress. Bridgman'sfl 1] approximate analytical solution for maximum stress 
triaxiality in the minimum cross section of a notched tensile specimen is given as oc= «TRR / ae =l/3+/«(^(4i?)+l), 
-where d is the minimum cross-sectional diameter and R is the notch radius as shown in Fig. 1. The stress 
triaxiality corresponding to the notch radius is 2.50,1.94,1.43,1.00,0.75 and 0.56 respectively. For a smooth 
specimen the stress triaxiality is 0.33. 

Fig.s 2 (a) and (b) show the SEM fracture surface and 3-dimensional image of a SiC2% specimen with notch 
radius 1mm. It is shown that the whole fracture surface is covered by dimples and the fracture surfaces are made 
by zigzag pattern The B-B cross section of the SEM fracture surface (in Fig. 2 (a)) and a 3-dimensional image 
(in Fig. 2 (b)) are shown in Fig. 2 (c). The void shape at the position A is clearly shown in the B-B cross section. 
The void aspect ratio Av is defined as the ratio of the void depth h to the mean void radius d/2 in the fracture 

(a) 

Fie. 2.   3-Demensional Tmasine of SF,M Fracture 

surface, which is perpendicular to the loading direction. The void volume fraction is obtained by measuring all 
micro void volume in a local fracture surface, which is calculated using 3-dimensional imaging data from the 
SEM photos by the following equation. 

fF 
i=\  

Adm (1) 

where A is the sum of the SEM photos area and dm is the mean dimple diameter, which is obtained by 
approximating a void as a sphere. iymki is the sum of the micro void volume in measured fracture surface. 

2      EXPERIMENTAL OBSERVATION 

2.1   The Changes of Void Volume Fraction 
Fig. 3 shows the change of the average void 

volume fraction when void diameter is less or greater 
than 1.5um. The void volume fraction is defined by 
using equation 1. Only two special specimen results 
are plotted here. One is SiC0% specimen with 
a=0.33(very weak SiC particle interaction and low 
stress-triaxiality), and the other one is SiC 10% 
specimen with a=2.5 (very strong SiC particle 
interaction and higher stress-triaxiality). The real line 
with square symbol for the SiC 10% specimen and 

0.2 

.2 0.15 

6   0.1 

£0.05 

SiC10%, d>1.5nm 

4SiC0%,d>1.5|im 

-£— 
A SiC0%, DSiC10%d<1.5nm 

0        0.5        1 1.5 
a 

2.5 

Fig. 3.   The Average Void Volume Fraction with 
Different Stress-triaxiality 
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dotted line with triangle symbol for the SiC0% specimen. Solid symbol represents void diameter over 1.5um 
and blank symbol represents the one less than 1.5um. When the void diameter less than 1.5pm, the void volume 
fraction is nearly equal in all specimens. But when void diameter greater than 1.5|jm, the void volume faction 
increases with the increase of stress-triaxiality in SiC10% specimens. Void volume faction of SiC10% 
specimens is greater than the SiC0% specimens. It means that there is the same stress state or constraint near the 
surrounding comparatively smaller voids. This is due to that the largest void nucleated at earlier stages of 
deformation and it grows various shapes of larger voids. These larger voids make some amount of free surfaces 
in the matrix simultaneously and global/local constraint is changed. Then at final fracture the largest voids are 
linked by coalescence of small voids and thus there are nearly same constraint and stress states. 

22   Relations between the Void Volume and Size 
Fig. 4(a) and (b) show the change of the void volume with respect to the void diameter of two special 

specimens as mentioned above. The solid triangle symbol represents the SiC0% specimen with a=0.33 and the 
blank square symbol represents the SiC10% specimen withoc=2.5. Real line in this figure is power 
approximation of plotted data for SiC0% specimen witha=0.33, and dotted line for SiC10% specimen 
with oc=2.5. The theoretical results for Av=0.35 (blank circle symbol line) and Av=l .0 (solid circle symbol line) 
are also shown in this figure. It is shown there is no so much difference of these two special specimens plotted 
data and the approximate curves are very close each others. This also indicates that the approximate void shapes 
are mainly controlled by void diameter (size). As shown in Fig. 4(b) (enlarged results of Fig. 4(a)), in the area of 
void diameter less than 1.5ujn, the approximate curve is very close to Av=0.35 curve. In the area of void 
diameter over 1.5um, it is separated from Av=0.35 curve and due to increase of the void diameter it is come 
near to Av=1.0 curve. It means that the comparatively larger voids deeper than the smaller one. However, as 
shown in Fig. 4(b), if the voids are too small (in this experimental results the void diameter smaller than 1.5um), 
the shape of voids approximately seems to be a constant. 
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Fig. 4.   The Relation between the Void Volume and Void Diameter 

23   Relations between the Local Void Volume Fraction and a Void Shape 
It is difficult to define the void volume fraction of local or single void. The problem is how to define the cell 

size. Horn & McMeeking[12] cell model results show that the uniaxial straining only occurs in high stress 

triaxility condition. In uniaxial tension condition there is no void interaction and in pure shear condition no 

uniaxial straining. The equevalent plastic strain in high stress triaxiality condition is nearly uniformly distributed 

on the upper side of cell model. Due to this numerical result it may be roughly assumed that the final fracture 

occurs by the mutual interaction of neighboring micro void during the uniaxial straining, and the effective plastic 

straining area, which includs one void, is assumed to be equal to largest diameter of ellipsoidal or oblate void. In 
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this study as shown in Fig. 5(a) only the final void volume fraction at fracture is considered and it is assumed that 

the void diameters are equal to cell height and width. Then the local void volume fraction at fracture can be 

measured from the fracture surfaces. Fig. 5(b) shows the change of the local void volume fraction at fracture with 

respect to the void aspect ratio of two special specimens as mentioned above. It is shown that the void volume 

fraction at fracture is increased with increase of the void aspect ratio and gives a linear relation. It means that the 

voids change verity of shapes and size by the different local constraint during the deformation. Fig. 5(c) shows the 

distribution of the void aspect ratio of two special specimens as mentioned above. It is shown that the void aspect 

ratio changed from 0 to 1.0. Though the two special specimens show the different distribution at void aspect ratio 

0.3 region, the relation between the aspect ratio and final void volume fraction at fracture show the same linear 

distributioa 
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Fig. 5   Final Void Volume Fraction at Fracture 

3      NEW MODIFIED GURSON MODEL 

Early investigations studied the void evolution in ductile material. McClintock[13] studied the evolution of 
cylindrical voids and Rice and Tracey[14] considered the spherical voids in infinite rigid perfectly plastic media 
Gurson[15] developed an approximate model for ductile metals containing cylindrical and spherical voids. 
Gurson assumed that the void is distributed randomly in the matrix, so that the global response of the model is 
isotropic. Then Gurson proposed the yield condition for a spherical void model containing a void volume fraction, 
/as follows, 

2<T„ 
-l-(<7,/)2=0 (4) 

where cie is the equivalent stress,/is the void volume fraction and am is the equivalent stress of the matrix. The 
constants <7i=1.5 and q2

=\-0 are introduced by Tvergaard[16]. The change of the value/is modified by Tvergaard 
andNeedleman[17] to model loss of stress carrying capacity of the matrix as follows: 

/  = 
/, fZfc 

fc + yf
qi~{C(f-fc% f>fc 

JF      Jc 

(5) 
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where/ is the critical void volume fraction, and/ is the value of/at fracture. 
However, the experimental results show: fr and Av are changed by different stress or deformation state. It 

means that the void coalescence occur in different condition and with variable shapes. So that the damage 
parameter/- and qi may change and is not assumed to be constant. As shown in Fig. 7(b) the final void volume 
fraction at fracture is measured experimentally and the relation with the void shape is/x=24v/3. As shown in 
equation (5), Tvergaard introduced that the final void volume fraction (to model loss of stress carrying capacity) is 
f=\lq\. It is clear that, at final fracture it should be7«=/and 24v/3=l% So that q\= 1.5/ Av and it replaced to 
equation (4) then obtain following form: 

<& = —%- +— /cosh, 
a2

m    AvJ 2<r, 
JM» -I-(-^/)2 = O 

Av 
where Av = 

2r, >0 (6) 

n, r2 and r3 are void radius along the 3 principal axis as shown in Fig. 7(a). This equation includes the effect of 
void shape, which is controlled by stress triaxiality and the deformation constraint. 

Fig. 6(a), (b) and (c) show the change of yield surface by changing the void shape. In the usual Gurson model 
as well as the modified Gurson model, the void aspect ratio is assumed to be constant (Av=l.O) and the yield 
surface is only changed by void volume fraction. So it has difficulty to evaluate the shallow or sharp void using 
conventional modified Gurson model. In the new model as shown equation (6), the yield surfaces are changed by 
changing the void aspect ratio as shown Fig.6(a). It is clear, when Av=\ .0 the material yield at o0/ay =0.98 and 
ofck/c7y=2.8, and if Av=0.03 it yield at a0/Cy =0.5 and okk/ay =0.45. This new model also correctly evaluates the 
multi-axial straining to uniaxial straining during the deformation. Fig.6(b) shows the change of the void aspect 
ratio during the multi-axial to uniaxial straining. 5 simple cases, linearly multi-axial straining then linearly uniaxial 
straining, are shown in Fig.6 (b). The yield surfaces are shown in Fig. 6(c). It is shown that the yield surfaces are 
largely changed by the different straining rate. In V case, it is shown the material yield at a0/Oy =1.0 and okk/oy 

=2.0. 

• 
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--S-„ ^\JX> 
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Fig. 6. The Yield Surfaces with Different Void Aspect Ratio 

4      CONCLUDING REMARKS 

In the present work the damage process under different constraint condition has been qualitatively identified 
and some reasonable damage phenomena compared with experiments has been observed. 
1. The local void size, shape and volume fraction is measured experimentally. The results shown that the final 

void volume fraction at fracture is increased by increasing the void aspect ratio. The void aspect ratio is 
increased by increasing the void diameter. 

2. The experimental observation shown that the final void volume fraction and void shape are not constant. 
Stress triaxiality and deformation constraint largely affect the void aspect ratios and the void volume fraction. 

3. The effect of void shape is considered and new modified Gurson model is proposed based on the 
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experimental results and theoretical approach. It is shown the new model gives reasonable results with real 
structure. 

During this study it was clear that the stress triaxiality and constraint largely affect the void aspect ratios and 
the final void volume traction at fiacture. This effect had been considered by modifying Gurson model using the 
experimental result. However, it needs comparison with some cell model results by numerical analysis. Then it 
also needs to find how to define the uniaxial straining point during the deformation and we intend to pursue it in 
the future. 
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ABSTRACT 

A study on the mechanical property degradation by short term aging at high temperatures is 
performed. Samples are manufactured using a thermoplastic polymer (PEEK) and APC-2, and are 
aged at different temperatures for different times. The flexural properties of the aged samples are 
measured by 4-point bending tests. An appropriate form of mathematical equation is proposed to 
model the degradation data as a function of time and temperature. Numerical techniques are 
employed to find the optimal values of the parameters using transient temperature profiles. 
Discussions are made on the physical validity of the results. To illustrate the effectiveness of the 
derived model, it is applied to a mathematically defined service condition. The model could 
successfully predict the property loss during service, which could act as a reference in determining 
the durability and the lifetime of the product. 

1.   INTRODUCTION 

History of exposure to elevated temperatures can affect the mechanical property degradation in a 
significant manner. Slow and relatively small decay of properties takes place when environmental 
temperature is below the melting temperature of the polymer [1]. When the aging temperature is 
higher, rapid degradation occurs resulting in larger property loss. This mode of degradation usually 
accompanies weight loss of the polymer [2-5]. The main mechanisms involved in the property 
decrease in this case can be summarized into two categories [5,6]. First one is the structural change 
within the polymer, which is mainly polymer chain scission. Second one is mass loss, which can 
also include the effects of voids and cracks. The first mechanism may or may not accompany 
noticeable weight loss. Therefore, it can be implied that weight loss alone might not act as the sole 
parameter characterizing property degradation. Thus, in order to predict the mechanical property 
decrease properly, it is essential to have direct modeling of the data relating various properties 
directly to the history of thermal aging. In this study, an experimental methodology enabling 
mathematical modeling of mechanical property degradation by short-term thermal aging at high 
temperatures is introduced in order to predict the proper mechanical property decrease. PEEK 
(Polyether-ether-ketone) is chosen as the sample material because it is often used in high 
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temperatures is introduced in order to predict the proper mechanical property decrease. PEEK 
(Polyether-ether-ketone) is chosen as the sample material because it is often used in high 
temperature and, therefore, thermal aging characteristics are very important in lifetime predictions. 

2.   EXPERIMENTAL PROCEDURES 

Samples 1-mm thick are manufactured using PEEK powder. In order to maintain the shape of the 
sample at temperatures higher than melting temperature, APC-2 (Graphite/PEEK prepreg) are 
placed on the top and bottom surfaces of the sample. Two thermocouples are embedded within the 
powder layer at different locations to monitor in-situ temperature history. Hot press is used to mold 
the sample into a single body. The samples are held in a frame and are heated by radiation from 
ceramic heating plates. In order to prevent oxidation of the sample during heating, an inert 
atmosphere of N2 is employed. The temperatures within the sample are recorded using an A/D 
converter and a PC. Samples are aged at 21 different time/temperature conditions. The ranges of the 
temperature and time used are summarized in Table 1. 

4-point bending tests are performed to measure the flexural properties of the degraded polymer. 
Both flexural modulus and strength are measured for each specimen. 

Table 1. Aging conditions and number of aging samples and flexural test specimens 

Aging Temperature 540~640°C 

Time of Exposure 8-60 sec 

No. of Aging Samples 21 

No. of Flexural Test Specimens 158 

3.   MATHEMATICAL MODELING 

3.1. Temperature Modeling 
In order to utilize the unsteady temperature data, the temperature profiles should be fitted into 

smooth functions of time expressed explicitly in mathematical equations. A typical temperature 
profile is shown in Fig. 1. This temperature profile is fitted using two different equations, each 
describing heat up and cool down. The fitted curve is also plotted in Fig. 1 (b), which shows a close 
resemblance with the actual data. 

3.2. Mechanical Property Degradation Model 
The kinetic equation describing weight loss of PEEK at high temperatures is as follows [5]; 

da 
dt 

:%i(l-a) + ^2«(!-«)] (1) 

where a is a factor representing weight loss. The rate constant k is expressed by the Arrhenius 
equation. Since the mechanisms of mechanical property degradation by thermal aging can be 
assumed to be similar with those of weight loss [2,3], it is reasonable to use the same equation form. 
In order to maintain analogy, a should be replaced with (l-PIP,) where P and P„ denote the current 
and initial value of mechanical property, respectively. Integrating the altered form of Eq. 1, 
followed by some manipulation, the resulting equation can be written as 
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Fig. 1. An example of the temperature profile during sample aging. 

\ + y2/y\ 
P0     exp(ATn)+y2/y{ 

where 
J'hual exp 

TM 
dt 

(2) 

(3) 

T„{f) denotes the temperature history function for sample n, and A and E are the pre-exponential 
factor and the activation energy in k, respectively. The simplest numerical integration using 
trapezoidal method is applied to evaluate r„. The parameters A, E and yjy, in the model Eq. 2-3 are 
determined as the values yielding best fit to data points. Method of least squares is adapted and the 
Chi-square indicating deviations between experimental and calculated values is minimized using 
multi-dimensional downhill simplex method proposed by Neider and Mead [7]. 

Table 2 summarizes the results of numerical calculations. The standard deviations for both cases 
are within acceptable range, considering that the large scatter is inevitable in the data due to severe 
aging conditions. The magnitudes of the ratios of weighting factors y2ly, are very small for both 
cases, implying that the second order term in Eq. 1 can be ignored for both cases. Thus, the 
properties can be assumed to decay in a simple exponential manner, and the equations can be 
rewritten as 

Modulus: 
d(M/M0) 

dt 
= -3060.61 exp 

11522.30^ M 
T      JM0 

H (4) 

Strength: 
d(S/S0) 

dt 
= -23947.66 exp 

12733.94^ H (5) 

4.   DISCUSSIONS 

4.1. Illustration of Model Validity 
As an example of model verification, the comparisons of experimental data and calculation 
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results are shown in Fig. 2. Isothermal assumptions are applied in the calculations using the average 
steady temperature of the corresponding samples. Results show that the model agrees with the 
decaying characteristics fairly. 

Table 2. Summary of numerical curve-fit results. 

Flexural Modulus 

A(s-') 3060.612431 

E(K) 11522.30476 

y/y, 0.31134668xl015 

Standard Deviation 0.185044 

Flexural Strength 

A (s-1) 23947.66545 

£(K) 12733.94401 

y/yt 0.72389448xl012 

Standard Deviation 0.216204 
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Fig. 2. Comparison of experimental data with isothermal calculation results (set temperature 620°C) 

4.2. Relations Between Mechanical Property Degradation and Weight Loss 
The contributions of the two different mechanisms on mechanical property decrease, which are 

structural change and mass loss, can be compared quantitatively by observing the relations between 
the property decrease and weight loss. The weight loss factor a is calculated for each temperature 
history of the samples using the model given by Nam [5]. The experimental and calculated values 
of the residual flexural strength ratio for each sample are plotted versus a in Fig. 3. Most of the 
property is lost when weight loss is very small. As weight loss increases, the additional property 
decrease becomes negligible. Nam suggests that structural changes dominate the early stage of 
degradation, producing reacting gases from polymer chain scission. Additional weight loss is 
resulted from the catalytic reactions of the reacting gases. Nam's model equations imply that the 
chain scission does not accompany large weight loss and the majority of mass is lost by catalytic 
reactions. Since most of the property decay occur at «'s smaller than 0.2, it can be concluded that 
the structural changes in the early stage of degradation play a dominant role in the mechanical 
property decrease. Additional weight loss after deterioration does not have a significant effect 
because the mass remaining after chain scission possesses poor mechanical properties. Therefore it 

4 
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can be stated that weight loss alone cannot serve as a sufficient factor describing thermal aging 
characteristics. 

* Experimental data 
• Numerical predictions 

0      0.1    0.2    0.3    0.4    0.5    0.6    0.7    0.8 

Fig. 3. Relations between mechanical property degradation and weight loss 

5.   NUMERICAL EXAMPLE (DURABILITY PREDICTION) 

Utilizing the ability of predicting property degradation for arbitrary temperature history, the 
model derived from the experiment can give lifetime predictions when the service condition of a 
product is well defined. The lifetime of a product is usually determined by defining a lower limit of 
the mechanical property allowable for service. When the property degrades below the limit, the part 
is replaced by a new one. The numerical results can serve as a reference in determining the time of 
replacement. 

An example is given here for a product which experiences one thermal spike per week, described 
as a parabolic function of time. The total duration of the spike is 10 seconds and the peak 
temperature is changed from 500 °C to 580°C. The thermal conditions and calculated results are 
illustrated in Figure 4. Assuming the minimum allowable limit of the property to be 90% of its 
initial value, the lifetime of the product shortens from 37 weeks to 9 weeks when flexural modulus 
is considered as the dominant property. When the flexural strength is considered, the lifetime 
changes from 24 weeks to 5 weeks. The 80°C change in the peak temperature results in shortening 
the lifetime down to a quarter or one-fifth, even though the effective exposure time above critical 
temperature of degradation (400°C) is only 5 seconds or shorter. This implies that the accumulation 
of repeated negligible degradation can result in a large difference in the total lifetime of the product. 

6.   CONCLUSIONS 

A method of modeling the mechanical property degradation by short term aging at high 
temperatures is introduced. PEEK samples are aged at different temperatures for different times. 
The flexural properties of the aged samples are measured by 4-point bending tests. A mathematical 
equation is proposed to model the degradation data as a function of time and temperature. 
Numerical techniques are employed to find the optimal values of the parameters using transient 
temperature profiles. It could be concluded from the modeling results that the weight loss, which 
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ABSTRACT 
With a newly developed Material Failure Process Analysis code (MFPA2D), influence of hetero 

geneity on fracture processes and strength characterization of brittle disorder materials such as rock 
or concrete is numerically studied under uniaxial compression and tension conditions. It is found th 
at, due to the heterogeneity of the disordered material, relatively more diffused micro-fractures appe 
ar in the early stage of loading. Different from homogeneous materials such as glass, macro-crack n 
ucleation starts well before the peak stress is reached and the crack propagation and coalescence can 
be traced, which can be taken as a precursory to predict the macro-fracture of the material. The pres 

ence of residual strength in the post-peak region and the resemblance in the stress-strain curves bet 
ween tension and compression are significant results and are found to be dependent on the heteroge 
neity of the specimens. Examples showing the tentative applications of MFPA2D in modeling failure 
of composite materials and rock or civil engineering problem are also given in this paper. 

1. INTRODUCTION 
The failure behavior of quasi-brittle materials such as rock or concrete is characterized by nonlin 

ear deformation prior to the peak strength is attained, followed by the weakening (or sometimes call 
ed softening [1]) and localization of deformation in the post-peak part. Thus, neither linear elastic f 
racture mechanics nor plasticity models can be adequately used to describe such behavior [2]. Altho 
ugh nonlinear fracture mechanics or nonlocal continuum models can provide a general description, t 
hey are incapable of capturing the influence of the heterogeneity at the micro or meso-level [2] and 
therefore difficult to be used to investigate the micro-fracture induced progressive failure of the diso 
rdered materials. Even under uniform loading conditions, the stress distribution in micro or meso sc 
ale is not uniform since rock or concrete materials contain numerous small defects that are randoml 
y distributed within the materials. These defects significantly affect the physical properties of the m 
aterials and result in local disorder features of the stress distribution if loaded. Consequently, direct 
simulation of the randomness of disordered material micro structure is useful in arriving at a better u 
nderstanding of brittle failure and the improved prediction of the mechanical properties. 

Based on experimental observations, material behavior models can be constructed. The models c 
an be either analytical or numerical. The analytical models lead to correct answers within the frame 
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work of axioms underlying the mathematics. However, in most of the cases, analytical models have 
to be simplified and sometimes this simplification ignores very important factors influencing the ma 
terial behavior. Heterogeneity is such an example for rock or concrete. 

Statistical modeling has emerged as a promising technique for analysis of fracture in heterogene 
ous materials such as rock or concrete [3]. The combinations of statistical theory with numerical mo 
dels such as the lattice model [4], the bonded particle model [5-6], or tensile fracture models based 
on FEM [2,7] are found to be quite appropriate for modeling brittle disorder materials such as rocks 

In this paper, uniaxial tensile and compressive tests with specimens of brittle disordered materi 
als were numerically studied by using a Material Failure Process Analysis code (MFPA2D), develope 
d recently by CRISR at Northeastern University [1]. Following a brief description of the numerical 
model and the loading procedures adopted in this investigation, some characteristic features of the c 
omplete stress-strain curves under uniaxial tension and compression and the phenomena observed d 
uring progressive fracture of disordered materials will be summarized in terms of heterogeneity, def 
ormation localization, fracture nucleation or coalescence, and micro-fracture induced seismic activit 
ies. Finally, some examples showing the tentative applications of MFPA2D in modeling failure of co 
mposite materials and rock or civil engineering problems are also given in this paper. 

2. BRIEF OUTLINE OF MFPA2D 

Numerical simulation is currently the most popular method used for modeling deformation beha 
vior of brittle materials before failure. Even though progress has been made in numerical simulation 
of failure occurring in these materials, there is a lack of satisfactory models that can simulate the pr 

ogressive failure in a more visualized way, including simulation of the failure process, failure indue 
ed seismic events and failure induced stress redistribution. 

The demand for new tools, which may contribute to a better understanding of the failure 

mechanisms of brittle materials, has initiated the development of MFPA2D (Material Failure Process 

Analysis code) based on RFPA2D. The code, developed at CRISR, Northeastern University, China, 

can be used to model failure process of rock by considering the deformation of an elastic material 

containing a randomly initial distribution of micro-defects. Details of the model are given in [1], so 

only a few important points will be presented here. 

Briefly, the disordered material properties (failure-strength ac and elastic module ec) for 

elements are randomly distributed throughout the specimen by following a Weibull's distribution. 

We use a smeared failure approach that a micro-fracturing occurs when the stress of an element 

satisfies a strength criterion. A Coulomb criterion envelope with a tensile cut-off is used so that the 

failure of the elements may be either in shear or in tensile. 

MFPA2D is a Microsoft Windows application package for material failure analysis of mines/geote 
chnical structures using finite element technique as a calculator. A user-friendly pre- and post-proce 
ssor is integrated to generate the model mesh and prepare the data input. The result may be displaye 
d as an "animation" to aid the understanding of the mechanics of collapse. 

3. MODEL PREDICTIONS FOR COMPRESSIVE AND DIRECT TENSILE LOADING 

3.1. Influence of Heterogeneity on Stress-Strain Response and Strength Characterization 
The heterogeneity of disordered materials has an important influence on the shape of stress-strain 

curves and  the  strength characterization.  Fig.l   shows the simulated stress-strain curves in 
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compression for specimens with various homogeneity indices, m=1.5, 2, 3, and 5 (the smaller the 
value m, the wider the strength distribution). The specimens have a geometry of 150x100 mm. The 
load is applied in the vertical direction through displacement control. The simulations show that 
wider strength distributions yield an earlier onset of non-linear behavior and lower pear stresses, but 
a more gradual loss of strength after the peak. 

0 0.5 1 1.5 2 

Strain (0.001) 

Fig.l Influence of heterogeneity on stress- 
Strain curves in compression 

0 0.5 1 

Strain (0.00015) 

Fig.2 Influence of heterogeneity on stress- 
strain curves in tension 

It is generally considered that the microscopic failure mechanisms in tension and compression ar 
e considerably different from each other. In compression, a failed portion does not completely lose i 
ts loading bearing capacity because of friction with the surroundings. However, in tension the loadi 
ng capacity of failed portion decreases more rapidly than in compression. This consideration sugges 
ts a relative sharp decrease of loading bearing capacity of a specimen in tension. However, as obser 
ved by Okubo and Fukui [8] in their experiments, the shapes of the stress-strain curves do not differ 
much from each other in tension and compression. This has also been verified with our numerical s 
imulations. Fig.2 shows the simulated stress-strain curves in tension for specimens with the same ho 
mogeneity indices as in compression. The resemblance in the stress-strain curves between tension a 
nd compression can be easily seen by comparing this Fig.2 with Fig.l. Though exact explanations f 
or this result are difficult, heterogeneity mentioned above at least can be taken as one of the reasons 
for this resemblance. 

Simulations of both compressive and tensile tests reveal that the maximum strength of the 
specimens is proportional to the homogeneity index. 

3.2. Influence of Heterogeneity on Microfracture Behavior 
The numerical results also demonstrate that the AE (acoustic emissions) event patterns are 

influenced greatly by the degree of heterogeneity of the materials. Fig.3 shows that AE count rate as 
a function of deformation for the four specimens with different homogeneity index. A comparison 
between Fig.l and Fig.3 shows a good relationship between the modeled stress-strain curves and 
the modeled curves of event rate. The results show that the relatively heterogeneous specimen emits 
more AE events as the precursory of macro-fracture than that of the relatively homogeneous 
specimen. On the other hand, higher stress drop is observed to be correspondent to the higher event 
rate in relatively homogeneous specimens. The same conclusion may also be obtained from the 
simulation of tension tests. 
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Fig.3 Influence of heterogeneity on AE patterns for specimens under compression 

3.3. Influence of Heterogeneity on Failure Modes 
One of the most important characteristics of post-peak behavior of brittle material under any loa 

ding scheme is the localization of deformation [2]. After reaching the maximum strength of the spec 
imen, the deformation starts to concentrate in the fracture process zone (FPZ), while other parts oft 
he specimen unloaded (the so-called elastic rebound in geophysics). Fig.4 and Fig.5 show that the c 
urrent numerical model is capable of capturing this phenomenon. Comparing the stress-strain curve 
shown in Fig. 1 or Fig.2 and the failure processes shown in Fig.4 or Fig.5, it is found that, few distri 
buted fractures appear up to approximately 80% of the maximum strength. The number of these frac 
tures increases considerably as the load approaches its ultimate value. Beyond the ultimate load, the 
se fractures begin to concentrate in a certain zone. The maximum strength does not necessarily mea 
n an abrupt failure of the specimen. Although the loading bearing capacity drops dramatically durin 
g the post-peak part, this does not indicate the collapse of the specimen. Subsequently, a distinct tra 
nsition occurs and the loading capacity begins to decrease at a much slower rate until it reaches its r 
esidual strength, which is about 10-20% of its maximum strength. 

3.4. Influence of Heterogeneity on Residual Strength 
In Okubo and Fukui' experimental study, one result of particular interest was obtained in uniaxi 

al tension testing: a large amount of residual strength remains in the post-failure region [8]. Peng co 

nducted uniaxial tension tests and also found considerable large residual strength for tested four roc 

ks [9]. The presence of residual strength in the post-peak region may be attributable to several reaso 

ns [9]. Heterogeneity or strength variation in a specimen is considered to be one of the reasons. If lo 

cal strength variation is large, specimen failure starts in weak portions. Even in the post-peak regio 

n, strong portions are still intact and some amount of loading capacity remains whereas a macro-era 
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ck extends from boundary to boundary in a heterogeneous specimen. 

■'.   ■ :•     - ■■■...,.:■■*'.•'. ■ 

A:'     '■* f i«:< 

80% pre-peak 100%pre-peak 73% post-peak 58% post-peak 

Fig.4 Numerical simulation of failure mode for specimen with m=\.5 under compression 

80% pre-peak 100% pre-peak 30% post-peak 10% post-peak 

Fig. 5 Numerical simulation of failure mode for specimen with /w=l .5 under tension 

The above mentioned reason can be understood well by studying the final failure mode of speci 
men as shown in Fig. 5. Four detailed figures of the development of the crack interface bridging in t 
he specimen in tension are shown in Fig.5. It is seen that at the final loading step, the crack has aim 
ost cross the section of the specimen but still showed a non-zero residual stress and further loading 
(tensile deformation) is very difficult to drive the cracks for a visible propagation. Clearly the crack 
s are not continuous, but rather overlaps and branches exist. Note that these overlaps are not isolate 
d events in individual specimens, but they have been detected in relatively large quantity [10]. 

4. CONCLUDING REMARKS 
It is important to identify the main failure mechanisms associated with brittle failure under 

compressive and tensile loading. This identification is crucial for better understanding and 
interpreting the experimental results and consequently, improves our concepts in material property 
design or analysis of rock or civil engineering structures. The model predications of brittle failure 
behavior of disordered  materials  in this  paper capture  most  of the  experimental  observed 
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phenomena, including softening, deformation localization, and crack patterns. Although the 
simulations are not a quantitative approach and many conclusions presented here may have already 
been obtained by laboratory tests, the significance of mimicking these phenomena by numerical 
simulation is obvious. At least, and the most important, the successful reproducing of the 
experimentally observed failure phenomena with a numerical method implies that our 
understanding to the mechanisms of material failure has reached a more reasonable level, which in 
turn will help us to make further progresses in the field of material mechanics and rock or civil 
engineering. Fig.6 shows three examples of tentative application of MFPA2D in modeling failure of 
composite materials or rock engineering structures. 

Particle composite Failure process of interface material Tunnel failure 

Fig.6 Examples of MFPA2D applications on modeling material failure or construction collapse 
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ABSTRACT 

When drilling a printed wiring board (PWB), internal damage around the drilled hole significantly 
affects the durability of a PWB. For this reason, we proposed a method for determining the drill's life by 
studying the relationship between the extent of damaged zone and the number of drilled hole. The 
validity of this method was proved by observing changes in the cutting force. In addition, the study 
showed that this method is used for judging the machinability of PWBs made of other materials. 

1. INTRODUCTION 

Currently, PWBs made of glass fiber reinforced plastic (GFRP) are widely used as circuit boards for 
electronic devices. With the current trend in downsizing electronic devices, a circuit formed on a PWB is 
required to have a higher packaging density and reliability. When using a pin-insertion packaging 
method for integrated circuit (IC) parts on a PWB, the following problems occur: 1. There is a difference 
of surface roughness on the inner wall of the drilled hole (1-4): 2. A bending of drilled path( 5 ); and 3. 
The extent of internal damage around the drilled hole (6,7). 

Concerning the first problem, it is impossible to make a same surface roughness for the inner wall of 
a drilled hole because of the glass fiber reinforced composite material used for PWBs. The second 
problem comes from the installation condition and the rigidity of the drill, the quality of the cutting edge 
of the drill bit, and the inconsistent wear of cutting edge. Therefore, the problem does not always occur 
in the same manner. Regarding the third problem, the internal damage around a drilled hole expands as 
the cutting edge of drill bit wears. The internal damaged zone expands with an increased number of 
drilled holes. This internal damage around a drilled hole decreases the real hole distance for setting hole 
distance and also cause of the generation of the ion migration, which possibly causes disconnection 
when the PWB is used as an electronic circuit. As a result, the internal damage prevents us from 
increasing the number of holes per area and, furthermore, largely affects the durability, which is the 
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Reliability, of the product. 
At this point, we focused on internal damage around the drilled hole. We examined the drill's life by 

determining the limit number of drilled hole. This was accomplished by observing the relationship 
between the extent of the damaged area and the number of drilled hole. The wear condition of the drill 
bit was observed and defined. Furthermore, a method to judge the influence of the change in materials of 
PWBs, which affects the wear of drill bit, was established. The relationship between the change in the 
cutting force and the wear of the drill bit was clarified. 

2. SPECIMENS USED FOR THE DRILLING AND THE DRILLING METHOD 
Two specimens were used for the drilling. One was a heat-resistant glass-cloth epoxy resin laminate 

of eight layers, 1.6-mm thick in total, sandwiched between copper films, following the basic structure of 
PWB materials. The other was a glass cloth-reinforced epoxy resin plate of one ply, 0.2-mm thick, made 
of the same glass cloth as was used in the first specimen and impregnated into the resin. The latter is for 
the purpose of observing any internal damage taking place around the drilled hole. For drilling, a 
numerically controlled (NC) drilling machine (Hitachi Seiko, ND-1H) was used. The two specimens 
were considered as one set, and when drilling both specimens simultaneously, the number of drillings 
was counted as one. The drilling was conducted by stacking three sets of specimens sandwiched between 
an aluminum plate on top and a paper base phenolic laminated sheet on bottom. The drill used was a 
carbide step drill on the market with a 1-mm diameter by two-step plane grinding. The number of drilled 
hole was determined to be 30,000 times, which would completely wear out the drill bit. To measure the 
cutting force, a Kistler dynamometer(Type9273) was used. And both the spindle speed and the feed rate 
are changed on drilling the PWBs. 

3. OBSERVATION OF THE INTERNAL DAMAGE AROUND THE DRILLED HOLE AND 
THE WEAR OF DRILL BIT 

3.1 Observation of the internal damage around the drilled hole 
An example of the internal damage that took place around the drilled hole at various conditions of 

drilling is shown in Fig. 1. The damaged zone was observed by means of transmitted light placed on the 
one-ply resin plate, which had been drilled simultaneously. The black portion around the drilled hole in 
the figure represents the internal damage. The extent of the damaged zone largely depends on the relative 

Center of cut hole 
Radius of cut hole 

Radius of maximum 
damaged zone 

Width of maximum damaged zone 

Fig.l Definition of maximum width for internal damage zone 
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position of the drill bit against the direction of the glass fiber bundle and is, thus, not same. For this 
reason, the extent of the internal damage was defined as the maximum width of the internal damaged 
zone as shown in the figurel. That is, the maximum width of the internal damaged zone (L) is obtained 
by the difference between the radius of the maximum damaged zone and the radius of the drilled hole. 

3.2 Observation of the wear of a drill bit 
As the drill used in this study was a carbide step drill of two-step plane grinding, the shape of flank 

face is a trapezoidal shape. On the other hand, the wear of a drill generally progresses by the abrasive 
wear when it is used for cutting glass fiber reinforced plastic material( 8.9 ). Therefore, we considered 
that most of the wear of drill that took place in this study was flank wear. From this, the progress of the 
drill-bit wear can be estimated by observing the change in shape of the trapezoidal flank face, which is 
considered to reflect the progress of the flank wear. 

4. THE DECISION METHOD OF DRILL'S LIFE 
4.1 The relationship between the extent of the internal damage around the drilled hole and the 

number of drilled hole 
An example of the relationship between the maximum width of the internal damaged zone, around 

the drilled hole and the number of drilled hole is shown in Fig.2. The figure shows their relationship 
when the spindle speed was 80,000 rpm and the feed rate was 10 /um/xev. The figure shows the number 
of drilled hole at which the maximum width of the internal damaged zone steeply increased. This was 
observed under other drilling conditions. When drilling PWBs, it is desirable to have as little internal 
damage around the drilled hole as possible. Therefore, we determined the limit number of drilled hole to 
be 3,200, occurring just before the maximum width of the internal damaged zone steeply increased, as is 
shown in this figure. 
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Fig.2 Relation between width of maximum damaged zone and number of drilled hole 

The wear of a cutting tool generally taking place in the cutting FRP material is similar to the abrasive 
wear, and the abrasive wear depends on the cuttinglength. Therefore, by replacing the change of drilling 
conditions, such as the feed rate and the number of drilled hole, with the change in the cuttinglength, 
which corresponds to the wear on the tip of the drill bit, the cutting length L is obtained by the following 
equation, 



646 Fracture and Strength of Solids 

L= wDNt/f    (1), 
where L is the cutting length (m), D the drill diameter (m), t the thickness of the PWB, f the feed rate of 
the drill(m), and N the number of drilled hole. 

From the above, the cut length which corresponds to the limit number of drilled hole obtained by 
Eq. (1) is the cutting length (Lc). 

4.2 The shape of the worn drill bit at the limit number of drilled hole 
Based on the limit number of drilled hole obtained from Fig.2 we drilled the PWBs and observed 

with scanning microscopy the shape of the drill bit at the limit number of drilled hole as well as before 
and after. The results are shown in Fig.3. The shape of the flank face of the drill bit at the limit number of 
drilled hole has been changed with its cutting edge retreating to the c02 position from the original a02 
position as shown in Fig.3. In other words, if the drill is used until its cutting edge retreats beyond the 
c02 position, the width of the internally damaged zone around the drilled hole expands steeply. 

Wear line at tool life 

01 

Chisel 
edge 

Cutting edge 
Fig.3 Schematic figure of flank face of worn drill bit 

Next, the cutting edge of the drill bit does not retreat parallel to the cutting edge, as does the tool 
wear in an orthogonal cutting. Instead, it retreats revolving around the chisel edge. Therefore, we decided 
to use the remaining area of the flank face of the drill bit in order to measure the progress of the wear that 
occurs at the outer edge of the drill bit. In other words, we defined the amount of wear taking place 
during the drilling as the worn area of flank face(0: %), which reveals how much the cutting edge 
decreases, as in the following equation: 

The worn area of flank face = {1 - (the remaining area of the flank face) / (the original area 
of the flank face)} x 100 (2) 

The worn area of flank face of the drill bit when the drill bit is worn out obtained by Eq. (2) was 
approximately 60% under the conditions of this study. 

5 THE INFLUENCE ON THE RELATION BETWEEN THE CUTTING LENGTH AND THE 
WORN AREA OF FLANK FACE BROUGHT BY THE CHANGE IN MATERIALS OF 
PWBS 
Figure 4 shows the relationship between the cutting length and the worn area of flank face when 

various kinds of materials were used for PWBs. The symbols used in the figure show the materials of the 
PWBs to be as follows: A: Hard resin; B: Soft resin; E: E-glass fiber; and S: S-glass fiber. R indicates the 
contamination of a crack inhibitor. In the figure, the PWB made of S glass, which has a fiber strength 
greater than that of E glass, causes the drill bit to wear out sooner, or, in other words, it has poor 
machinability. On the other hand, the cutting length that can be drilled before wearing out a drill bit with 
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the hard resin is less than when using soft resin( 10 ). Furthermore, the contamination of the additive 
changed the characteristics of the PWB because the crack inhibitor was a rubber-like material. 
Therefore, the cutting length of a drill bit with this changed material containing the additive is nearly the 
same as with PWBs made of soft resin. 
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Fig.4 Relation between worn area of flank face and cutting length 

6   THE RELATIONSHIP BETWEEN THE WEAR OF DRILL BIT AND THE CUTTING 
FORCE (THRUST FORCE) 
In order to measure the cutting force during the drilling, four drills were prepared with flank faces of 

drills that were worn in the following conditions: no wear, near the wear line at tool life, and before and 
after the wear line at tool life, respectively. The relationship between the thrust force and the worn area of 
flank face when these drills were used is shown in Fig.5. The figure shows that the cutting force 
increases as the wear of the drill bits progresses, and the increasing rate changed steeply when the worn 
area of flank face reached the drill's life. On the other hand, the cutting force increases with the increase 
of the feed rate, and it increases in almost the same manner for the worn area of flank face. In addition, it 
was observed that the change in materials of PWBs did not largely affect the change in cutting force. 

As seen above, the method used in this study to judge the drill's life in relationship to the wear of a 
drill bit was proved to be appropriate from the measurement results of the cutting force. In addition, it 
was demonstrated that the machinability of PWBs in various materials could be examined by obtaining a 
life curve of a drill bit as is shown in Fig. 4. 

7.   CONCLUSION 
In order to judge drill's life used for drilling a PWB, we focused on the extent of internal damage 

zone that takes place around drilled hole and proposed a method to estimate the drill's life from the 
relationship between the extent of the internal damage and the number of drilled hole. The results of the 
study are as follows: 
1.   The limit number of drilled hole was determined from the relationship between the extent of the 

internal damaged zone(the maximum width of the internal damaged zone taking place around the 
drilled hole) and the number of drilled hole. 
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Fig.5 Relation between cutting force and worn area of flank face 

2. The drill's life was defined according to the wear of the flank face of the drill bit at the limit number 
of drilled hole, and the relationship was clarified between cutting length, which corresponds to the 
number of drilled hole, and the wear of the drill bit. 

3. A correlation was found between the change in the cutting force caused by the progress of the drill 
wear and the extent of the internal damage around the drilled hole 

4. It was demonstrated that the influence on the drill's life caused by differences in materials used for 
PWBs can be easily measured by noting the relationship between the wear of a drill bit and the 
cutting length when different materials are used in PWBs. 
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ABSTRACT 

Aircraft structures have to be designed according to the damage tolerance philosophy which 
requires the damage tolerance evaluation for fatigue critical components. The evaluation includes 
fatigue crack growth life prediction and residual strength analysis. DATAS (DAmage Tolerance 
Analysis Software) is developed with a special feature to include a crack closure model i.e. the 
CORPUS model in fatigue crack growth prediction under flight stimulation loading. The CORPUS 
model is based on crack closure phenomenon which is visualized as humps on the crack faces. 
Some theoretical background of the CORPUS model will be reviewed , including some 
characteristic features. Another special feature of DATAS is the use of R curve data for residual 
strength analysis of thin sheets. Some characteristic features of DATAS are presented and a 
summary of prediction results is given. 

1.   INTRODUCTION 

Damage tolerance evaluation has to be carried out for fatigue critical components of aircraft 
structures. The objective of the evaluation is to provide an inspection program for those 
components such that cracking, initiated by fatigue loading, accidental damage or corrosion, will 
not propagate to cause catastrophic failure prior to detection [1]. Currently, the majority of aircraft 
manufacturers use the linear model and the Willenborg model for crack growth life prediction. The 
linear model, which does not take into account interaction effects, is considered to be too 
conservative while the Willenborg model does not correctly represent the physical processes of 
crack growth under variable-amplitude loading. DATAS (DAmage Tolerance Analysis Software) 
[2, 3, 4, 5] is developed to include the CORPUS model for crack growth life prediction. This 
model is based on the crack closure phenomenon, which can be used to describe quantitatively the 
interaction effects in fatigue crack growth under variable amplitude loading, which for aircraft 
structures is the flight simulation loading. The introduction of the CORPUS model is considered as 
a special feature of DATAS because it has a strong phenomenological base i.e. crack closure. The 
previous version of DATAS was enhanced with the capability for prediction of part through cracks, 
the current version includes also multiple-site damage cases. 
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The current development for DATAS is to employ KR-curve for residual strength analysis. The use 
of the KR-curve is considered to be essential because fracture of thin skin in aircraft structures is 
always proceeded by slow stable crack extension. 

2.   DESCRIPTION OF THE CORPUS MODEL 

2.1. Crack opening stress and hump mechanism 

The CORPUS model was proposed by De Koning [6] for crack growth prediction under flight 
simulation loading. The model is based on crack closure phenomenon which is visualized to occur 
due to the formation of humps on the fracture surface. According to the CORPUS model different 
load level will create different size of plastic zone which will be left on the crack surface as humps of 
different heights (see Fig. 1). 

Fig. 1. A hump created by an overload, and flattened by an underload 

Since humps has height, it causes the crack to open during uploading or to close during downloading. 
The largest hump will be the last hump which cause the crack faces loosing contact or in other words 
it will have the highest crack opening stress (Sop). Since crack extension only occur when the crack 
is fully open, then the stress range which cause the crack extension is: 

ASeff=Smax-Sop (1) 

or in terms of stress intensity factor 

AK-ujr = Kmax - K„p (2) 

2.2. Selection of Sop 

The value of Sop of each hump in Eq. 1 of each load level is obtained in a test with constant 
amplitude loading. The Sop is measured usually with the compliance method using extensometer or 
with direct observations on crack growth rate. Empirical data shows that Sop is a function of stress 
ratio. 

snp=f(R) (3) 

For 2024-T3 and 7075-T6 Aluminum alloys the following equations are provided by de Koning [6]: 

Sop = (- OAR4 + 0.9R3, - 0.13R2 + 0.2R + 0.45)Smax (4a) 
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S„p={0.1R2
+0.2R + 0.45)Smax (4b) 

For thick plates of 7075-T6 Aluminum alloy, experiments by Putra [2] were performed which gives: 

Sop=(0.25 + 0.185R + 0.233R2 + 0.12R3)smax (5) 

The values of Sop in Eq. 5 can be considered as representing Sop in plane strain condition, while Eq. 
4.a and 4.b represents plane stress condition. 

The CORPUS model provides an algorithm to select the highest Sop from a series of Sop resulting 
from previous load levels or in other words resulting from the opening stress of a series of humps on 
the crack faces. The algorithm takes into account the following considerations: 
1. Interaction between high loads (overload interaction) which cause an increase of Sop 

2. Influence of high load levels and 
3. The influence region of a particular hump 

Overload Interaction 
A distinguished feature of the CORPUS model is the consideration of overload interaction which 
increase crack closure. If a series of overloads is applied, Sop is increased step by step according to 
the following equation: 

Slv"=Sl>p+m°[s:ax+Sl>p\ (6) 

The value of mn is in Eq. 6 is not constant, it is updated when an overload of level n is applied. In 
calculating m", de Koning [6] introduced some empirical factors, which will not be discussed here. It 
should be noted that the overload interaction was not applied to 7075 Al-alloy because empirical 
evidences showed that the interaction of overloads were not significant for this alloy. 

Influence of High Load Levels 
A high load level will influence the Sop level, in the CORPUS model a correction function to take 
into account this effect was given : 

( 
h = l-0.2(l-R") 

1156ayJ 
(7) 

Using this correction function Sop can be calculated 

SBp=K)h (8) 

The Influence Region of A Particular Hump 

A very important question concerning the application of an overload is the length of the region where 
the influence of the overload still exists. In another word, how far the Sop value of an overload has to 
be taken into account. According to the CORPUS model, the extent of the influence of an overload, 
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is taken as the width of the plastic zone size of the overload. If the crack has grown beyond the 
plastic zone border, it is assumed that the effect of this hump has vanished and the Sop of this hump is 
zero (see Fig. 2). De Koning used the term "delay switch" to describe this behavior, a delay switch 
is turned on upon the application of an overload and it is turned off if the crack has grown through 
the plastic zone. De Koning considered the state of stress in calculating the plastic zone size. Fig. 2 
also shows secondary plastic zones which do not extend beyond the existing plastic zone. 

□   primary plastic zones 
at  a=a, and a=a: 

secondary plastic zones 
at  a=a3 and a=a< 

Fig.2. Overlapping plastic zones in the CORPUS model 

3.   THE USE OF KR-CUR VE FOR RESIDUAL STRENGTH ANALYSIS 

For thin sheets the use of plane stress fracture toughness Kc for residual strength analysis always give 
inconsistent results. The occurrence of slow stable crack extension can be considered as a material 
property which can be described as a relation between the stress intensity factor K (obtained from a 
test) and the crack extension Aa. The failure stress can be obtained by superimposing the KR-ü curve 
with K-a curves for different stresses. Unstable crack extension occur for the stress level where the 
K-a curve is tangent to KR-ü curve (see Fig. 3). 
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4.   PREDICTION RESULTS 

Some results of crack growth prediction for through cracks using DATAS is given in this section. 
Fig. 4 shows a comparison of crack growth curve for a sheet specimen with a through crack under 
flight simulation loading representative for gust loads on wing structures. Prediction results for 
other type of flight simulation loading is shown in Fig. 5, as the ratio of prediction results to test 
results. Non-interaction prediction results are also included in Fig. 5, to see the interaction effects 
predicted by the CORPUS model. From Fig. 4 and Fig. 5 it can be seen that the CORPUS model in 
DATAS gives a much better prediction compared to the non-interaction prediction, it is not 
excessively conservative. The accuracy of the CORPUS model is due to its capability to model 
different phenomena occurring in crack propagation under variable amplitude loading e.g.: multiple 
overload interactions. 

Creek Growth Curve 
Companion of Specimen 4 
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Fig.4. Comparison of crack growth curve under flight simulation loading representative for gust 
loads on wing structures 
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5.   CLOSING REMARKS 

1. DATAS predictions using the CORPUS model give a much better results (less conservative) 
compared to non-interaction prediction. 

2. The CORPUS model which is based on the crack closure phenomenon, has a number of 
characteristic features which makes this model suitable for fatigue crack growth life prediction 
under flight simulation loading. 

3. A very important empirical data for the CORPUS model is the crack opening stress level as a 
function of stress ratio which is not widely available in the literature, thus tests have to be 
performed to obtain the data. 
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ABSTRACT 
In order to verify the analytical method predicting the failure behavior of cracked pipes, the full- 

scale pipe tests are crucial in nuclear power plant pipings. For this reason, series of international test 
programs have been conducted. However, the full-scale pipe tests require expensive testing 
equipment and long period of testing time. The objective of this paper is to develop a test system 
that can economically simulate the full-scale pipe test regarding the integrity evaluation. This 
system provides the failure behavior of cracked pipe by testing a wide-plate specimen. The system 
was developed for the integrity evaluation of nuclear pipings based on the methodology of 
hardware-in-the-loop (HiL) simulation. Using this simulator, the piping integrity evaluation can be 
performed based on elastic-plastic behavior of full-scale pipe, and the high cost full-scale pipe test 
may be replaced with this economical system. 

1. INTRODUCTION 
Recently, the leak-before-break (LBB) concept was accepted as a technically justifiable approach 

for piping design of new plant and operating plant. In this case, the evaluation method and analysis 
procedure must be verified. The increasing number of cracks being found in operating plants has 
raised the necessity for developing more sophisticated analytical and experimental methods for the 
application of LBB concept. 

In order to apply the LBB design concept to nuclear piping system, material properties such as 
stress-strain curve and fracture resistance curve are required for the elastic-plastic fracture 
mechanics analysis. The fracture mechanics analysis based on ./-integral and tearing modulus has 
been successfully adopted in the LBB analysis[l,2]. Recently, effects of dynamic strain aging and 
reverse cyclic loading on LBB application have been raised. In order to resolve these complicated 
problems, alternative analytical methods with experimental verifications are required. For this 
purpose, series of international test programs[3,4] have been conducted. However, limited number 
of full-scale pipe tests was carried out due to the high cost equipment and long period of testing 
time. . 

In the present paper, the methodology of hardware-in-the-loop (HiL) simulation has been 
introduced to replace the full-scale pipe test. This approach utilizes a software algorithm for 
simulating the full-scale structure behavior, and the resulting output is interfaced to a real hardware 
component such as a wide-plate specimen which is mounted on a test equipment. The methodology 
of HiL was originated in the aerospace and the defense industries where it is frequently impossible, 
impractical, or just too costly to test controllers on actual systems, and popularly used in automobile 
industries in order to improve the component performance[5 -7]. 

The objective of this paper is to develop a test system which can economically simulate the full- 
scale pipe test regarding the integrity evaluation based on the methodology of HiL simulation. 
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2. HiL SIMULATOR FOR PIPE INTEGRITY EVALUATION 

The proposed HiL based piping integrity evaluation simulator consists of the software part the 
hardware part and the input/output (I/O) part as shown in Fig. 1. The software part is composed of 
elastic and elastic-plastic finite element analysis module. The hardware part is composed of test 
machine, wide-plate specimen, sensors, and a display unit. The I/O part consists of A/D and D/A 
converters for the data transmission between the software and the hardware parts. 

2.1. Software Part 
- Loading schedule module 
The loading schedule module provides information on the variation of loading conditions to the 

finite element model. The finite element model thus deforms according to the actual loading 
conditions which corresponds to a real piping. In this paper, only a remote bending condition was 
considered. 

- Finite element analysis module 
In this module, series of finite element analyses are conducted on a full-scale pipe to obtain the 

boundary conditions for a wide-plate specimen which is actually mounted on the testing machine. 
For the finite element analysis, a commercial finite element analysis program, ABAQUS[8], was 
used. The resulting boundary conditions for the wide-plate specimen were transferred to the main 
control PC as shown in Fig. 1. 

2.2. Hardware Part 
- Specimen and test machine 
A full-scale pipe may be subjected to global bending (Fig. 2(a)), but the local loading on a 

cracked area can be considered as the axial tension condition (Fig. 2(b)). A wide-plate specimen 
subjected to tension loading, therefore, can simulate the full-scale pipe subjected to remote bending. 
As shown in Fig. 2, the specimen is cut directly from a section of full-scale pipe. Fig. 3 shows the 
wide-plate specimen with a through-wall crack which is sharpened with fatigue pre-crack at both 
sides. Six strain gages were mounted on the surface to produce the equivalent boundary conditions 
which were obtained from the finite element analysis on the full-scale pipe, as shown in Fig. 3. An 
Instron test machine (model 8503) was used for applying the loading condition to the wide-plate 
specimen and was automatically controlled by an electrical motor. Uni-axial tension was applied to 
the specimen according to the loading schedule produced by the software part. 

- Strain measurement system 
A specially designed strain measurement system was applied to match the strain field in the 

wide-plate specimen with the finite element analysis results. In order to minimize the measurement 
error during the loading process, total of 6 strain gages were attached to the specimen as shown in 
Fig. 3. A multi-channel strain measurement system covering 16 channels was developed for this 
purpose. A multi-channel strain measurement system consists of wheatstone bridge, channel control 
part, filter, amplifier, and A/D converters. The signals from the attached strain gages are transferred 
into the wheatstone, the filter, the amplifier, the A/D converter, subsequently and finally recorded in 
the main control PC. The developed low-pass filter has a cut-off frequency of 10Hz and the 
developed amplifier has gains of 40, 54, 60 and 74dB. 

Crack detection system 
The crack growth behavior is monitored by a multi-channel DCPD (Direct Current Potential 

Drop) system. DCPD is an indirect method of measuring crack size. It provides the amount of crack 
growth in terms of voltage drop. In this paper, three DCPD channels were used for voltage reading, 
as shown in Fig. 3. The monitored data are recorded in the main control PC. 

In order to determine the crack length from voltage change, the following equation which was 
analytically developed by Johnson[9] was used. 

V_ = cos\\~\cosh{7iyl2W)lcos{7ial2W)\ 
cosh~\cos\\{nyl2W)lcos{7raJ2W)] V        ^ch-'r^oW™,/!»«/^^™   mrr,\i 0) 
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Fig. 1. A schematic illustration of piping integrity evaluation simulator. 

(a) The full-scale pipe under remote bending moment     (b) The wide-plate specimen under axial tension 

Fig. 2. A wide-plate specimen configuration subjected to axial tension. 

MyM 

Fig. 3. A wide-plate specimen used in 
HiL simulation. 

Fig. 4. Electric potential wire placement locations 
for Johnson's formula. 

Equation (1) is valid for all values of a/W. This equation can be rewritten in terms of voltage for 

calculating crack length as following; 

2W     _, 
a = cos 

cosh(7ry / 21V) 

cosh WI V„) cosh "' [cosh(^y / 2W) I cos(;zn„ I2W)]) 
(2) 

where, a0 and V„ are the initial crack length and the corresponding initial potential, respectively, 
and a and V are the current crack length and the corresponding potential, respectively. Fig. 4 
illustrates the wide-plate specimen geometry and wire placement locations for this solution. 

-    AID converters 
The analog voltage measurement obtained from the DCPD system is converted to digital signal 

by passing the A/D converter which was specially designed for the developed DCPD system. The 
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resulting data are graphically displayed on the main control PC to monitor the crack growth 
behavior. 

-    Main control PC 
Main control PC is in charge.of data communication between the hardware part and the 

software part, the data storage, and the loading schedule control. It also provides the graphical crack 
growth monitoring display in accordance with the DCPD measurement. 

3. PROCEDURES OF HiL SIMULATION 

Procedures of HiL simulation for the piping integrity evaluation are explained as follows. 

1) In the first stage, the finite element analysis is conducted for full-scale pipe model in 
accordance with pipe loading schedule. As a result, a loading schedule for the wide-plate specimen 
is produced in terms of strain. 

2) The wide-plate specimen is mounted on the testing machine with sensors connected. The 
strain measurement system and the DCPD system are initialized. 

3) The resulting boundary conditions for the wide-plate specimen are transmitted to the main 
control PC. The main control PC then initiates the testing machine by controlling loading motor. 

4) The measured strain values due to the applied loading are transmitted to the main control 
PC, and are compared with the strain value which was set by the loading schedule. The applied load 
increases until the measured strain matches with that of loading schedule. 

5) At the same time, the crack growth behavior is monitored by the DCPD system. The 
amount of crack growth is recorded as a function of strain which is specified in the loading schedule. 

6) The above procedure is repeated until the loading schedule is completed. 

4. APPLICATION OF HiL SIMULATOR 

4.1. Determination of Specimen Size 
In order to determine the wide-plate specimen size, a finite element analysis for the full-scale 

pipe model with the inner diameter of 289 mm and the thickness of 9 mm was performed. Two 
planes of symmetry were considered in modeling a full-scale pipe, and thus the designed finite 
element model represents only a quarter of pipe as shown in Fig. 5. 

From the finite element analysis result, the size of wide-plate specimen was determined 
considering the strain field which was not influenced by the local crack tip strain field. In order to 
simplify the testing geometry, a flat wide-plate was used for the test. Fig. 6 shows the configuration 
of wide-plate specimen for the HiL simulation. Table 1 shows material properties of wide-plate 
specimen used for the HiL simulation. 

, !>S mm 

i 

1 

62 mm 

E 

> 

Fig. 5. A three dimensional mesh for the 

finite element analysis. 
Fig. 6. The configuration of wide-plate specimen. 
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Table 1. Material properties for the wide-plate specimen 

SM45C 
Carbon Steel 

Young's modulus, E 
(GPa) 

207 

Yield strength,  cr 

(MPa) 
466 

Ultimate strength,  <JU 

(MPa) 
977 

Poisson's ratio,   v 0.3 

<J       10  . 

20 40 60 

Loading Sequence 

20 40 

Loading Sequence 

Fig. 7. Comparison of strain values between loading 

schedule and experimental result. 

Fig. 8. Variation of crack length and ./-integral during 

the simulation at each loading step. 

4.2. HiL Simulation with Wide-Plate Specimen 
For the HiL simulation, a remote bending moment of 200 kN-m to the full-scale pipe was 

considered. According to the resulting finite element analysis, the loading schedule was set by 15 
steps in terms of strain. A wide-plate specimen was tested with an initial crack size ( 2a) of 62 mm. 
During the simulation, strain values obtained from the strain measurement system were recorded 
along with the corresponding crack size at each loading step. 

Fig. 7 shows the comparison between the strain values from the measurement system and the 
loading schedule. The strain values at each loading step are indicated by open circle symbols. The 
measured strain values showed a good agreement with those specified in the loading schedule. This 
implies that the motor driven loading control system operated well according to the loading 
schedule, and it can be utilized to correlate the finite element analysis results to the wide-plate 
specimen. 

Fig. 8 shows the measured crack growth during the simulation at each loading step and 
corresponding ./-integral considering the crack growth. The measured crack length at each loading 
step is indicated by open circle symbols and corresponding ./-integral is indicated by open square 
symbols. By measuring the crack growth simultaneously at each loading step, the crack growth 
behavior was monitored with the increase in load applied to the full-scale pipe. At the crack 
initiation point which is indicated by solid square in Fig. 8, corresponding moment and ./-integral 
were 144 kN-m and 47,344 J/m2, respectively. However, the Jic obtained from a 1T-CT specimen 
was 6,438 J/m2. This discrepancy seems to be caused by the difference of constraint. It is known 
that tension loading usually produces lower constraint at the crack tip than bending loading 
condition. It makes a big difference in case of brittle fracture[10]. Since the tested material, SM45C, 
is known to be brittle, a big difference was observed between two ./-integral values measured at the 
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crack initiation. The final crack size measured from the DCPD system showed a good agreement 
with the measurement obtained from the failed specimen with less than 1% of difference, and thus 
the validity of applied DCPD system was proven to be reliable. 

5. CONCLUSION 

In this paper, a test system which can economically simulate the full-scale pipe test regarding 
the piping integrity evaluation was developed. The system was developed for the integrity 
evaluation of nuclear pipings based on the methodology of hardware-in-the-loop (HiL) simulation. 
By simulating a full-scale pipe under remote bending, each part of the HiL simulator, such as 
software part, motor driven loading control system, strain measurement system, and DCPD system 
was tested. The developed HiL simulator is expected to be utilized to verify the crack initiation load 
which is currently predicted by engineering ./-estimation scheme such as GE/EPRI method etc. And 
the J-integral calculation considering the crack growth is expected to be performed based on a real 
pipe behavior. Using this simulator, a more sophisticated piping integrity evaluation is expected to 
be performed based on an elastic-plastic behavior of the full-scale pipe, and the high cost full-scale 
pipe test may be replaced with this economical system. 
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ABSTRACT 

An intensity-based optical fiber vibration sensor is used to monitor the structural vibration and 
detect the impact location on a plate. The optical fiber vibration sensor is constructed by placing 
two cleaved fiber ends, one of which is cantilevered in a hollow glass tube. For vibration sensing, 
optical fiber vibration sensor is mounted on the carbon fiber composite beam and its response to 
free vibration and forced vibration is investigated. In impact location detection, four optical fiber 
vibration sensors whose location is predetermined are used and the different arrival times of impact- 
generated vibration signal are recorded by FFT analyzer. Impact location can be calculated from 
these time delays. Experimental results.show that optical fiber vibration sensor signals coincide 
with gap sensor in vibration sensing. The precise locations of impact can be detected on an acrylate 
plate within 3.4% error limit. 

1. INTRODUCTION 

A smart structure is defined as a structural system whose geometric configuration or inherent 
structural characteristics can be modified in response to environmental changes. An important 
component in smart structure is the optical fiber sensor which detects the strain level, temperature 
and acoustic emission. The data generated by the sensor system can be used to monitor the health of 
an aircraft structure or to control actuators. 

Both low-velocity and high-velocity impacts generate structural vibration and acoustic stress 
waves in structures. These impacts lead to crack initiation that on progression could lead to severe 
structural degradation. Hence, it is necessary to detect impacts occurring on the surfaces or edges of 
a specimen. Many techniques have been proposed to detect the source of origin of acoustic waves. 
Tobias[l] presented a scheme of locating an acoustic source on a flat plate by employing three 
piezoelectric sensors. Asty[2] modified Tobias' work by generalizing the theory to calculate the 
acoustic source location on a sphere. Greene et al.[3] employed extrinsic Fabry-Perot 
interferometric(EFPI) optical fiber-based sensing system and determined impact locations on an 
aluminum sample and a composite plate. With fiber Bragg grating(FBG) attached to the surface of a 
cantilever beam, Davis et al.[4] demonstrated shape determination and vibration mode sensing of 
the structure. 

In the past a few years, considerable effort has been devoted the development of optical fiber 
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Glass tube Cladding Coating 
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5mm <0.5mm   Adhesive 

Fig. 1 Schematic illustration of optical fiber vibration sensor 

vibration sensors, due to the wide variety of applications where it is necessary to monitor or 
accurately measure vibrations and this cannot be achieved by the traditional sensors based on 
piezoelectric or capacitive working principles. Doyle and Fernando[5] described a vibration 
monitoring system for detecting damage in a material using an intensity-based optical fiber 
vibration sensor. Several researchers[6,7] applied the optical fiber vibration sensor to a fiber optic 
accelerometer with attention to the low-frequency range and the low-amplitude measurements. 

In this paper, vibration sensing and impact location detection using optical fiber vibration sensor 
are demonstrated. Design, fabrication and operation of a simple intensity-based optical fiber 
vibration sensor is described. The sensor is mounted on the composite beam and its response to free 
and forced vibration is investigated. Experimental results of determination of impact location in an 
acrylate plate are discussed. 

2. OPTICAL FIBER VIBRATION SENSOR 

Optical fibers consist of the core, cladding and coating. Since the core has a higher index of 
refraction than the cladding, the total reflection at core-cladding interface occurs. Fig. 1 shows the 
configuration of the optical fiber vibration sensor. The sensor consists of two optical fibers, one of 
which is cantilevered in a glass tube. The movement of the cantilevered section lags behind the rest 
of the sensor in response to an applied vibration and the amount of light coupled between two fibers 
is thereby modulated. 

Single mode optical fibers(3M Co.) with the coating diameter of 250um and the cladding 
diameter of 125um are used in this study. The coating of two optical fiber ends are stripped 5mm 
and about 0.5mm long, respectively. The sensor is assembled by inserting the cleaved end of the 
fiber into a glass tube with an inner diameter of about 250um using special xyz-positioning stage. 
The fiber is then bonded to the glass tube using an adhesive. Next, the other fiber is inserted into the 
opposite end of the glass tube and is bonded to the tube. The surface quality of the cleaved fiber 
ends is critically monitored by a microscope. 

The gap separation is maintained 40-50pm in consideration of output intensity. By inserting the 
coating part of the optical fiber into the glass tube, simple intensity-based optical fiber vibration 
sensors can be constructed without additional fiber support tube etc.. The sensor resonance can be 
tuned over a range of a few thousand hertz, by varying the length of the optical fiber cantilever. 
Sensors employing shorter cantilevers are able to respond to higher frequencies, but will tend to be 
less sensitive than longer ones, giving a smaller change in intensity for a given amplitude of 
vibration. 

3. CALCULATION OF IMPACT LOCATION 
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Fig. 2 Coordinate system for impact detection 
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Optical fiber vibration sensor 
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Fig. 3 Configuration of composite beam 
for vibration test 

When an impact is generated, both surface and bulk acoustic waves are excited. If the 
propagation speed of the wave in the material is exactly known, the use of three sensors should 
suffice for impact location. Four sensors are needed where the propagation speed is unknown. In 
this study, the four optical fiber vibration sensors attached to a test plate are used to find the location 
of impacts. In the coordinate system in Fig. 2, time-velocity relations can be written as 

v t = r ('=1,2,3,4) (1) 

where, vi is the propagation speed of the wave along the direction from impact point(Q) to each 
sensor Si, t is the propagation time of the wave from Q to the sensor, and n is the distance between 
Q and the sensor. Assuming that the material is isotropic(vi =v, for i=l,2,3,4), we obtain, 

(t2-t1)v = r2-r1 

(t3-t,)v = r3-r, 

(t4-tl)v = r4-rl 

(2) 

(3) 

(4) 

For example, equation (2) can be rewritten in (x,y) component: 

(t2 -tj)v = J(x2 - x)2 + (y2 - y)2 - J(x, - x)2 + (y, - y)2 (5) 

By eliminating v, equations (2)-(4) can be rewritten as 

(l-t^L}rl=r2-
,3~tt 

•i  h 

(1-- L\r    - 

t4~t, 
)r, 

t3-t, 

t2-t, 
2    t  -t   4 l

4       ll 

(6) 

(7) 

Equations (6) and (7) are non-linear system of equations and the coordinates (x,y) of an impact 
can be determined by using Newton's iteration method. 
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Fig. 4 Configuration of specimen for 
imrtact location test 

Fig. 5 Schematic diagram of experimental 
setup for impact location detection 

4. EXPERIMENTS 

A He-Ne laser whose operating wavelength is 633nm was used as the light source. The laser 
beam was launched into a Newport 3 dB 2 X 2 bidirectional coupler which splits the optical signals. 
The fiber optic signals received by photodetectors were transmitted to FFT analyzer. The 
manufactured optical fiber vibration sensors were adhered to the surface of specimens. 

For vibration mode sensing, the optical fiber vibration sensor was mounted on the carbon fiber 
composite beam and its responses to free vibration and force vibration were investigated. Fig. 3 
shows the configuration of composite beam for vibration test. The composite beam was clamped at 
one end with one optical fiber vibration sensor surface attached at 50mm from the clamped end of 
the beam. A piezoelectric actuator was attached to the back surface of the beam at the same distance 
with the optical sensor. The piezoelectric actuator was excited by a function generator for forced 
vibration test. 

An 34x34x0.13cm acrylate plate was used for impact location test. The material is isotropic, 
hence the propagation speed of the vibration wave is same along the all directions from impact 
point. Four optical fiber vibration sensors attached to the test plate were used to measure the arrival 
times of impact generated vibration signal. Fig. 4 shows the configuration of the plate and 
predetermined optical sensor locations. The fiber optic system is composed of two light sources, 
two bidirectional couplers, single mode optical fibers, four photodetectors and a FFT analyzer as 
shown in Fig. 5. 

(a) (b) 
Fig. 6 Time trace curve of (a) optical sensor and (b) gap sensor for composite beam 
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Fig. 7 Impact response measured in 
frequency domain 

5. RESULTS AND DISCUSSIONS 
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Fig. 8 Power spectrum for forced 
vibration test(about 10kHz) 

Fig. 6 shows the time trace curve of free vibration for the specimen in Fig. 3. Vibration signals 
were recorded by optical fiber vibration sensor and a gap sensor simultaneously. The output of the 
optical fiber vibration sensor is similar to the commercial gap sensor. The first peak point of the 
optical sensor signals oscillates minutely in high frequencies due to the impact caused by the impact 
hammer. The natural frequency of the composite beam was measured by the optical fiber vibration 
sensor as shown in Fig. 7. Fig. 8 shows the power spectrum of forced vibration test for the 
composite beam. Sinusoidal signal(about 10kHz) from the function generator excited the 
piezoelectric actuator on the specimen. The signal of the optical sensor was identical with the gap 
sensor. A typical signal of the optical fiber vibration sensor attached to the acrylate plate during 
impact is shown in Fig. 9. Overall response of the sensor seems to be mixed with the plate vibration 
of about 100Hz and vibration of the bare optical fiber of a few thousand hertz. At the early stage of 
the response, the sensor signal oscillates drastically due to the large amplitude vibration of the 
internal fiber optic cantilever and this vibration of the optical fiber in the sensor vanishes at near 
25msec. Fig. 10 shows output of sensor 2 during impact on the test plate. The magnitude of the 
sensor noise was about 1.6mV during non-impact. The arrival time of vibration wave to each sensor 
was identified as the first received data point above the maximum value of the sensor noise signal 
preceding impact. Marking point in Fig. 10 indicates the arrival time of the wave. 

Ten measured and exact impact locations for the acrylate plate are shown in Table 1. The 
percentage error is defined as 

Error (%) = 

10 15 20 

Time(msec) 

Fig. 9 Typical signal of optical fiber vibration 
sensor during impact 

Fig. 10 Voltage output of optical fiber 
vibration sensor during impact 

(sensor 2, impact location : (2,14)) 
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Table 1 Measurement of impact location 

Impact Location Measured Location Error 
(cm,cm) (cm,cm) (%) 

11,11 10.8,11.6 1.2 
2,14 1.8,14.0 0.4 

18,12 17.5,12.1 1.0 
4,2 3.3,1.1 2.4 

14,20 13.9,19.5 0.9 
12,0 11.3,-0.9 2.3 
24,16 24.0,16.3 0.5 
-4,8 -5.2,6.9 3.4 
20,6 18.3,5.6 3.2 

8,18 7.3,17.8 1.3 
-6 0 6 12 18 24 

Location(cm) 

Fig. 11 Comparison of impact location and 
detected location 

where, xe and ye are respectively, the errors in measurement of x and y coordinates, and 1 is the 
length of one side of the specimen on which the optical fiber vibration sensors are mounted. The 
error is less than 3.4%. Comparatively precise locations of impact were able to be determined on 
the acrylate plate. Fig. 11 shows actual and measured impact locations on the plate. 

6. CONCLUSIONS 

Simple intensity-based optical fiber vibration sensor has been constructed using a bare fiber 
optic cantilever beam. The optical sensor was mounted on the carbon fiber composite beam and its 
response to free and force vibration was monitored. The optical fiber vibration sensor detected the 
vibration signal correctly. In impact location detection, four optical fiber vibration sensors whose 
location was predetermined were used. The location of impact was determined by using a 
mathematical model based on the difference in the arrival times of the vibration waves to each 
sensor. The experimental error in the location of impact was less than 3.4%. 
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ABSTRACT 

The overall elastic moduli of microcracked solids are usually estimated by one of the several 
established methods based on the concept of effective medium or effective field. The complete 
formal similarity of these estimation methods is examined in this paper. A one-to-one 
correspondence relation is found between the effective medium methods and the effective field 
methods in the sense that they yield identical results. In addition to the conventional estimation 
techniques, any number of other such approaches may be constructed by appropriately specifying 
the comparison matrix elastic tensor and the effective stress (or strain) field which a microcrack is 
subjected to. Several novel and efficient approaches are proposed to take the microcrack interaction 
effects into account in a simple manner. 

1. INTRODUCTION 

Several schemes have been established to estimate the effective moduli of microcracked solids. 
The simplest one is the approximation of non-interacting microcracks, which is sometimes called 
the Taylor's model or dilute concentration model (DCM) [1]. When considering microcrack 
interaction, one may estimate the effective moduli with the self-consistent method (SCM) [2], Mori- 
Tanaka method (MTM) [3], differential method (DM) [4], generalized self-consistent method 
(GSCM) [5], and other such approaches based on an effective medium or effective field. All these 
techniques, with few exceptions, neglect the precise locations and orientations of microcracks. 
Therefore, their applications are limited to solids that are statistically homogeneous and subjected to 
uniform tractions on or displacements of their surfaces. 

In spite of their cumbersome numerical computations or theoretical derivations, however, these 
techniques do not ensure a satisfactory accuracy of the results. Only in a very few special cases of 
microcrack arrays can analytical solutions be obtained. In more general cases, the SCM, GSCM and 
DM offer little attraction. Therefore, it is of interest to develop simpler and more effective 
approaches to predict the impacts of microcrack interaction on effective elastic properties of solids. 
To this end, an attempt is made in this work to gain an insight into the formal similarity of the 
effective medium or effective field methods aforementioned, and to propose some other possibilities 
of constructing such kind of methods. 
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Fig. 1. (a) An RVE, and (b) the calculation model of the crack opening displacement. 

2. UNIVERSAL FRAMEWORK FOR ESTIMATING EFFECTIVE MODULI 

2.1. Universal framework 

Consider a brittle solid containing many distributed microcracks. Choose a representative 
volume element (RVE) V, whose boundary dV is subjected to tractions in equilibrium with a uni- 
form overall stress cr™ or to displacements compatible to a uniform overall strain E" , as shown in 
Fig. 1(a). Then, the effective (or overall) compliance tensor S and stiffness tensor L are defined by 

6 = S:CT* ö = L:s" 0) 

where e denotes the overall average strain over the RVE in the case of traction boundary conditions, 
and a the overall average stress in the case of displacement boundary conditions. Since the two 
cases of boundary conditions can be discussed similarly, for conciseness, only that of traction 
boundary conditions will be considered henceforth. The average strain can be decomposed as 

s = em+6c, (2) 

where sm denotes the matrix strain tensor averaged over the RVE, E
C
 the increase in the overall 

average strain due to the presence of microcracks. The constitutive relation of the linear elastic 
matrix requires that 

E   =S   :<r  , 

where Sm is the fourth-order compliance tensor of the pristine matrix. 
The microcrack-induced increase of the volume-averaged strain, EC can be calculated by 

(3) 

(4) 

where the superscript (a) stands for a quantity of the a -th microcrack, SM, n(a) and b(a) denote 
its surface area, opening displacement discontinuity vector, and unit vector normal to the crack faces, 
respectively. 
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Thus, the key problem for the present purpose becomes how to calculate the opening 
displacement of a microcrack embedded in a solid containing many disordered microcracks. 
Evidently, it is very difficult if not impossible to determine the exact opening displacements due to 
the large number of interacting microcracks whose orientations and locations are usually distributed 
statistically. Therefore, some simplifications are almost exclusively necessary. On one hand, the 
medium surrounding a microcrack is microcrack-weakened, and then has a stiffness lower than the 
pristine matrix. On the other hand, the stress field which a microcrack is subjected to is perturbed 
due to the existence of other microcracks. As a straightforward approximate model, thus, the 
microcrack is assumed to be surrounded by an effective medium, referred to also as the comparison 
or reference matrix, with compliance S° and subjected to an effective stress CT° in the far field, as 
shown in Fig. 1(b). This approximation, which renders the evaluation of the effective moduli of a 
microcracked solid possible, is common to all the effective medium methods and the effective field 
methods, e.g. the DCM, SCM, DM, MTM and GSCM, although the definitions of S° and a0 in 
these methods are different, as will be discussed later. 

If all microcracks are assumed planar, (4) becomes 

e°=J-£s(a)(bn + nb)(a), (5) 
^'    a=l 

with b(c° denoting the average of b<ct) over the total crack face. 
The average opening displacement vector of a microcrack embedded in a linear elastic matrix 

S° and subjected to a far-field stress CT° can be expressed as 

b=B(S0,ga0)-a°-n, (6) 

where the second-rank symmetric tensor B is referred to as the crack opening displacement tensor 
[6], and § signifies the geometry of the microcrack. If all microcracks are assumed to be open or, if 
closed, to have completely smooth crack surfaces, that is, the friction coefficient between crack 
faces is zero, then b is a linear function with respect to a . 

Relate a0 to a" by a fourth-order tensor H defined by 

a = H:o". (7) 

Assume that the tensor H is same for all microcracks, as consistent with the inherent assumptions of 
the effective medium or the effective field methods. This means that H is unrelated to the 
orientation and location of the microcrack, and then all microcracks are subjected to the same far 
field o° in Fig. 1(b). 

From (5) and (6), the variations in the overall strain induced by the a -th microcrack can be 
written as 

g(a)=^Ü(B.CT».nn + nB-a0-n)(a). (8) 

Thus, the components of the overall effective compliance increment due to the oc-th single 
microcrack are expressed from (7) and (8) as 

^_!_ wLR*,4-„R„_L*,R„4-*,R„Ya> (9) s$ = ^77 H*> (" A«<+ K A"<+ "A".+"A". )a) • m   w 
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Thus, the overall compliance tensor S° is arrived at 

S*i =S;;i+j-HslklfjS^{niBpn,+nJB,nl + niBJlns+niBitnsf\ (10) 
^" a=l 

which evidently possesses the Voigt symmetry, that is, Sijtl = S/ikl = SiJlk = SUIJ. 

2.2. Estimation methods 

Once the shapes and orientations of all microcracks (or their probability density functions) are 
specified, the overall compliance of the RVE, determined from (10), depends upon the B tensor and 
the H tensor. By definition, H relates the far field stress cr° in the simplified model in Fig. 1(b) to 
the stress a™, loaded on the RVE boundary, while B is a function of the crack shape and the 
compliance tensor S° of the comparison matrix. 

Therefore, the effects of microcrack interaction can be incorporated into the overall effective 
constitutive relation through an appropriate choice either of the comparison matrix S° or of the far 
field stress a0. Almost all the estimation techniques available in the literature, based on the concept 
of effective medium or effective field, can be formulated in the form of (10) and, in other words, 
have a complete formal similarity. Their differences stem only from the choices of S° and a0, i.e., 
from the "effective" environment where the microcrack is assumed to be embedded. In the DCM [1], 
more specifically, each microcrack is placed in the undamaged matrix (S° = Sm) subjected to the 
unviolated remote stress O° = CT" (i.e., H=I with I being the fourth-order identity tensor). In the 
SCM [2], the environment of each microcrack is the unviolated remote stress a° = o-™ and a 
damaged effective medium having the as-yet-unknown compliance (S° =SSCM). The SCM generally 
overestimates the effects of microcrack interaction. Therefore, the GSCM [5] modifies it by 
assuming that a microcrack is first inserted in an undamaged matrix (S° =Sm) with a certain volume 
and shape, and then both the microcrack and its surrounding matrix are placed into an effective 
medium with the as-yet-unknown compliance, sGSCM. As the simplest version of the effective field 
method, the MTM [3] puts each inhomogeneity into the undamaged pristine matrix (S°=Sm) loaded 
by the matrix average stress tensor <sm. In the DM [4], the opening displacement of the a-th 
microcrack is calculated by locating it in a damaged effective medium that is subjected to a00 and 
has the compliance determined from the last step, i.e. the compliance of an RVE containing (a-1) 

microcracks, denoted as S™„. In the ESCM [7], the effective moduli of a heterogeneous material 

are estimated by assuming that each inclusion is embedded in the pristine matrix (S°=Sm) and 
subjected to an effective stress field (o-° = o-E), which is determined in an interesting manner. 
Furthermore, the Walpole's bounds on effective compliance, the two-step approximate method in [8, 
9] and some other methods can also be implemented into the same framework. 

In addition, it can be seen from (10) that an effective field method may be mapped to an 
effective medium method in the sense that their estimates of effective moduli are identical. 
Substituting (7) into (6) yields 

b = [B(S°,£,o-°)-H]-a"-n. (11) 

Therefore, provided that one compliance tensor S'° can be found such that 

B(S'0,Sa") = B(Sm,5a°)-H, (12) 
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then the effective medium method defined by S° = S'° and a0 = a" will lead to the same results as 
the effective field method defined by S° =Sm and a°, that is to say, these two methods are 

equivalent with each other. 

3. NEW ESTIMATES OF EFFECTIVE MODULI 

The arguments above indicate that, apart from their heuristic foundations, the conventional 
estimation methods are developed by only several possible choices of the compliance S of the 
comparison matrix material and the far field stress <T° in the simplified calculation model in Fig. 
1(b). Clearly, any number of other choices are addmissible for estimation of the effective moduli of 
microcracked solids. Several novel and efficient schemes are presented as follows. 

First, choose 

--a", S°=(l-£/")"'S" (13) 

where £, and 77 are two adjustable parameters, and/is the conventional scalar microcrack density 

parameter [1,2]. 
The effective medium method defined by (13) is first used to consider an isotropic solid 

containing penny-shaped microcracks whose orientations and locations are uniformly distributed. 
The normalized effective Young's modulus and shear modulus are easily obtained from (10) and 
(13) as 

i+16(l-(v'")2)(l0-3vra)/' 

45(2-i/m)(l-£/') 

G 

Gm 
1 + 32(1-0(5-0/ 

45(2-vm)(l-£/'). 
(14) 

where Em, Gm and vm are the Young's modulus, shear modulus and Poisson's ratio of the matrix. 

When one takes £=0, evidently, the results (14) reduce to those obtained from the DCM. It is 
also found that when £=1.778 and 77=1.0, the results are in a very good agreement with the SCM 
estimates. Therefore, the new estimation scheme defined by (13) has the following advantages. First, 
the derivation of the effective moduli is as straightforward and convenient as the DCM, without 
numerical iteration being required. Second, the choice of (13) can yield the results in good 
agreement with DCM, SCM, GSCM, DM when taking appropriate values of £ and 77. For 
application, the values of the constants £ and 77 can be determined by fitting experimental results 
or other theoretical results of good accuracy. By comparing the effective moduli (14) to the GSCM 
estimates for the same isotropic case, for example, it is obtained that £=0.45 and 77=0.95. Third, no 
cut-off point prevails in the present approximate scheme provided that E, <1. 

Second, one may also specify 

c° = a"/(l -<?/"),    -S'^S" 

which means that the H tensor is defined as 

H = (l-£/'rlI. 

(15) 

(16) 
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Substituting (15) into (10) yields the results consistent with those obtained from (13). Therefore, the 
effective field method defined by (15) is equivalent to the effective medium one defined by (13). 

Third, we let [8] 

c0 = c",   S°=SDCM (17) 

It is well known that the SCM often overestimates the reduction of effective stiffness, namely, the 
stress amplifying effects of microcrack interaction. This implies that the effective medium assumed 
in the SCM is too compliant. Instead, therefore, the effective moduli from the DCM are suggested 
for the comparison medium. Since the effective stiffnesses from the DCM are higher than those 
from the SCM, better results may generally be expected from the suggested scheme. Moreover, no 
numerical iteration procedure is required. Therefore, this scheme combines the advantages of the 
DCM and SCM, and can account for the interaction effects in a two-step straightforward procedure. 

4. CONCLUSIONS 

The formal similarity of the intrinsic structures of the conventional estimation schemes is 
elucidated for microcracked solids. They presents only several possible choices or approximations 
of the compliance tensor S° of the comparison matrix and the far field stress 0° which a microcrack 
is subjected to. A correspondence relation exists between the effective medium methods and the 
effective stress (or strain) field methods in the sense their results are identical. The approximations 
in the conventional estimation techniques are by no means better than other possible choices of S° 
and <r°. Therefore, several new methods are proposed as examples for estimating the effective 
moduli of microcracked solids, though any number of other possibilities may be thinkable. In 
particular, the new effective medium method defined by (13) and its equivalent effective field 
method defined by (15) can take the effects of microcrack interaction on the effective moduli into 
consideration in a very simple and efficient manner, and can reduce to some conventional methods 
when taking appropriate values of £ and rj. The discussion in this paper can be extended to other 
heterogeneous materials, such as composites containing inclusions and solids with voids. 
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ABSTRACT 

In this study shape memory alloy wires and piezoceramic actuators were employed in order to 
generate higher modes on the beam deformations without intermediate supporting points. 
Compressive forces was generated and applied to the beam by the prestrained shape memory alloy 
wires attached at both ends of the beam. The piezoceramic actuators applied concentrated moments 
to several locations on the beam. Combinations of the compressive force and concentrated moments 
were investigated in order to understand the higher-mode deformation of cantilevered and simply 
supported beams. The first mode shape was obtained by applying heat to the shape memory alloy 
wires so that the wires generated and applied a compressive force to the beam. First and third mode- 
shapes of deformation of the cantilever beam have been generated as well as first and second modes 
of the simply supported beam. 

1. INTRODUCTION 

For large space structures, due to the high cost of construction and transportation into the space, 
weight reduction has been an important issue. Unfortunately such weight reduction results in a 
decrease in structural rigidity, with a possible result in structural instability and inaccuracy in 
structural shape. Research has been carried out to maintain the design function of the structure by 
making use of smart materials such as piezoceramic materials (PZT) and shape memory alloys 
(SMA).[1] The first mode shape in a beam and structure is the fundamental mode in deformation 
and vibration. However, if higher modes of deformation can be achieved without intermediate 
supporting points, a new methodology in the shape control of the structure will be provided. The 
purpose of this research is to build up a design concept of higher-mode deformation on a beam 
without any intermediate supports. By using SMA wires and piezoceramics as actuators, the weight 
increase can be minimized and the control method simplified. [2,3] 

In this study, Compressive force was generated and applied to the beam by the pre-strained 
shape memory alloy wires attached at both ends of the beam. [4] The piezoceramic actuators applied 
concentrated moments to several locations on the beam. [5] Combinations of the compressive force 
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and concentrated moments were investigated in order to understand the higher-mode deformation of 
cantilevered and simply supported beams. First and third mode-shapes of deformation of the 
cantilever beam have been generated as well as first and second modes of the simply supported 
beam. 

2. ANALYSIS 

2.1. Piezoceramic(PZT) actuators 
The in-plane actuator strain can be derived from the converse piezoelectric equation. [6] The 

strain developed by the electric field on the actuator layer, 8 A, is given by 

e^cVE (1) 

where c is the stiffness coefficients matrix of piezoelectric material, e is the piezoelectric 
coefficients matrix and Eis the electric field vector. The equivalent actuator moments by the 
electric field, MA, per unit length, can be found by substituting equation (1) and integrating the 
thickness of the plate,  tA, 

MA = Jc8 Azdz (2) 

When the control voltage is applied to the actuator in the thickness direction and only d3l among 
the piezoelectric stress components is considered, the equivalent moments, M", can be expressed 
as follows, because the axial components are dominant when applied to the specimen: 

Ma=c„d3iIV
A (3) 

Here, z is the z -coordinate of the middle plane of the piezoelectric material. 

2.2. Shape memory alloy wires 
The constitutive law, with origins in work by Tanaka and recently modified by Brison, is chosen 

for use in this study.[7,8] Due to the nature of the transformations, SMA wire is predominantly 
characterized and utilized in wire (1-D) form. So stress generates compressive force in the axial 
direction of the wire. Cross sectional area of the SMA wire is relatively small relative to the wire 
length. If uniform stress occurs in that cross section, compressive force can be calculated by 
integrating the stress through the cross section area. When deformation of specimen is terminated, 
this force is balanced by the reaction of the specimen and deformed shape of beam is obtained by 
using von karman equation, sb = yw" .[9] The internal force in the beam balances the generated 
force in the following equation: 

FsMA=-jA<xM = -jA EbsbdA = -EbIb (4) 

where Eb is Young's modulus, Ab the cross sectional area and Ib  is the moment of inertia of 
the beam. So w is as follows: 

W 

E f[Es(cXs-aO+®{T-T0)] (5) 

where ASMA is the cross-sectional area of the SMA wire; Es, stiffness; 0 , thermoelastic 
constant; T, temperature; and ^, the volume ratio of the martensitic phase. The "0" subscript 
indicates initial state of the material at the start of the thermomechanical loading process. 
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2.3. Deformed shape of the beam 
Dividing the beam into n elements, the z'th element has nodal points (z'-l) and (/')■ The 

shape of the z'th element depends on the positions of the two nodal points. By setting X, and Y, 
as the distance between the (z'-l)th and the z'th nodal points in the x and y direction 
respectively, shape function of the z'th element can be expressed as function of x, X,, Y,. The 
length of the beam is expressed as an integration of the shape function. Generally, all nodal points 
rotate by angle (j> with the exception of the clamped nodal point. It should be noted that the shape 
function also changes because of <p, /,and ly, which are denoted as the projections for changes in 
X, and Y, respectively, due to rotation. Figure 1 shows the z'th element with the concentrated 
moment actuated in the middle of the element by the piezoceramic actuator. 

pi   yi ^~~~*~~~~'""(*::vJv' 
$.1/2      yi*l/2   ~     ~~~—  # 

-••♦■-- Node without equivalent moment M by piezoceramics 

—•— Node with equivalent moment M by piezoceramics 

Fig. 1 Effect by the concentrated moment 

There are three quantities, lx, ly and </> , which need to be determined. The ly+l/2 and <j>Mn  in 
the middle of the i th element are as follows: 

K«, =  + <t>, h +l/2 =  + — + K (6) %*M1      2E„I y' '       8EbI        2      y' 

where La is the length of the piezoceramic actuator. The rotation ^, for the (z +1) th element is 
the same as (Z»/+,/2. 

h 
<t>M = 0,+V2 h,+\ = l>,+vi + ytan^+V2 (7) 

Therefore, the deformation of the beam is the combination of deformation due to the compressive 
force by the SMA wires and the concentrated moment by the PZT actuators. 

3. EXPERIMENTS 

Cantilevered and simply supported beams were used for shape control experiments. Two 
different lengths were used for the cantilevered beam. One was 2301 x 20W x 1.25T mm and made 
of a carbon/epoxy composite material; the other was 350Z, x 2SW x 2T mm and made of an acrylic 
material. Acrylic material was used for the simply supported beam and its length was 500 mm. The 
jigs holding the SMA wires were attached to the ends of the beam so that the wires created and 
applied an external compressive force to the beam. Positions of the piezoceramics were arranged so 
that they applied the concentrated moments at one-quarter and three-quarters of the length of the 
beam, from the clamped side. For the simply supported beam, metallic bars were attached at both 
ends of the beam. One of the bars was fixed and the other was placed on the roller so that it could 
move along the beam axis. Figure 3 shows the experimental setup. The specimen was positioned 
vertically so that the effect of the weight of the specimen was minimized. 
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Fig. 3 Experimental setup 

4. REUSLTS AND DISCUSSION 

4.1. Cantilevered beam 
Figure 3 shows the deformed shape of the first mode after fine-tuning, using the SMA wires and 

PZTs. The maximum error was approximately 7% compared with the analysis. Most of the error 
was attributed to the approximation of stiffness-difference between the beam and the piezoceramics. 
When the SMA wire had a pre-strain of 5%, the displacement at the free-end was approximately 12 
mm, which is nearly ten times more than that compared with PZT actuators alone. 
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Fig. 3 First mode shape control using SMA wires and piezoceramics 

Figure 4 shows the third mode deformation of the beam with an intermediate node. The 
maximum error was approximately 8%, and the free-end displacement about 8.5 mm. 
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Fig. 4 Third mode shape control using piezoceramics with an intermediate node 

Figure 5 shows the third mode deformation of the beam without an intermediate node. 
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Fig. 5 Third mode shape control using piezoceramics without an intermediate node 

The maximum error was approximately 3%. Figure 5 demonstrates that there was no effect on the 
result obtained when a 230-mm length beam was used. In this case, the line without the second 
piezoceramics set was the deformed shape, with the piezoceramics set at three-quarters of the beam. 
In Figure 5, the straight-line tangent to the deformed curve at the inflection point is included in 
order to show the deformed shape more clearly. 

4.2. Simply supported beam 
The first and second modes of the deformation for the simply supported beam were carried out. 

For the first mode-shape generation, the compressive force by the SMA wires was applied first, then 
the concentrated moments applied in order to fine-tune the shape, as shown in Figure 6. 

— Desired shape 
•PZT&SMA 

100     150    200    250    300    350     400    450     500 

Fig.6 First mode shape control using SMA wires and piezoceramics 

For the second mode-shape generation, the concentrated moments were first applied to the beam. 
Thereafter, the compressive force was applied in order to magnify the deformation. During the 
application of the compressive force, however, the deformation mode changed to the first mode. 
These phenomena can happen for the simply supported beam but not the cantilevered beam since 
both ends of the simply supported beam cannot bear the moments. When concentrated moments 
were applied to the beam in the beginning, they were localized onto the beam and were not affected 
by the end conditions. However, when the compressive force was then applied at both ends, it was 
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affected by the end conditions. When a small amount of imbalance in the moments existed, the 
intermediate node point moved away from the beam neutral axis. Thus, the deformed shape 
changed to the fundamental mode of the first mode. 

5. CONCLUSIONS 

Shape control of cantilevered, simply supported beams was carried out, making use of shape 
memory alloy wires and piezoceramic actuators. The following conclusions have been drawn: 

(1) Higher-mode deformation shapes can be achieved by employing SMA wire to generate a 
compressive force, and piezoceramics to generate concentrated moments onto the cantilevered 
beam. 

(2) For a simply supported beam, it is possible to realize the second mode-shape temporarily. 
However, if the moment balance in the intermediate node cannot be maintained, the mode- 
shape changes to the first mode. 

(3) The first mode-shape can be achieved by temperature control of the SMA wire only. The higher 
mode-shape of the deformation can be achieved by concentrated moments applied to several 
locations on the beam. However, the magnitude of the deformation is very small. 
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Crack Orientation 1303 
Crack Propagating Velocity 283 
Crack Propagation 169, 565, 981, 

1017,1035 
Crack Surface Displacement 103 
Crack System 55 
Crack Technique 55 
Crack Tip 9,157, 737 
Crack Velocity 247, 265 
Cracked Pipe Welds 1327 
Cracked Piping System 505 
Crack-Healed Zone 1047 
Cracking..... 187,1261 
Crantz-Schardin Type Stroboscopic 

Camera 337 
Creep Fracture 367 
Creep Life 903 
Creep Rupture Strength 903 
Creep-Fatigue 1041 
Critical Impact Energy 271 
Crush Energy Absorption 1099 
Crystallinity 1063,1171 
Cumulative Damage ; 927, 945 
Cu-Nb 1207 
Curing Method 1087 
Cutting Forces 643 
Cyclic Fatigue Crack Growth 1249 
Cyclic Fatigue Strength 803,1047 
Cyclic Hardening 975 
Cyclic Loading 1075 
Cyclic Stress-Strain Curve 975 
Cylindrical Interface Crack 241 
Cylindrical Specimen 749 
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D 
Damage 253,295, 583, 601,1075 
Damage Detection.... 1093 
Damage Mechanism 731 
Damage Parameter 583 
Damage Zone 893 
Damage-Tolerance Analysis 649 
Debonding 43 
Defect Assessment Method 1333 
Deformation.. 121, 679 
Deformation Energy 205 
Defric Coating 939 
Degraded Material 577 
Delamination 187,731,1153,1189,1201 
Delamination Fracture 247 
Delaunay Automatic Triangulation 445 
Delayed Hydride Cracking DHC 845 
Design of Reinforcement 439 
Detonation 343 
Devitrification 1255 
Die Entrance Angle 547 
Differential Scanning Calorimetry 

DSC 1171 
Dilatational Phase Transformation 1231 
Dilute Sulfuric Acid 999 
Dimple Fracture 875 
Direct Current Potential Drop DCPD 655 
Directional Stability 55 
Discrete Micromechanical Model 373 
Dislocation 607 
Distributed Parameter 361 
DL-EPR Test 595 
Domain Walls 607 
Double Cracks 37 
Double Shot Peening 921 
Drill's Life 643 
Ductile Polymer 289 
Ductile Fracture 121 
Ductile Iron 933 
Dynamic Crack Bifurcation 313 
Dynamic Crack Curving 313 
Dynamic Crack Kinking 313 
Dynamic Crack Propagation 265, 313, 

325, 445 
Dynamic Fracture 259,313,331,445 
Dynamic Fracture Mechanics 445,1111 
Dynamic Fracture Toughness ...229, 301, 893 
Dynamic Impact 451 
Dynamic Interface Crack Stress Field 325 
Dynamic Interfacial Fracture 313 

Dynamic Isochromatics 283 
Dynamic J Integral 445 
Dynamic Loading Device 283 
Dynamic Maximum Compressive 

Stresses 307 
Dynamic Modeling 457 
Dynamic Photoelastic Experimental 

Method 283 
Dynamic Photoelastic Hybride 

Method 283 
Dynamic Photoelasticity 337 
Dynamic Photoelasticity Method 349,481 
Dynamic Recrystallization 851 
Dynamic Response 423 
Dynamic Stress Component 283 
Dynamic Stress Intensity Factor 241, 301, 

325, 349 
Dynamic Stress-Strain Behavior 307 
Dynamic Triaxial Compressive Loads 67 
Dynamical Loading 253 

E 
Edge Cracks 79, 523, 743 
Effective Flexural Modulus 247 
Effective Stress Intensity Factor 

Range (AKeff) 1345 
Eigenfunction 163 
Eigenvalue 163 
Elastic Half Plane 109 
Elastic Plastic Crack Propagation 565 
Elastic Restraint 1135 
Elastic Shear Buckling 517 
Elastic Wave Scattering 241 
Elasticity 499,523 
Elastic-Plastic Behavior 451 
Elastic-Plastic Fracture Mechanics 1327 
Elastic-Plastic SFEM 613 
Electrical Resistance 1129 
Electrodeposition 679 
Electromagnetic Thermoelasticity 139 
Electronic Speckle Pattern 

Interferometry ESPI 391 
Element Modeling 397 
Element Removal Method 379 
Element-Free Galerkin Method 

EFGM 487 
Elevated Temperature 1273 
Elliptical Holes 25 
Embrittlement 577,1255 
Energy Absorption Characteristics 1147 
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Engineering Analysis 505 
Epoxy Fraction 1081 
Equilibrium Equation 157 
Equivalent Engineering Modulus 1159 
Equivalent Stress 999 
Errors of the Reduced Integration 355,469 
Eshelby's Method : 1219 
Eulerian Finite Element Method 565 
Eutectic Silicon Particle 1017 
Evolutionary Structural Optimization 379 
Expansion Fracture 277 
Experimental Measurement 277 
Experimental Study 1075 
Explosion Experiment 319 
Explosive Loading 277,319 
Extrapolation Method 553 

F 
Face Milling 559 
Failure 785, 969 
Failure Analysis 1099 
Failure Behavior 1129 
Failure Criterion 1165 
Failure Index 1117 
Failure Mode 535 
Failure Pattern 809 
Failure Probability 797 
Failure Wave 343 
Fatigue 719, 749, 933, 951,969, 981,1321 
Fatigue Calendar Life 899 
Fatigue Crack Growth 85,127,1303,1345 
Fatigue Crack Growth Resistance 19 
Fatigue Design Criterion ; 957 
Fatigue Life 909, 999 
Fatigue Life Prediction 945, 957,1011 
Fatigue Limit 921, 933, 963 
Fatigue Modulus 945,1011 
Fatigue Properties 1309 
Fatigue Reliability 927 
Fatigue Strength 415, 899, 915,1315 
Fatigue Test 951,1029 
FEM 553,625,1093,1219 
FEM Analysis 875 
Ferroelectrics 175 
Fiber 1297 
Fiber Bridging 247,1111 
Fiber Orientation 815 
Fiber Pull-Out 1153 
Fiber Waviness 427,1069 

Fiber-Metal Laminates 1117 
Filament 1207 
Finite Element 1111 
Finite Element Analysis 133, 373,403, 

505, 529, 547, 869,1099 
Finite Element Method 61, 97, 391,475, 

511,541,767,1327 
Finite Element Method of Lines 151 
Finite Element Modelling 409 
First and Second Crack Coalesence 857 
Fixed Boundary 463 
Fixing Element 475 
Flexural Properties 631 
Flexural Strength 1159 
Flexural Test 1183 
Fluid-Structure Interaction 349,481 
Flux Cored Arc Welding 1339 
Forced Motion 469 
Formability 1273 
Fractal Dimension 367 
Fractographic Study  1267 
Fractography 169, 719, 731 
Fracture 169, 319, 679, 695, 773, 969 
Fracture Boundary Curve 1053 
Fracture Mechanics 91, 97,115,145, 

193,409,541,565,1005,1213 
Fracture Origin 749 
Fracture Path Prediction 445 
Fracture Ratio 505 
Fracture Strength of Notch 791 
Fracture Toughness 49, 73, 779, 863 
Fracture Transformation 55 
Framed Plate 319 
Free Fall Shock 451 
Frequency Effects 31 
Fretting 743 
Fretting Fatigue 915, 939 
Fretting Pad Material 915 
Friction Coefficient 547, 915 
Friction Temperature 1225 
FRP 601,1135 
FT-IR 1105 
Full-Scale Pipe 655 
Functionally Graded Materials  331, 373, 

487,511 
Fuzzy Method 433 

Gas Turbine 1029 
Gauss Sampling Point 355,469 
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Gears 921,1285 
Generalized Energy Function 55 
Genetic Algorithm 1117 
Glass Fiber 295 
Global Displacement Fitting 

Procedure 79 
Grain Boundary 1207 
Grain Boundary Characteristic 851 
Grain Boundary Sliding 367 
Grain Boundary Triple Junction 851 
Grain Size 707 
Graphite/Epoxy Laminates 731 
Graphite/Epoxy Square Tubes 1099 
Grating Lobe 619 
Grid 451,463 
Grillages 463 
Growth-Strain Method 361 
Gurson' s Constitutive Function 875 
Gurson's Model 625 

H 
Hardening 1255 
Hardness 987,1285 
Hardware-in-the-Loop 655 
HAZ 1303 
Healing Condition 803, 833 
Heat Treatment 933 
Heterogeneity 637, 785 
Heterogeneous Materials 667 
Hierarchical Models 403 
High Density Polyethylene 229 
High Impact Polystyrene 229,289 
High Strain Rate 97,277,307 
High Temperature Fatigue Crack 

Growth 1041 
High Temperature Strength 803,1047 
Higher Mode Deformation 673 
High-Speed Loading 289 
High-Speed Photography 289,313 
High-Speed Shadowgraph Technique 343 
High-Strain-Rate-Superplasticity 851 
Hill's Nonquadratic Yield Function 547 
HIP Treatment 1243 
Hold Time 31,1041 
Horizontal Crack 109 
Horizontal Fatigue Tester 993 
HREM-Moire 737 
Hybrid Composite 1297 
Hybrid Fiber Reinforced Concrete.... 571, 881 
Hybrid Metal Matrix Composite 1267 

Hysteresis Loop 1249 

I 
Image Processing 145 
Impact 731,1189 
Impact Damage 271,1177 
Impact Fracture 229, 313,445 
Impact Location Detection 661 
Impact Test 577 
Imperfect Interface 223 
Inconel  718,1029 
Infinite Plate 199 
Ingot Material 205 
Initial Stress 755 
Initial Velocity 451 
Injection Moulding 1081 
In-Plane Shear Forces 517 
Insulating and Conducting Cracks.... 695, 773 
Intensity Factor 139 
Interaction Effect 523 
Interaction Energy Method 259 
Interface 1279 
Interface Adhesion 1063 
Interface Crack 49, 73, 541 
Interface Fracture Toughness 541 
Interface Layer 331 
Interface of Bi-Material 211 
Interfacial Compliance 223 
Intergranular Carbide 707 
Intergranular Corrosion 595 
Interlaminar Fracture Toughness „.. 229, 

815,1063 
Interlaminar Shear Strength 1105 
Internal Damaged of Drilled Hole 643 
Inverse Fracture Problem 37 
Inverse Problem 61,1093 
Irwin Method 145 
ISM Method 903 
Isochromatics 145 
Isotropic/Orthotropic Bimaterials 283 

J-Integral 31,133, 505, 541, 869,1327 
Joint Strength 1165 
J-Q Analysis 869 
J-Q-Tz Theory 193 

K 
K-Type Tubular Joints 1005 
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L 
Laminate 1141 
Laminated Composites 403,1165 
Lamination 1123 
Lamination Theory 1159 
Large Strain 277,289 
Laser Profilometry 1123 
Laser Surface Melting 595 
Laser Weld 1321 
Laser Welding 1309 
Leak Detection 887 
Leak-Before-Break LBB 655 
Life of Propagation 1005 
Life Prediction 1029 
Limit Analysis 133 
Limit Ironing Reduction 547 
LMP Method .903 
Load Interaction 127 
Load-Differential Strain Curve 1249 
Local Buckling Strength 1135 
Local Fracture Criterion 1053 
Localization 637, 785 
Localized Flexibility 1093 
Longitudinal Stiffener 517 
Love Waves 725, 755 
Low Carbon Steel 1315 
Low Cycle Fatigue..749, 975,981, 987,1017 
Lower Edge Crack 283 
Low-Velocity Impact 295,1177 
Luminance 601 

M 
Machine Element 475 
Magnetoelasticity 199 
Martensitic Transformation 863 
Mathematical Modelling 631 
Matrix Cracking 1141 
Matrix Ductility 1063 
Maximum Hoop Stress Criterion 1053 
MCM-D 1123 
Mean Friction Coefficient 1225 
Mechanical Alloying 1291 
Mechanical Loading 863 
Mechanical Parameter 433 
Mechanical Properties 1291 
Mechanical Property Degradation 631 
Mechanically Fastened Joints 1011 
Mechanism Method 463 
Mechanistic Model 217 
Median Filtering 391 

Mesoscopic 785 
Metal Matrix Composites 1219,1237 
Metal/Ceramic Joint 529 
Metastable Phases 863 
Method of Caustics 313 
Micro Defects 767 
Micro Vickers Hardness Test 577 
Microcrack Interaction 667 
Microcracks 667 
Microcrystalline Grain 839 
Micromechanics 1,121,1219 
Microscopic Deformation 175 
Microscopic Mechanism 127 
Microshrinkage 749, 981 
Microstructure 863, 881, 933 
Mismatching 1327 
Mixed Mode 49, 73, 541 
Mixed Mode Fracture 1053 
Mixed Mode Loading 325,1035 
Mixed-Mode 1141 
Mixture Model 1255 
MMC 625, 1243 
Modal Design Sensitivity Analysis 439 
Mode Analysis 355 
Mode 1 169, 815 
Mode II 169 
Model Accuracy 403 
Modeling Error 403 
Modified 16-Node Solid Element 355,469 
Modulus Mismatch 1261 
Moire Interferometry .„. 409 
Molded and Machined Notch .\ 791 
Monte Carlo Method .:.. 391 
Monte Carlo Simulation 367,1129 
Morphology 779 
MoSi2 909 
Moving Element Method 445 
Moving Least-Squares MLS Method 487 
Mullite/SiC Ceramics 803 
Multi-Axial Loading 945 
Multi-Crack 809 
Multicrack Growth Model 367 
Multidirectional Composites 247 
Multilayer 1123 
Multi-Layered Structure 1081 
Multiple Cracks 97 
Multiple Layers CFRP 1159 

N 
Nanocomposite 1207 
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Nano-Deformation 737 
Nano-Fractography 827 
Nanomechanics 1 
NaOH 707 
Neural Network 559 
Neural Network Modeling 713 
Neutron Dose 607 
Nondestructive Evaluation 619, 887,1069 
Nonlinear Behavior 637 
Nonlinear Displacement Field 409 
Nonlinear Evolution 713 
Nonlinear Flexural Behavior 427 
Normal Distribution 85 
Notch 181, 601, 999 
Notch Sensitivity Factor 1029 
Nucleation Time 761 
Numerical Analysis 457, 499, 523 
Numerical Approximation Error 403 
Numerical Minimization 631 
Numerical Simulation 385, 637, 785 

O 
On-Line Frequency Estimation 1201 
On-Line Monitoring 887 
Optical Extensometer , 229 
Optical Fiber Vibration Sensor 661 
Optical Micrograph 577 
Optical-Fiber Extensometer 289 
Optimization 415 
Optimization Technique 61 
Optimum Design 493,1117 
Organic Brake Pad 1225 
Orientation Angle 1159 
Orthotropic Plate 517 
Orthotropic Structural Shapes 1135 
Overall and Local Responses 373 
Overall Elastic Properties 667 
Overload 423 
Oxidation 833 

P 
P/M Copper 205 
Partial Crystallization 1255 
Partial Interfacial Debonding 761 
Partial Slip 743 
Particle 1297 
Particle Dispersed 1219 
Particulate-Reinforced Composite 

Materials 761 
Patched Crack 103 

Path Independent Integral 445 
PC/ABS 779,1053 
Peak Strength 809, 857 
Penetration 1231, 1339 
Percolation 367 
Perturbation Method 613 
PET Matrix Composites 1171 
Phase Shifting 391 
Phase Unwrapping .' 391 
Phase Velocity 725, 755 
Phased Array 619 
Phenol Resin 1105 
Photoelastic Experiment 115 
Photoelasticity 145 
PID Control 361 
Piezoelectric Actuator 1201 
Piezoelectric Ceramics 673, 821 
Piezoelectric Element 619 
Piezoelectric Layered Structures 725, 755 
Piezoelectric Materials 695, 773 
Pinned Joint 1165 
Pipe Flange 475 
Pit  939 
Plain-Woven Glass/Epoxy 

Composites 271 
Plane Compressional Wave 223 
Plane Problem 199 
Plastic Deformation 541 
Plastic Hinge 463 
Plasticity 217 
Plate 397 
PMMA 265 
Polarization Curve 707 
Polyamide 6 1081 
Polycarbonate 121,229,601 
Polymer 121,1075 
Polymer Alloy 779,1053 
Polymer Matrix Composites PMC... 229, 295 
Polynomial Approximation 49 
Polypropylene Fiber 571, 881 
Porosity 963 
Porous Solid 1195 
Post Welding Heat Treatment 1339 
Postbuckling 1189 
Powder Metallurgy 1273,1285 
Pressure-Sensitivity 1195,1231 
Pressurized Thermal Shock 797 
Prestrain 1321 
Printing Wiring Board 643 
Probabilistic Fatigue 927 
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Probabilistic Fracture Mechanics 797 
Progressive Collapse 1023 
Progressive Failure Analysis 535,1165 
Pseudo Dynamic Elastic Moduli 307 
P-S-N Curve 951 
PTS Screening Criteria 797 
Punch Shape 743 

Quasi-Cleavage Fracture 737 

R 
Random Fatigue 1005 
Random Variable 85 
Rapid Press Consolidation Technique 

RPCT 1171 
Rapid Solidification 839 
Rate of Test 247 
Rayleigh Wave Velocity 325 
Rayleigh-Ritz Method 517 
Recovery of Strength 803, 1047 
Recrystallization 679 
Reduction of Stress Intensity Factor 43 
Reduction Ratio 379 
Regular Fracture 55 
Reinforcement 385 
Reissner Plate 151,163 
Reissner Shell 151 
Relative Thickness Ratio 373 
Reliability 613,957 
Remaining Life 987 
Remanent Polarization 821 
Residual Strength 271 
Residual Strength Analysis 649 
Residual Stress 73, 529,1219,1279,1339 
Resonances 969 
Response Surface Method 1023 
Retardation Coefficient 85 
Rigid Particle 1075 
Rock Mass 385,433 
Rock Material 67 
Rock Microfracturing Process 713 
Rolling Contact Fatigue 1035 
Rolling Stock 493 
Roughness 217 
Rubber Contents 583 
Rubber Modified Adhesive 583 
Rubber Toughened PMMA 409 
Rubber-Modified Epoxy 1195 
Rule of Mixtures 373 

S 
SA508-3 607 
Scale Effect 1 
Scattering 223 
Sealing Performance 475 
Secondary Curing Method 1087 
Selected Load Sequence 127 
SEM 625, 749, 981 
SEM Observation 779 
Semi-Elliptical Notch 523 
SENB Specimen 869 
Sensitivity Analysis 1023 
Sensitization 595 
SENT Specimen 869 
Separated Dynamic J Integral 445 
Separation of Solid 319 
Shadow Spot Method 301 
Shape Control 673 
Shape Memory Alloy 673,1309 
Shape Memory Effect 1219,1309 
Shape Optimization 361 
Shear 37 
Shear Fracture 1053 
Ship Hull Girders 1023 
Shock Adiabatics 253 
Short Crack 217 
Short Fiber Reinforcement 1177 
Si3N4/SiC Ceramics 1047 
SiC Particle 625 
Silica Particulate Filled Epoxide Resin.. 1053 
Silicon Carbide Ceramic 1249 
Silicon Carbide Composite Ceramic 1249 
Silicon Nitride 833 
Simulation 391 
Single-Asperity-Contact Friction 1 
Single-Node Quadratic Element 91 
Singular Integral Equation 241,499 
Singular Line Mapping 151 
Si02 909 
Sliding Crack Model 67 
Slip 767 
Small Diameter Drilling 643 
Smart Structure 661 
S-N Curve 1029 
SN-DCB Specimen 815 
Sobel Edge Enhancement 391 
Soft ferromagnetic Materials 199 
Softening 987 
Solid Lubricant Wear 1267 
Solid State Sintering 1291 
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Solid Wires 1339 
Solution Treatment 1237 
Source Location 887 
Spalling Cracks 1213 
Spatial Random Process 19 
Specific Damping Capacity 469 
Spherical Inhomogeneity 223 
Spheroidal Graphite Cast Iron 749, 981 
Split Hopkinson Pressure Bar SHPB 307 
Spot-Welded 415 
Spot-Welded Joint 957 
Spraying 839 
Squeeze Cast Aluminium Alloy 1017 
Squeeze Casting 1237 
Squeeze Casting Method 1267 
Stacking Sequence 1141 
Stainless Steel 304 31 
Staircase 951 
Static Analysis 355 
Static Fatigue Strength 803,1047 
Statistics 951 
Steel D&I Can 547 
Stiffened Composite Plate 1189 
Stiffened Cylinder 481 
Stiffness Reduction Method 535 
Stoney's Formula 1123 
Strain Constrain 1321 
Strain Control 975 
Strain Energy 517 
Strain Energy Density Factor 957 
Strain Gauges 289 
Strain Gradient Plasticity 9 
Strain Hardening Exponent 205 
Strength 67, 637, 679, 839,1207 
Strength Mismatch 1333 
Strength Recovery 833 
Strengthening Mechanisms 1297 
Stress 969 
Stress Analysis 475,547 
Stress Concentration .25, 601,767, 969,1011 
Stress Concentration Factor 499, 523, 999 
Stress Control 361 
Stress Corrosion Cracking (SCC) 707 
Stress Cutting 55 
Stress Double Shot Peening 921 
Stress Intensity Factor 25, 31, 37,49, 79, 

109,115,145,151,163,211,259, 
265, 319, 331, 487, 511, 523, 553, 
743, 993,1345 

Stress Intensity Factor Range 999 

Stress Interaction Effect 767 
Stress Ratio 827,1249 
Stress Relaxation 1123 
Stress Shot Peening 921 
Stress Triaxiality 121, 625, 875 
Stress Wave 337 
Stress Wave Propagation 349,481 
Stress-Strain Fields 193 
Striation Height 827 
Striation Width 827 
Striation-like Marking 719 
Structural Steels 939 
Structure Analysis 61,423 
STS 316L 1041 
Substructure Strengthening 1207 
Surface Acoustic Wave Devices 725, 755 
Surface Crack 505,1005,1327 
Surface Roughness 915 
Surface-Roughness Evolution 1 
SUS304 1011 

T 
Taguchi Method 1087 
Tailored Welded Blank 1321 
Target Strength 1231 
Tearing Modulus 505 
TEM Observation 779 
Temper Bead Welding 1339 
Temperature 583, 815 
Temporal Fractal 713 
Tensile Properties 779 
Tensile Stiffness 25 
Tensile Strength 1243 
Tensile Tests 577 
Tension 25, 601 
Texture 679, 845 
The Fourth Compressor Pan 969 
Thermal Aging 631, 975 
Thermal Barrier Coating 909 
Thermal Cycle 529 
Thermal Shock 1213 
Thermomechanical Bow 1123 
Thermoplastic Polymer 631 
Thermoplastics 121 
Thermotropic Liquid Crystalline 

Polymers 1081 
Thick Composites 427, 791,1069 
Thickness Effect 127,193,271 
Thickness Polynomials 403 
Thin Film 187 
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Thin-Walled Plate 451 
Three Flaws 857 
Three Gorge Project 385 
Three-Dimensional Cracks 193 
Three-Dimensional Fields 181 
Threshold 999 
Threshold Impact Energy 271 
Threshold Stress Intensity Factor 

(KIH) 845 
Ti-6A1-4V Alloy 1243 
Ti-Alloy 1303 
Time-of-Flight Base of Method 887 
Time-Variation Reliability 

Assessment 1023 
TiNi Alloy 1219 
Tool Wear 559,643 
Tooling 1285 
Topology Optimization 379,439 
Toroidal Hole 499 
Toughness Testing Standards 133 
Trigger Mechanism 1147 
TTP Method 903 
Tungsten Fiber 1243 
Tungsten Fiber Content Ratio 963 
Tungsten Fiber Reinforced Ti-6A1-4V 

(W/Ti-6A1-4V) Alloy 963 
Tungsten Heavy Alloy 1291 
Two-Dimensional Elasticity 25 
Two-Step Sintering 1291 

U 
Ultrasonic Peening 1315 
Ultrasonic Testing 619 
Ultrasonics 1069 
Underwater Explosion 481 
Undulation 1153 
Unidirectional Carbon Prepreg 1087 
Unified Description 181 
Unloading Behavior 265 
Unloading Rate 265 
Upper Edge Crack 283 

V 
Vane Components 1029 
Vapor Deposition 679 
Variability 85 
Variable Amplitude Loading 85 
VCFEM.... 373 
Vibration 391 
Vibration Analysis 397 

Virgin Material 577 
Virtual Crack Extension Method 49 
Virtual Work 463 
Viscoelastic Material 761, 893 
Void 875 
Void Configuration 625 
Void Growth 761 
Void Nucleation Model 1195 
Void Volume Fraction 625 
Voids 157 
Volume Control 361 
Volume Fraction 373 
VPS 909 

W 
Wakashima-Tsukamoto Estimate 373 
Wall Ironing 547 
Wear Rate 1225 
Weibull Distribution 19 
Weight Function Method.... 103 
Welded Joint 1315 
Welded Pipe 613 
Welding Process 1303 
Welding Residual Stress 1345 
Weldment 1333 
Wheel-Rail Contact 493 
Whisker 1237 
White Light Photoelastic Experiment 145 
Wide-Plate 655 
Winch 719 
Window Pillar Member 415 
Wire Rope 719 
With-Laminar 1153 
Workpiece Material 559 
Woven Glass Fabrics 1183 

X 
XPS 1105 

Y 
Y4 Steel 301 
Yield Strength 589 
Yielding 1261 

Z 
Zr-2.5%Nb 845 
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